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Outline

This talk is on joint work (arXiv:2501.17155) with Shijie Fan
explicit definitions and simple special cases of our results.

Program:

1.

A O

Two classical examples: Clebsch—Klein equations
More explicit examples: Ico equations
Application: Fermat problem

Non-degeneracy: Definition and basic idea
Non-degenerate curves

Equations F(x,y) =0

. | will focus on
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1. Two classical examples: The
Clebsch—Klein equations
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Clebsch—Klein surfaces: Geometry

Write N = Z>;, for i € N let 0; be the i-th elementary symmetric polynomial
Icosahedron surface (Klein, 1873): V C P} : 0, =0 =04

Cubic diagonal surface (Clebsch, 1871): V' C P} : X +... + 2z =0=0y

Geometry. After Clebsch and Klein, many others studied geometric aspects of
the complex surfaces V¢, V¢ which are both rational (i.e. birational to P2).

Non-degenerate equations. Geometric results of Hirzebruch (1976) imply that
the defining equations of the surfaces Vi and Vj, given respectively by

3 3
o0=0=04 and z+...4+z=0=o01,

are two classical examples of equations which we call non-degenerate.
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Clebsch—Klein surfaces: Diophantine equations

Fundamental Diophantine equations can be studied via the surfaces
VC]P4Z:02:O:J4 and V'C]P’4Z:zg+.,.+zf:0:01.
Let S be a finite set of rational primes, Ns =[], .5 p, Zs = Z[Nis]
Equation 1. U(Zs) = {x € X; 02(x) =0 = 04(x)} where
Y ={x€Z gcd(x0,...,xa) =1 and ged(xi, xj,xx) € Zg if i <j < k}
Equation 2. U'(Zs) = {x € (ZZ)" x + ... +x3 =1 =01(x)}

Relation to V, V’. A direct computation shows that U(Zs) and U’(Zs)
identify respectively with the sets of S-integral points of

U=V\Z, Z=UoP; and U =V'\D, D=UyV.(z).

Here P; are the (images of the) five Z-points of V obtained by permuting the
coordinates of (1,0,...,0), and V(z) are the five coordinate hyperplanes.

Comparing U, U’. Equation 1 in U(Zs) is more fundamental than Equation 2
in U'(Zs) since U is much larger than U’: Over Z[1] we get an open immersion

p: U = U, U=*v\DCU=V\Z,
with 1 h(x) < h(p(x)) < 4h(x) for all x € U'(Q) and h is usual log Weil height.
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Some Diophantine results

The infinite sets U’'(Q) — U(Q) are both very large. A highly uniform bound
for the number of solutions of the generalized unit equation implies:

Theorem (1) (special case of Evertse—Schlickewei—Schmidt, 2002)

It holds |U'(Zs)| = |{x € (ZX)* S x% =1 = o1(x)}| < exp(242(4|S| + 1)).

What about W'(Zs) when U" C W’ C V’'? Very strong (essentially optimal)
non-degeneration results for S-integral points on smooth cubic surfaces imply:

Theorem (2) (special case of Corvaja—Zannier, 2010)
The points W'(Zs) are not Zariski dense if W' = V" \ (Vy(20) U Vi (21)).

What about U(Zs) = {x € X, 02(x) = 0 = 04(x)}? If his the usual logarithmic
Weil height and ¢ = 10" for x = 10, then explicit bounds for the height and
the number of S-integral points on coarse Hilbert moduli schemes imply:

Theorem (3) (special case of K.—Kret, 2023)

It holds |U(Zs)| < (cNs)™ and all x € U(Zs) satisfy h(x) < cNZ*.

Theorem 3 holds also for U’ in place of U using ¢ : U’ — U =V \ (UL,P)),
and Theorem 3 is optimal in the sense that one can not make U C V larger.
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Some Diophantine results: Discussion

Theorem (1) (special case of Evertse—Schlickewei—Schmidt, 2002)
It holds |U'(Zs)| = [{x € (Z£)*; 3%} =1 = 01(x)}| < exp(242(4|S| + 1)).

Theorem (2) (special case of Corvaja—Zannier, 2010)
The points W'(Zs) are not Zariski dense if W' = V' \ (Vi (20) U Vi (21)).

Theorem (3) (special case of K.—Kret, 2023)

It holds |U(Zs)| < (cNs)* and all x € U(Zs) satisfy h(x) < cN2*.

@ Theorems 1 and 2 hold for any number field K, while Theorem 3 only
holds for K = Q and so far its proof does not generalize to any K.

