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Outline

This talk is on joint work (arXiv:2501.17155) with Shijie Fan. I will focus on
explicit definitions and simple special cases of our results.

Program:

1. Two classical examples: Clebsch–Klein equations

2. More explicit examples: Ico equations

3. Application: Fermat problem

4. Non-degeneracy: Definition and basic idea

5. Non-degenerate curves

6. Equations F (x , y) = 0
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1. Two classical examples: The

Clebsch–Klein equations
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Clebsch–Klein surfaces: Geometry

Write N = Z≥1, for i ∈ N let σi be the i-th elementary symmetric polynomial

Icosahedron surface (Klein, 1873): V ⊂ P4
Z : σ2 = 0 = σ4

Cubic diagonal surface (Clebsch, 1871): V ′ ⊂ P4
Z : z30 + . . .+ z34 = 0 = σ1

Geometry. After Clebsch and Klein, many others studied geometric aspects of
the complex surfaces VC,V

′
C which are both rational (i.e. birational to P2

C).

Non-degenerate equations. Geometric results of Hirzebruch (1976) imply that
the defining equations of the surfaces VQ and V ′

Q, given respectively by

σ2 = 0 = σ4 and z30 + . . .+ z34 = 0 = σ1,

are two classical examples of equations which we call non-degenerate.
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Clebsch–Klein surfaces: Diophantine equations

Fundamental Diophantine equations can be studied via the surfaces

V ⊂ P4
Z : σ2 = 0 = σ4 and V ′ ⊂ P4

Z : z30 + . . .+ z34 = 0 = σ1.

Let S be a finite set of rational primes, NS =
∏

p∈S p, ZS = Z[ 1
NS

].

Equation 1. U(ZS) = {x ∈ Σ; σ2(x) = 0 = σ4(x)} where

Σ = {x ∈ Z5; gcd(x0, . . . , x4) = 1 and gcd(xi , xj , xk) ∈ Z×
S if i < j < k}

Equation 2. U ′(ZS) = {x ∈ (Z×
S )

4; x3
1 + . . .+ x3

4 = 1 = σ1(x)}

Relation to V ,V ′. A direct computation shows that U(ZS) and U ′(ZS)
identify respectively with the sets of S-integral points of

U = V \ Z , Z = ∪4
i=0Pi and U ′ = V ′ \ D, D = ∪4

i=0V+(zi ).

Here Pi are the (images of the) five Z-points of V obtained by permuting the
coordinates of (1, 0, . . . , 0), and V+(zi ) are the five coordinate hyperplanes.

Comparing U,U ′. Equation 1 in U(ZS) is more fundamental than Equation 2
in U ′(ZS) since U is much larger than U ′: Over Z[ 1

3
] we get an open immersion

φ : U ′ ↪→ U, U ′ ∼=φ V \ D ⊊ U = V \ Z ,

with 1
4
h(x) ≤ h(φ(x)) ≤ 4h(x) for all x ∈ U ′(Q) and h is usual log Weil height.
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Some Diophantine results

The infinite sets U ′(Q) ↪→ U(Q) are both very large. A highly uniform bound
for the number of solutions of the generalized unit equation implies:

Theorem (1) (special case of Evertse–Schlickewei–Schmidt, 2002)

It holds |U ′(ZS)| = |{x ∈ (Z×
S )

4;
∑

x3
i = 1 = σ1(x)}| ≤ exp(2412(4|S |+ 1)).

What about W ′(ZS) when U ′ ⊊ W ′ ⊊ V ′? Very strong (essentially optimal)
non-degeneration results for S-integral points on smooth cubic surfaces imply:

Theorem (2) (special case of Corvaja–Zannier, 2010)

The points W ′(ZS) are not Zariski dense if W ′ = V ′ \
(
V+(z0) ∪ V+(z1)

)
.

What about U(ZS) = {x ∈ Σ, σ2(x) = 0 = σ4(x)}? If h is the usual logarithmic
Weil height and c = 10κ for κ = 1012, then explicit bounds for the height and
the number of S-integral points on coarse Hilbert moduli schemes imply:

Theorem (3) (special case of K.–Kret, 2023)

It holds |U(ZS)| ≤ (cNS)
κ and all x ∈ U(ZS) satisfy h(x) ≤ cN24

S .

