Non-degenerate Diophantine equations

Rafael von Känel

Institute for Advanced Study, Tsinghua University, Beijing 100084, China

Number theory seminar, Debrecen, 10 October 2025

Outline

This talk is on joint work (arXiv:2501.17155) with Shijie Fan. I will focus on explicit definitions and simple special cases of our results.

Program:

- 1. Two classical examples: Clebsch-Klein equations
- 2. More explicit examples: Ico equations
- 3. Application: Fermat problem
- 4. Non-degeneracy: Definition and basic idea
- 5. Non-degenerate curves
- 6. Equations F(x, y) = 0

1. Two classical examples: The Clebsch–Klein equations

Write $\mathbb{N} = \mathbb{Z}_{\geq 1}$, for $i \in \mathbb{N}$ let σ_i be the *i*-th elementary symmetric polynomial

Icosahedron surface (Klein, 1873): $V \subset \mathbb{P}^4_{\mathbb{Z}} : \sigma_2 = 0 = \sigma_4$

Cubic diagonal surface (Clebsch, 1871): $V'\subset \mathbb{P}^4_\mathbb{Z}: z_0^3+\ldots+z_4^3=0=\sigma_1$

Geometry. After Clebsch and Klein, many others studied geometric aspects of the complex surfaces $V_{\mathbb{C}}$, $V'_{\mathbb{C}}$ which are both rational (i.e. birational to $\mathbb{P}^2_{\mathbb{C}}$).

Non-degenerate equations. Geometric results of Hirzebruch (1976) imply that the defining equations of the surfaces $V_{\mathbb{Q}}$ and $V'_{\mathbb{Q}}$, given respectively by

$$\sigma_2 = 0 = \sigma_4$$
 and $z_0^3 + \ldots + z_4^3 = 0 = \sigma_1$,

are two classical examples of equations which we call non-degenerate.

Clebsch-Klein surfaces: Diophantine equations

Fundamental Diophantine equations can be studied via the surfaces

$$V \subset \mathbb{P}^4_\mathbb{Z} : \sigma_2 = 0 = \sigma_4$$
 and $V' \subset \mathbb{P}^4_\mathbb{Z} : z_0^3 + \ldots + z_4^3 = 0 = \sigma_1$.

Let S be a finite set of rational primes, $N_S = \prod_{p \in S} p$, $\mathbb{Z}_S = \mathbb{Z}[\frac{1}{N_S}]$.

Equation 1. $U(\mathbb{Z}_S) = \{x \in \Sigma; \ \sigma_2(x) = 0 = \sigma_4(x)\}$ where

$$\Sigma = \{x \in \mathbb{Z}^5; \ \gcd(x_0, \dots, x_4) = 1 \ \text{and} \ \gcd(x_i, x_j, x_k) \in \mathbb{Z}_5^{\times} \ \text{if} \ i < j < k\}$$

Equation 2.
$$U'(\mathbb{Z}_S) = \{x \in (\mathbb{Z}_S^{\times})^4; x_1^3 + \ldots + x_4^3 = 1 = \sigma_1(x)\}$$

Relation to V, V'. A direct computation shows that $U(\mathbb{Z}_S)$ and $U'(\mathbb{Z}_S)$ identify respectively with the sets of S-integral points of

$$U=V\setminus Z,\ Z=\cup_{i=0}^4 P_i$$
 and $U'=V'\setminus D,\ D=\cup_{i=0}^4 V_+(z_i).$

Here P_i are the (images of the) five \mathbb{Z} -points of V obtained by permuting the coordinates of $(1,0,\ldots,0)$, and $V_+(z_i)$ are the five coordinate hyperplanes.

Comparing U, U'. Equation 1 in $U(\mathbb{Z}_S)$ is more fundamental than Equation 2 in $U'(\mathbb{Z}_S)$ since U is much larger than U': Over $\mathbb{Z}[\frac{1}{3}]$ we get an open immersion

$$\varphi: U' \hookrightarrow U, \qquad U' \cong^{\varphi} V \setminus D \subsetneq U = V \setminus Z,$$

with $\frac{1}{4}h(x) \le h(\varphi(x)) \le 4h(x)$ for all $x \in U'(\mathbb{Q})$ and h is usual log Weil height.

Some Diophantine results

The infinite sets $U'(\mathbb{Q}) \hookrightarrow U(\mathbb{Q})$ are both very large. A highly uniform bound for the number of solutions of the generalized unit equation implies:

Theorem (1) (special case of Evertse–Schlickewei–Schmidt, 2002)

It holds
$$|U'(\mathbb{Z}_S)| = |\{x \in (\mathbb{Z}_S^\times)^4; \sum x_i^3 = 1 = \sigma_1(x)\}| \le \exp(24^{12}(4|S|+1)).$$

What about $W'(\mathbb{Z}_S)$ when $U' \subsetneq W' \subsetneq V'$? Very strong (essentially optimal) non-degeneration results for S-integral points on smooth cubic surfaces imply:

Theorem (2) (special case of Corvaja–Zannier, 2010)

The points
$$W'(\mathbb{Z}_S)$$
 are not Zariski dense if $W' = V' \setminus (V_+(z_0) \cup V_+(z_1))$.