@ So far the techniques underlying Theorem 3 do not allow to study the
much more difficult W’(Zs), and the bound for |U’'(Zs)| provided by
Theorem 3 and |U'(Zs)| < |U(Zsu31)| is much worse than Theorem 1.

@ Theorems 1 and 2 use certain Diophantine approximations techniques
which allow to prove deep Diophantine properties of the solutions, but so
far they do not allow to explicitly bound the height of all solutions.

@ So far is not clear whether Diophantine approximation techniques can be
applied to study U(Zs) since the relevant divisors in the desingularization

of the normal surface Vg are never big (and thus never ample).
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2. More explicit examples: lco equations
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Ico equations

Ico equations. Let f € Z[xo, ..., xs] be homogeneous of degree n > 1:
e Xf CP}: oy =0=04,f =0 for o; the i-th elementary symmetric
e Xf(Q)={x¢€ ZS;O'Q(X) =0 = 04(x), f(x) =0,gcd(x0,...,xa) = 1}
Non-degenerate criterion:

e A =] a; with the product taken over the five diagonal coefficients
ao, . . ., as of the homogeneous f = > aix{’ 4+ ... of degree n

o If A # 0 then we call the curve Xr non-degenerate.

Non-degenerate equations. The equations (02 = 0 = g4, f = 0) with f
having A # 0 are all explicit examples of non-degenerate equations.

Theorem (A)

If A # 0 then | X-(Q)| < c-rad(A)" and h(x) < c-rad(A)** for all x € X¢(Q).

Here h(x) = log max |x;|, and one can take for example ¢ = 10" and x = 10"
The locus A # 0 is open inside moduli and almost all X¢ are non-degenerate

Application. The curves X¢ are fundamental for the study of rational points on
curves since any curve X over Q of genus > 2 is birational over Q into some
Xr. As almost all Xr are non-degenerate, Theorem A allows to establish the
effective Mordell conjecture for large classes of (explicit) curves X over Q.
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3. Application: Fermat problem
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Fermat problem inside rational surface

Frow now on we write P™ for Pg. Let i, f» € Z[xo, ..., xs] be homogeneous
such that SCP*: ff =0 = £, is a projective rational surface over Q and define

S(z) = {x € Z°; fi(x) =0 = h(x) and ged(xo, . . .,xs) = 1}.
Call x € S(Z) trivial if all x; € {—1,0,1} and write N = Z>;.

Problem (F). For any a, b, c,d, e € Z — {0}, try to construct no in N such that
all solutions of the Fermat equations (F,) are trivial when n > no:

(Fn) axg+bxq +oxg+dag+ex) =0 x€S(Z), neN.

As S is a rational surface over Q, the infinite set S(Q) is ‘large’ and hence the
Diophantine problem (F) is ‘non-trivial’. In particular, for any n € N there exist
nonzero a, b, c,d, e € Z such that (F,) has a non-trivial solution and thus ng
has to depend on a, b, ¢, d, e if it exists. We conjecture that (F) can be solved
if and only if (SN Z)(Q) is trivial, where Z C P* is given by

Z = Uiy Vi(fy),  fj=xix—x. (1)

11/30



Fermat problem: The classical case S = P? and the ico case S = S'®

If S=P? C P*: x3 =0 = x4, then the Fermat problem (F) is the classical
Fermat problem solved by Wiles for a = b = —c = 1 with optimal ny = 3.

Now, we replace the surface S = IP? by the birationally equivalent surface
S°CP:o=0= os. Then our Theorem (A) allows us to solve the Fermat
problem (F) for § = §*°.

Corollary. If S = S then all solutions x of (F,), n € N, satisfy
log max |xj| < k-v", v =rad(abcde), k= 101012, Kk =24.
Moreover there is ng € N such that all solutions of (F,) are trivial when n > ng.

The analogue of this Corollary is still open for general a, b, ¢ in the classical
case S = P2, However if S = P? then for large classes of a, b, ¢ optimal results
are known and many of these results actually hold in more general situations
(e.g. with different exponents ny, n2, n3 or in certain number fields K # Q).

As the underlying geometry of (F) is equivalent, we conjecture that (F) behaves
similarly (or might be even related) for P?, $° and other rational surfaces S.
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4. Non-degeneracy: Definition and basic idea
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Definition and basic idea

Let myn € Z>1, i € {1,...,m}, fi € Z|xo, . .., xs] homogeneous of degree > 1.

Definition. The equations (fi =0,..., f, = 0) are called non-degenerate if
V(fi,..., fn) C P" satisfies a certain geometric non-degenerate criterion.