Theorem 3 holds also for U ′ in place of U using φ : U ′ ↪→ U = V \ (∪4
i=0Pi ),

and Theorem 3 is optimal in the sense that one can not make U ⊂ V larger.
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Some Diophantine results: Discussion

Theorem (1) (special case of Evertse–Schlickewei–Schmidt, 2002)

It holds |U ′(ZS)| = |{x ∈ (Z×
S )

4;
∑

x3
i = 1 = σ1(x)}| ≤ exp(2412(4|S |+ 1)).

Theorem (2) (special case of Corvaja–Zannier, 2010)

The points W ′(ZS) are not Zariski dense if W ′ = V ′ \
(
V+(z0) ∪ V+(z1)

)
.

Theorem (3) (special case of K.–Kret, 2023)

It holds |U(ZS)| ≤ (cNS)
κ and all x ∈ U(ZS) satisfy h(x) ≤ cN24

S .

Theorems 1 and 2 hold for any number field K , while Theorem 3 only
holds for K = Q and so far its proof does not generalize to any K .
So far the techniques underlying Theorem 3 do not allow to study the
much more difficult W ′(ZS), and the bound for |U ′(ZS)| provided by
Theorem 3 and |U ′(ZS)| ≤ |U(ZS∪{3})| is much worse than Theorem 1.
Theorems 1 and 2 use certain Diophantine approximations techniques
which allow to prove deep Diophantine properties of the solutions, but so
far they do not allow to explicitly bound the height of all solutions.
So far is not clear whether Diophantine approximation techniques can be
applied to study U(ZS) since the relevant divisors in the desingularization
of the normal surface VQ are never big (and thus never ample).
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2. More explicit examples: Ico equations
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Ico equations

Ico equations. Let f ∈ Z[x0, . . . , x4] be homogeneous of degree n ≥ 1:

Xf ⊂ P4
Z : σ2 = 0 = σ4, f = 0 for σi the i-th elementary symmetric

Xf (Q) = {x ∈ Z5;σ2(x) = 0 = σ4(x), f (x) = 0, gcd(x0, . . . , x4) = 1}
Non-degenerate criterion:

∆ =
∏

ai with the product taken over the five diagonal coefficients
a0, . . . , a4 of the homogeneous f =

∑
aix

n
i + . . . of degree n

If ∆ ̸= 0 then we call the curve Xf non-degenerate.

Non-degenerate equations. The equations (σ2 = 0 = σ4, f = 0) with f
having ∆ ̸= 0 are all explicit examples of non-degenerate equations.

Theorem (A)

If ∆ ̸= 0 then |Xf (Q)| ≤ c · rad(∆)κ and h(x) ≤ c · rad(∆)24 for all x ∈ Xf (Q).

Here h(x) = logmax |xi |, and one can take for example c = 10κ and κ = 1012

The locus ∆ ̸= 0 is open inside moduli and almost all Xf are non-degenerate

Application. The curves Xf are fundamental for the study of rational points on
curves since any curve X over Q of genus ≥ 2 is birational over Q into some
Xf . As almost all Xf are non-degenerate, Theorem A allows to establish the
effective Mordell conjecture for large classes of (explicit) curves X over Q.
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3. Application: Fermat problem
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Fermat problem inside rational surface

Frow now on we write Pm for Pm
Q . Let f1, f2 ∈ Z[x0, . . . , x4] be homogeneous

such that S ⊆ P4 : f1 = 0 = f2 is a projective rational surface over Q and define

S(Z) = {x ∈ Z5; f1(x) = 0 = f2(x) and gcd(x0, . . . , x4) = 1}.

Call x ∈ S(Z) trivial if all xi ∈ {−1, 0, 1} and write N = Z≥1.

Problem (F). For any a, b, c, d , e ∈ Z− {0}, try to construct n0 in N such that
all solutions of the Fermat equations (Fn) are trivial when n ≥ n0:

(Fn) axn
0 + bxn

1 + cxn
2 + dxn

3 + exn
4 = 0, x ∈ S(Z), n ∈ N.

As S is a rational surface over Q, the infinite set S(Q) is ‘large’ and hence the
Diophantine problem (F) is ‘non-trivial’. In particular, for any n ∈ N there exist
nonzero a, b, c, d , e ∈ Z such that (Fn) has a non-trivial solution and thus n0
has to depend on a, b, c, d , e if it exists. We conjecture that (F) can be solved
if and only if (S ∩ Z)(Q) is trivial, where Z ⊂ P4 is given by

Z = ∩j ∪i ̸=j V+(fij), fij = x2
i xj − x3

j . (1)
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Fermat problem: The classical case S = P2 and the ico case S = S ico

If S = P2 ⊂ P4 : x3 = 0 = x4, then the Fermat problem (F) is the classical
Fermat problem solved by Wiles for a = b = −c = 1 with optimal n0 = 3.

Now, we replace the surface S = P2 by the birationally equivalent surface
S ico ⊂ P4 : σ2 = 0 = σ4. Then our Theorem (A) allows us to solve the Fermat
problem (F) for S = S ico.

Corollary. If S = S ico then all solutions x of (Fn), n ∈ N, satisfy

logmax |xi | ≤ k · νκ, ν = rad(abcde), k = 1010
12

, κ = 24.

Moreover there is n0 ∈ N such that all solutions of (Fn) are trivial when n ≥ n0.

The analogue of this Corollary is still open for general a, b, c in the classical
case S = P2. However if S = P2 then for large classes of a, b, c optimal results
are known and many of these results actually hold in more general situations
(e.g. with different exponents n1, n2, n3 or in certain number fields K ̸= Q).

As the underlying geometry of (F) is equivalent, we conjecture that (F) behaves
similarly (or might be even related) for P2, S ico and other rational surfaces S .
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4. Non-degeneracy: Definition and basic idea
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Definition and basic idea

Let m, n ∈ Z≥1, i ∈ {1, . . . ,m}, fi ∈ Z[x0, . . . , xn] homogeneous of degree ≥ 1.

Definition. The equations (f1 = 0, . . . , fm = 0) are called non-degenerate if
V (f1, . . . , fm) ⊆ Pn satisfies a certain geometric non-degenerate criterion.

Key property. If V is non-degenerate then there exists an open dense U ⊆ V
which is a coarse moduli scheme of finite level: Roughly speaking this means

U(Q̄) ∼= {(A, α); A ∈ Ag , α ∈ P(A)}, Ag = {A/Q̄ AV of dim(A) = g}

for g ∈ Z≥1 and P(A) a finite set associated to the AV=abelian variety A/Q̄.

Idea. Study subset S of {x ∈ Zn+1; fi (x) = 0, gcd(xj) = 1} = V (Q) via

V (Q) = U(Q) ∪ (V \ U)(Q) and U(Q) = ϕ−1(ϕ(U(Q))

where ϕ : U(Q) → Ag is simply the forgetful map

ϕ : U(Q) ⊂ U(Q̄) → Ag (A, α) 7→ A.

Here (V \U)(Q) is usually simpler than V (Q) since dim(V \U) < dim(V ); e.g.
V \ U is automatically finite if m = 1, n = 2 (i.e. V = V+(f1) ⊂ P2 is a curve).
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Strategy to prove explicit height bounds

Suppose (f1 = 0, . . . , fm = 0) are non-degenerate, V = V (fi ), h = logmax |xj |

Goal: For S ⊂ {x ∈ Zn+1; fi (x) = 0, gcd(xj) = 1} = V (Q), try to bound h on S

We use a strategy which was developed over the last 70 years by many people:
It combines the method of Faltings (Arakelov, Parsin, Szpiro) with modularity
and Masser–Wüstholz isogeny estimates. Very rough outline:

(a) Effective Parsin. Try to control h on (V \ U)(Q) and try to show that the
forgetful map ϕ : U(Q̄) → Ag satisfies h(x) ≪ hF (ϕ(x)) for all x ∈ U(Q̄),
where hF is the stable Faltings height on Ag .

(b) Effective Shafarevich. Try to explicitly bound hF on A = ϕ
(
S ∩ U(Q)

)
:

(i) To control the variation of hF in the isogeny class of each A ∈ A, combine
a formula of Faltings with the deep Masser–Wüstholz isogeny estimates
based on transcendence (fully explicit version of Gaudron–Rémond).