Key property. If V is non-degenerate then there exists an open dense U C V
which is a coarse moduli scheme of finite level: Roughly speaking this means

UQ) ={(Aa) AcA,acP(A)}, A, ={A/QAV of dim(A) = g}
for g € Z>1 and P(A) a finite set associated to the AV=abelian variety A/Q.
Idea. Study subset S of {x € Z"™; fi(x) = 0,gcd(x;) = 1} = V(Q) via
V(Q) =U@U(V\U)Q) and U@Q)=¢"(4(U(Q)
where ¢ : U(Q) — A, is simply the forgetful map
¢: U@ CU@Q) — A, (Aa)— A
Here (V' \ U)(Q) is usually simpler than V/(Q) since dim(V \ U) < dim(V); e.g.

V'\ U is automatically finite if m=1,n=2 (i.e. V = Vi (f) CP?is a curve).
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Strategy to prove explicit height bounds

Suppose (i =0, ..., fn, = 0) are non-degenerate, V = V(f;), h = log max |x;j|
Goal: For S C {x € Z"™; fi(x) = 0,gcd(x;) = 1} = V(Q), try to bound hon S

We use a strategy which was developed over the last 70 years by many people:
It combines the method of Faltings (Arakelov, Parsin, Szpiro) with modularity
and Masser—Wiistholz isogeny estimates. Very rough outline:

(a) Effective Parsin. Try to control hon (V'\ U)(Q) and try to show that the
forgetful map ¢ : U(Q) — A, satisfies h(x) < he(é(x)) for all x € U(Q),
where hr is the stable Faltings height on A,.

(b) Effective Shafarevich. Try to explicitly bound hr on A = ¢(SN U(Q)):

(i) To control the variation of he in the isogeny class of each A € A, combine
a formula of Faltings with the deep Masser—Wiistholz isogeny estimates
based on transcendence (fully explicit version of Gaudron—Rémond).

(ii) Try to control hr on A modulo isogenies, by combining geometric version
of modularity (using Tate conjecture proven by Faltings) with averaged
Colmez formula for A with CM, explicit analytic estimates and explicit
results from Arakelov theory. This part (ii) works unconditionally in the
GL>-case using Serre’s modularity conjecture (proven by Khare and
Wintenberger), GLo-type constructions, Belyi degree results, . ...

Remark. The effective Parsin step (a) is usually a purely geometric/analytic

problem, while step (b) usually requires deep arithmetic results.

15/30



Strategy to prove explicit height bounds: Applications

Suppose (f =0, ..., fn = 0) are non-degenerate. Then V = (f,...,fn) CP"
contains an open dense U C V which is a coarse moduli scheme of finite level.
The strategy currently can be applied in the following situations:
(6L) Thm (K., 2013). The variety U/Q is a moduli scheme of GL>-type: All
points of U parametrize (A, a) where A is an AV of GLr-type.
(H) Thm (K.—Kret, 2019). The variety U/Q is a Hilbert moduli scheme: All
points of U parametrize (A, «) where A is an AV with real multiplications.

(cH) Thm (K.—Kret, 2023). The variety U/Q is a coarse Hilbert moduli
scheme with empty branch locus: U(Q) parametrizes (A, a) as in (H) and
the underlying stack Mp of (A, «) is étale over U via 7 : Mp — U.
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Strategy to prove explicit height bounds: Examples

The strategy currently can be applied in the following situations:

(6L;) Thm (K., 2013). The variety U/Q is a moduli scheme of GL,-type: All
points of U parametrize (A, &) where A is an AV of GLr-type.

(H) Thm (K.—Kret, 2019). The variety U/Q is a Hilbert moduli scheme: All

points of U parametrize (A, &) where A is an AV with real multiplications.

(cH) Thm (K.—Kret, 2023). The variety U/Q is a coarse Hilbert moduli
scheme with empty branch locus: U(Q) parametrizes (A, a) as in (H) and
the underlying stack Mp of (A, «) is étale over U via 7 : Mp — U.

Examples.
o If V, V' are the Clebsch—Klein surfaces of part 1, then U, U’ satisfy (cH).
o If X¢ in part 2 is non-degenerate, then V = U = X satisfies (cH).
o All curves V C P satisfying Criterion (7) in part 6.