(ii) Try to control hF on A modulo isogenies, by combining geometric version
of modularity (using Tate conjecture proven by Faltings) with averaged
Colmez formula for A with CM, explicit analytic estimates and explicit
results from Arakelov theory. This part (ii) works unconditionally in the
GL2-case using Serre’s modularity conjecture (proven by Khare and
Wintenberger), GL2-type constructions, Belyi degree results, . . . .

Remark. The effective Parsin step (a) is usually a purely geometric/analytic
problem, while step (b) usually requires deep arithmetic results.
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Strategy to prove explicit height bounds: Applications

Suppose (f1 = 0, . . . , fm = 0) are non-degenerate. Then V = (f1, . . . , fm) ⊆ Pn

contains an open dense U ⊆ V which is a coarse moduli scheme of finite level.

The strategy currently can be applied in the following situations:

(GL2) Thm (K., 2013). The variety U/Q is a moduli scheme of GL2-type: All
points of U parametrize (A, α) where A is an AV of GL2-type.

(H) Thm (K.–Kret, 2019). The variety U/Q is a Hilbert moduli scheme: All
points of U parametrize (A, α) where A is an AV with real multiplications.

(cH) Thm (K.–Kret, 2023). The variety U/Q is a coarse Hilbert moduli
scheme with empty branch locus: U(Q̄) parametrizes (A, α) as in (H) and
the underlying stack MP of (A, α) is étale over U via π : MP → U.
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Strategy to prove explicit height bounds: Examples

The strategy currently can be applied in the following situations:

(GL2) Thm (K., 2013). The variety U/Q is a moduli scheme of GL2-type: All
points of U parametrize (A, α) where A is an AV of GL2-type.

(H) Thm (K.–Kret, 2019). The variety U/Q is a Hilbert moduli scheme: All
points of U parametrize (A, α) where A is an AV with real multiplications.

(cH) Thm (K.–Kret, 2023). The variety U/Q is a coarse Hilbert moduli
scheme with empty branch locus: U(Q̄) parametrizes (A, α) as in (H) and
the underlying stack MP of (A, α) is étale over U via π : MP → U.

Examples.

If V ,V ′ are the Clebsch–Klein surfaces of part 1, then U,U ′ satisfy (cH).

If Xf in part 2 is non-degenerate, then V = U = Xf satisfies (cH).

All curves V ⊂ P2
Q satisfying Criterion (τ) in part 6.

The following examples still require to work out the effective Parsin step (a):

If there exists an abelian scheme A0/U of GL2-type, then U satisfies (GL2).

If U admits a quasi-finite morphism to a representable Hilbert modular
variety over Q, then U satisfies (H).

Alpöge’s examples (including a nice explicit family) in his thesis in which
he studied the problem of constructing curves V = U satisfying (GL2) or (H).
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5. Non-degenerate curves
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Plane models of curves and ico models of curves

Write An = An
Q for n ∈ N

Let X be a curve1 over Q. For example if F ∈ Q[x , y ] has degree ≥ 1 then
X = V (F ) ⊂ A2 is a curve over Q with X (Q) = {(x , y) ∈ Q2;F (x , y) = 0}.

Classical result. Each irreducible component of X is birational2 over Q into
some plane curve V (F ) ⊂ A2.

On using classical constructions of Clebsch and Klein, we obtain analogue:

Theorem (B)

Each irreducible component of X is birational over Q into some curve Xf .

Definitions.

If X is birational over Q into some curve V (F ) ⊂ A2 then call V (F ) plane
model of X .

If X is birational over Q into some curve Xf then call Xf ico model of X .

1A curve over a field k is a finite type separated k-scheme whose irreducible components all
have dimension one.

2A curve X over Q is birational over Q into another curve Y over Q if there exists an open
dense U ⊆ X with an immersion U ↪→ Y .
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Non-degenerate curves

Let X be a curve over Q.

Theorem B gives that (each irred. component of) X has many ico models Xf .

Non-degenerate criterion:

X is non-degenerate if X has at least one non-degenerate ico model Xf

Non-degenerate equations. If X = V (f1, . . . , fm) ⊆ Pn is a non-degenerate
curve over Q where n,m ∈ N, then the equations

(f1 = 0, . . . , fm = 0)

are an example of equations which we call non-degenerate.

As almost all Xf are non-degenerate, there exist many non-degenerate curves X
over Q. What is relation of non-degeneracy to property that X has genus3 ≥ 2?

Theorem (C)

If X is non-degenerate then X has genus ≥ 2.

3For each g ∈ N, the curve X has genus ≥ g if all irreducible components of XQ̄ have
geometric genus ≥ g .
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Non-degenerate curves: An open problem

Let X be a curve over Q. Recall the following:

Theorem (C)

If X is non-degenerate then X has genus ≥ 2.

The converse is the following open problem.

Open problem: Determine which X over Q of genus ≥ 2 are non-degenerate.

Known for large classes of (explicit) curves X over Q:

If X = Xf has ∆ ̸= 0 then X has genus ≥ 2 and X is non-degenerate.

If X = V (F ) ⊂ A2 satisfies the explicit geometric criterion (τ) then X has
genus ≥ 2 and X is non-degenerate. We shall explain criterion (τ) later.
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Height bounds for rational points on non-degenerate curves

Let X be an irreducible (and reduced) curve over Q. Assume X ⊆ Pm is
quasi-projective over Q and let h be the usual logarithmic Weil height on Pm.

Theorem (D)

Suppose X is non-degenerate. For any non-degenerate ico model Xf of X ,
there exists a controlled open dense U ⊆ X such that all x ∈ U(Q) satisfy

h(x) ≤ c · dXνκ
f + hX , νf = rad(∆), c = 1010

12

, κ = 24.

dX = deg(X̃ → X )deg(X ) for X̃ → X normalization and X ⊆ Pm closure

hX = height of X̃ inside P4 × Pm

U ⊆ X is largest open of X with an immersion U ↪→ Xf

Application. To deduce from Theorem (D) explicit Weil height bounds for all
x ∈ X (Q), one can proceed as follows:

(i) Construct a non-degenerate ico model Xf of X with νf controlled.

(ii) Control h(x) for the finitely many x ∈ (X \ U)(Q̄).

We emphasize that (i) and (ii) are both geometric problems. To illustrate the
application of Theorem (D) via (i) and (ii) we will consider a special class of
non-degenerate plane curves satisfying a simple non-degeneracy criterion (τ).
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6. Equations F (x , y) = 0
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Criterion (τ) for plane curves

Motivation. We introduce a simple non-degeneracy criterion for plane curves
which allows to explicitly produce large classes of non-degenerate plane curves.

Let F ∈ Z[x , y ] be of degree d ≥ 1 and consider X = V (F ) ⊂ A2 ⊂ P2.

Criterion (τ). Let τ : P2 99K P4 be the explicit rational map over Q defined in
the next slide, and let ei ∈ P4 be the five permutations of e1 = (1, 0, . . . , 0).

Criterion (τ) The closed image τ(X ) contains no ei .

The rational map τ : P2 99K P4 over Q is birational onto its image and for any
given F one can compute (over Q or C) whether (τ) holds.

Theorem (E)

If X = V (F ) satisfies (τ) then X is non-degenerate.

Non-degenerate equations. For each F ∈ Z[x , y ] such that V (F ) ⊂ A2

satisfies (τ), Theorem (E) implies that the equation

F h = 0, F h ∈ Z[x , y , z] homogenization,

is an example of an equation which we call non-degenerate.
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Criterion (τ) for plane curves: Definition of τ

We define homogeneous polynomials τi in Z[x , y , z] of degree 12 as follows:
We put τi = −(

∏
j ̸=i tj)(

∑
tj) for i ∈ {0, 1, 2, 3} and τ4 =

∏
tj , where

t0 = (y − z)(xy + xz − z2), t1 =xz2 + yz2 − x2y − z3,

t2 = x(z2 − y 2 − xz), t3 =z(yz − xz + x2 − y 2).

The five τi define a morphism τ : P2 \ Tτ → P4 where Tτ = ∩V+(τi ) is finite.
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Explicit classes of plane curves satisfying criterion (τ).

One can explicitly construct large classes of plane curves satisfying criterion
(τ). To illustrate this, we take n ∈ Z≥1 and we define

r =

{
5 if n = 1,

4n2 − 4n + 6 if n ≥ 2.

Theorem (F)

For each n ∈ Z≥1 there exist r explicit polynomials Fi ∈ Q[x , y ] such that:

The r polynomials Fi ∈ Q[x , y ] are Q-linearly independent.