The following examples still require to work out the effective Parsin step (a):
o If there exists an abelian scheme Ag/U of GLr-type, then U satisfies (6L,).

o If U admits a quasi-finite morphism to a representable Hilbert modular
variety over QQ, then U satisfies (H).

o Alpdge's examples (including a nice explicit family) in his thesis in which

he studied the problem of constructing curves V = U satisfying (GL,) or (H).
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5. Non-degenerate curves
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Plane models of curves and ico models of curves

Write A" = Ag for ne N

Let X be a curve® over Q. For example if F € Q[x, y] has degree > 1 then
X = V(F) C A% is a curve over Q with X(Q) = {(x,y) € Q* F(x,y) = 0}.

Classical result. Each irreducible component of X is birational® over Q into
some plane curve V(F) C A%

On using classical constructions of Clebsch and Klein, we obtain analogue:

Theorem (B)

Each irreducible component of X is birational over Q into some curve X.

Definitions.

o If X is birational over Q into some curve V(F) C A? then call V/(F) plane
model of X.

e If X is birational over QQ into some curve Xr then call X¢ ico model of X.

1A curve over a field k is a finite type separated k-scheme whose irreducible components all
have dimension one.
2A curve X over Q is birational over Q into another curve Y over Q if there exists an open
dense U C X with an immersion U < Y.
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Non-degenerate curves

Let X be a curve over Q.
Theorem B gives that (each irred. component of) X has many ico models X.
Non-degenerate criterion:

o X is non-degenerate if X has at least one non-degenerate ico model X

Non-degenerate equations. If X = V/(f,...,fn) C P" is a non-degenerate
curve over Q where n, m € N, then the equations

(Ah=0,...,fm=0)
are an example of equations which we call non-degenerate.

As almost all X are non-degenerate, there exist many non-degenerate curves X
over Q. What is relation of non-degeneracy to property that X has genus® > 27

If X is non-degenerate then X has genus > 2.

3For each g € N, the curve X has genus > g if all irreducible components of Xy have

geometric genus > g.
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Non-degenerate curves: An open problem

Let X be a curve over Q. Recall the following:

If X is non-degenerate then X has genus > 2.

The converse is the following open problem.

Open problem: Determine which X over Q of genus > 2 are non-degenerate.

Known for large classes of (explicit) curves X over Q:
e If X = X¢ has A # 0 then X has genus > 2 and X is non-degenerate.

o If X = V(F) C A? satisfies the explicit geometric criterion (7) then X has
genus > 2 and X is non-degenerate. We shall explain criterion (7) later.
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Height bounds for rational points on non-degenerate curves

Let X be an irreducible (and reduced) curve over Q. Assume X C P is
quasi-projective over Q and let h be the usual logarithmic Weil height on P™.

Theorem (D)

Suppose X is non-degenerate. For any non-degenerate ico model X¢ of X,
there exists a controlled open dense U C X such that all x € U(Q) satisfy

012

h(x) < c-dxvf + hx, vr=rad(A), c=10"", k=24

dx = deg(X — X)deg(X) for X — X normalization and X C P™ closure
hx = height of X inside P* x P™
U C X is largest open of X with an immersion U — Xr
Application. To deduce from Theorem (D) explicit Weil height bounds for all
x € X(Q), one can proceed as follows:
(i) Construct a non-degenerate ico model X¢ of X with v¢ controlled.
(i) Control h(x) for the finitely many x € (X \ U)(Q).
We emphasize that (i) and (ii) are both geometric problems. To illustrate the
application of Theorem (D) via (i) and (ii) we will consider a special class of

non-degenerate plane curves satisfying a simple non-degeneracy criterion (7).
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6. Equations F(x,y) =0
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Criterion (7) for plane curves

Motivation. We introduce a simple non-degeneracy criterion for plane curves
which allows to explicitly produce large classes of non-degenerate plane curves.

Let F € Z[x, y] be of degree d > 1 and consider X = V(F) C A? C P?.

Criterion (7). Let 7 : P> ——» P* be the explicit rational map over Q defined in
the next slide, and let e; € P* be the five permutations of e; = (1,0,...,0).

Criterion (7) The closed image 7(X) contains no e;.

The rational map 7 : P? --» P* over Q is birational onto its image and for any
given F one can compute (over Q or C) whether (7) holds.

If X = V/(F) satisfies (T) then X is non-degenerate.

Non-degenerate equations. For each F € Z[x, y] such that V(F) C A?
satisfies (1), Theorem (E) implies that the equation

F''=0, F'e Z[x, y, z] homogenization,

is an example of an equation which we call non-degenerate.
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Criterion (7) for plane curves: Definition of 7

We define homogeneous polynomials 7; in Z[x, y, z] of degree 12 as follows:
We put 7i = —([[,; t;)(3_t;) for i € {0,1,2,3} and 74 =[] t;, where

to = (y — z)(xy + xz — 2°), t1 =xz° + yz° — X’y — 2°,

th = x(z° — y* — xz), ts =z(yz — xz + x> — y°).

The five 7; define a morphism 7 : P2\ T, — P* where T, = NV, (7;) is finite.
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Explicit classes of plane curves satisfying criterion (7).

One can explicitly construct large classes of plane curves satisfying criterion
(7). To illustrate this, we take n € Z>1 and we define

5 ifn=1,
r:
4> —4n+6 ifn>2.

For each n € Z>1 there exist r explicit polynomials F; € Q[x, y] such that:

@ The r polynomials F; € Q[x,y] are Q-linearly independent.
o Forall ac Q" with [[>_, ai # 0, the curve V(3_ a;F;) C A? satisfies (7).

The F; can be computed directly as follows: One can simply take
Fi=1"f(x,y,1), 7°fi=Ff(7,...,7) € Q[x,y,z],

where f; € Q[xo, . . ., xa] are monomials of degree n forming a Q-basis of the
n-th graded part of Q[xo, ..., xa]/(02,04) such that fi = x_; for i <5.
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Height bounds for rational points on plane curves: Conjecture (EM)

Let F € Z[x, y] be of degree d > 1 with coefficients a,, and set |F| = max|a,|.
If X = V(F) C A® has genus > 2, then X(Q) = {(x,y) € Q% f(x,y) =0} is
finite by the Mordell conjecture proven by Faltings (1983). This motivates:

Conjecture (EM). If X = V/(F) C A? has genus > 2 then each (x,y) € Q?
with F(x,y) = 0 satisfies max(h(x), h(y)) < cq|F|" for effective cq, Kq.

Here effective means ¢y = exp(o")(d) for an explicit n, while h is usual logarith-
mic Weil height: h(x) = log max(|m|, |n|) for x = 2 € Q, m, n € Z coprime.
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Height bounds for points on plane curves: Some known results

Integral analogue.

o After Baker's breakthrough (1966), many authors used logarithmic forms
to establish the S-integral analogue (e.g. (x,y) € Z2) of Conjecture (EM)
for large classes of (explicit) curves over any number field K; see e.g. the
excellent books of Baker-Wiistholz* and Evertse—Gyéry®® for overviews.

@ Recently Corvaja—Lombardo—Zannier (2024) made important progress on
this S-integral analogue for large classes of genus two curves over any K.

Under certain rank assumptions.

@ In case certain rank assumptions are satisfied, there are powerful methods
(e.g. Chabauty's method,...) giving very strong Diophantine results for
X(Q) = {(x,y) € Q*, F(x,y) =0} which often allow to determine X(Q).

o These methods usually work very well in practice for a given F.

@ Some of these methods also work for certain families of F. For example, in
a series of papers, Viada, Checcoli—-Veneziano—Viada and Veneziano—Viada
established over the last years a sharper version of Conjecture (EM) for
large families of (explicit) curves over any K of growing genus. Their
proofs build on the theory of anomalous intersections of Bombieri, Masser,
Zannier, and their bounds allow them to determine X(Q).

*Logarithmic Forms and Diophantine Geometry
SUnit Equations in Diophantine Number theory
SDiscriminant equations in Diophantine Number theory
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Proof of Conjecture (EM) for X satisfying (7) via Theorems (D) and (E)

Suppose X = V/(F) satisfies (7). Then X is non-degenerate by Theorem (E).
Theorem (D): For any non-degenerate ico model X¢ of X, there exists a

controlled open dense U C X such that all x € U(Q) satisfy

h(x) < c-dxvf + hx, vr=rad(d), c= 1010127 K= 24.

Application. To deduce explicit height bounds for all x € X(Q):

(i) Construct a non-degenerate ico model X of X with v¢ controlled.

(ii) Control h(x) for the finitely many x € (X \ U)(Q).
For (i) combine algebraic geometry with theory of heights of projective varieties,
while for (ii) exploit the explicit T to get h(x) < 10 for all x € (X \ U)(Q).
Corollary. If X = V/(F) satisfies (1), then the curve X over Q is
non-degenerate and Conjecture (EM) holds with rq = 8%d* and c4y = géxa.

Theorem (F) constructs large classes of explicit plane curves satisfying (7): For
each n € Z> the space A"\ (U, V(z)) of dimension r ~ 4n’ parametrizes
such curves of degree 12n, and for each odd square g > 2 there exists a moduli
space of dimension ~ g which parametrizes such curves of geometric genus g.
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Thank you very much for your attention!
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