For all a ∈ Qr with
∏5

i=1 ai ̸= 0, the curve V (
∑

aiFi ) ⊂ A2 satisfies (τ).

The Fi can be computed directly as follows: One can simply take

Fi = τ∗fi (x , y , 1), τ∗fi = fi (τ0, . . . , τ4) ∈ Q[x , y , z],

where fi ∈ Q[x0, . . . , x4] are monomials of degree n forming a Q-basis of the
n-th graded part of Q[x0, . . . , x4]/(σ2, σ4) such that fi = xn

i−1 for i ≤ 5.
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Height bounds for rational points on plane curves: Conjecture (EM)

Let F ∈ Z[x , y ] be of degree d ≥ 1 with coefficients aι, and set |F | = max |aι|.
If X = V (F ) ⊂ A2 has genus ≥ 2, then X (Q) = {(x , y) ∈ Q2; f (x , y) = 0} is
finite by the Mordell conjecture proven by Faltings (1983). This motivates:

Conjecture (EM). If X = V (F ) ⊂ A2 has genus ≥ 2 then each (x , y) ∈ Q2

with F (x , y) = 0 satisfies max(h(x), h(y)) ≤ cd |F |κd for effective cd , κd .

Here effective means cd = exp(◦n)(d) for an explicit n, while h is usual logarith-
mic Weil height: h(x) = logmax(|m|, |n|) for x = m

n
∈ Q, m, n ∈ Z coprime.
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Height bounds for points on plane curves: Some known results

Integral analogue.

After Baker’s breakthrough (1966), many authors used logarithmic forms
to establish the S-integral analogue (e.g. (x , y) ∈ Z2

S) of Conjecture (EM)
for large classes of (explicit) curves over any number field K ; see e.g. the
excellent books of Baker–Wüstholz4 and Evertse–Győry56 for overviews.

Recently Corvaja–Lombardo–Zannier (2024) made important progress on
this S-integral analogue for large classes of genus two curves over any K .

Under certain rank assumptions.

In case certain rank assumptions are satisfied, there are powerful methods
(e.g. Chabauty’s method,. . . ) giving very strong Diophantine results for
X (Q) = {(x , y) ∈ Q2, F (x , y) = 0} which often allow to determine X (Q).

These methods usually work very well in practice for a given F .

Some of these methods also work for certain families of F . For example, in
a series of papers, Viada, Checcoli–Veneziano–Viada and Veneziano–Viada
established over the last years a sharper version of Conjecture (EM) for
large families of (explicit) curves over any K of growing genus. Their
proofs build on the theory of anomalous intersections of Bombieri, Masser,
Zannier, and their bounds allow them to determine X (Q).

4Logarithmic Forms and Diophantine Geometry
5Unit Equations in Diophantine Number theory
6Discriminant equations in Diophantine Number theory
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Proof of Conjecture (EM) for X satisfying (τ) via Theorems (D) and (E)

Suppose X = V (F ) satisfies (τ). Then X is non-degenerate by Theorem (E).

Theorem (D): For any non-degenerate ico model Xf of X , there exists a
controlled open dense U ⊆ X such that all x ∈ U(Q) satisfy

h(x) ≤ c · dXνκ
f + hX , νf = rad(∆), c = 1010

12

, κ = 24.

Application. To deduce explicit height bounds for all x ∈ X (Q):

(i) Construct a non-degenerate ico model Xf of X with νf controlled.

(ii) Control h(x) for the finitely many x ∈ (X \ U)(Q̄).

For (i) combine algebraic geometry with theory of heights of projective varieties,
while for (ii) exploit the explicit τ to get h(x) ≤ 10 for all x ∈ (X \ U)(Q̄).

Corollary. If X = V (F ) satisfies (τ), then the curve X over Q is

non-degenerate and Conjecture (EM) holds with κd = 88d2 and cd = 8dκ
2
d .

Theorem (F) constructs large classes of explicit plane curves satisfying (τ): For
each n ∈ Z≥1 the space Ar \

(
∪5

i=1V (zi )
)
of dimension r ∼ 4n2 parametrizes

such curves of degree 12n, and for each odd square g ≥ 2 there exists a moduli
space of dimension ∼ g which parametrizes such curves of geometric genus g .
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Thank you very much for your attention!
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