What about $U(\mathbb{Z}_S)=\{x\in\Sigma,\sigma_2(x)=0=\sigma_4(x)\}$? If h is the usual logarithmic Weil height and $c=10^\kappa$ for $\kappa=10^{12}$, then explicit bounds for the height and the number of S-integral points on coarse Hilbert moduli schemes imply:

Theorem (3) (special case of K.–Kret, 2023)

It holds
$$|U(\mathbb{Z}_S)| \leq (cN_S)^{\kappa}$$
 and all $x \in U(\mathbb{Z}_S)$ satisfy $h(x) \leq cN_S^{24}$.

Theorem 3 holds also for U' in place of U using $\varphi: U' \hookrightarrow U = V \setminus (\cup_{i=0}^4 P_i)$, and Theorem 3 is optimal in the sense that one can not make $U \subset V$ larger.

Some Diophantine results: Discussion

Theorem (1) (special case of Evertse-Schlickewei-Schmidt, 2002)

It holds $|U'(\mathbb{Z}_S)| = |\{x \in (\mathbb{Z}_S^\times)^4; \sum x_i^3 = 1 = \sigma_1(x)\}| \le \exp(24^{12}(4|S|+1)).$

Theorem (2) (special case of Corvaja–Zannier, 2010)

The points $W'(\mathbb{Z}_S)$ are not Zariski dense if $W' = V' \setminus (V_+(z_0) \cup V_+(z_1))$.

Theorem (3) (special case of K.–Kret, 2023)

It holds $|U(\mathbb{Z}_S)| \leq (cN_S)^{\kappa}$ and all $x \in U(\mathbb{Z}_S)$ satisfy $h(x) \leq cN_S^{24}$.

- Theorems 1 and 2 hold for any number field K, while Theorem 3 only holds for $K = \mathbb{Q}$ and so far its proof does not generalize to any K.
- So far the techniques underlying Theorem 3 do not allow to study the much more difficult $W'(\mathbb{Z}_S)$, and the bound for $|U'(\mathbb{Z}_S)|$ provided by Theorem 3 and $|U'(\mathbb{Z}_S)| \leq |U(\mathbb{Z}_{S \cup \{3\}})|$ is much worse than Theorem 1.
- Theorems 1 and 2 use certain Diophantine approximations techniques which allow to prove deep Diophantine properties of the solutions, but so far they do not allow to explicitly bound the height of all solutions.
- So far is not clear whether Diophantine approximation techniques can be applied to study $U(\mathbb{Z}_5)$ since the relevant divisors in the desingularization of the normal surface $V_{\mathbb{Q}}$ are never big (and thus never ample).

2. More explicit examples: Ico equations

Ico equations

Ico equations. Let $f \in \mathbb{Z}[x_0, \dots, x_4]$ be homogeneous of degree $n \ge 1$:

- $X_f \subset \mathbb{P}^4_{\mathbb{Z}}: \sigma_2 = 0 = \sigma_4, f = 0$ for σ_i the *i*-th elementary symmetric
- $X_f(\mathbb{Q}) = \{x \in \mathbb{Z}^5; \sigma_2(x) = 0 = \sigma_4(x), f(x) = 0, \gcd(x_0, \dots, x_4) = 1\}$

Non-degenerate criterion:

- $\Delta = \prod a_i$ with the product taken over the five diagonal coefficients a_0, \ldots, a_4 of the homogeneous $f = \sum a_i x_i^n + \ldots$ of degree n
- If $\Delta \neq 0$ then we call the curve X_f non-degenerate.

Non-degenerate equations. The equations ($\sigma_2 = 0 = \sigma_4, f = 0$) with f having $\Delta \neq 0$ are all explicit examples of non-degenerate equations.

Theorem (A)

If
$$\Delta \neq 0$$
 then $|X_f(\mathbb{Q})| \leq c \cdot \operatorname{rad}(\Delta)^{\kappa}$ and $h(x) \leq c \cdot \operatorname{rad}(\Delta)^{24}$ for all $x \in X_f(\mathbb{Q})$.

Here $h(x) = \log \max |x_i|$, and one can take for example $c = 10^{\kappa}$ and $\kappa = 10^{12}$

The locus $\Delta \neq 0$ is open inside moduli and almost all X_f are non-degenerate

Application. The curves X_f are fundamental for the study of rational points on curves since any curve X over $\mathbb Q$ of genus ≥ 2 is birational over $\mathbb Q$ into some X_f . As almost all X_f are non-degenerate, Theorem A allows to establish the effective Mordell conjecture for large classes of (explicit) curves X over $\mathbb Q$.

3. Application: Fermat problem

Frow now on we write \mathbb{P}^m for $\mathbb{P}^m_{\mathbb{Q}}$. Let $f_1, f_2 \in \mathbb{Z}[x_0, \dots, x_4]$ be homogeneous such that $S \subseteq \mathbb{P}^4 : f_1 = 0 = f_2$ is a projective rational surface over \mathbb{Q} and define

$$S(\mathbb{Z}) = \{x \in \mathbb{Z}^5; \ f_1(x) = 0 = f_2(x) \text{ and } \gcd(x_0, \dots, x_4) = 1\}.$$

Call $x \in S(\mathbb{Z})$ trivial if all $x_i \in \{-1, 0, 1\}$ and write $\mathbb{N} = \mathbb{Z}_{\geq 1}$.

Problem (F). For any $a, b, c, d, e \in \mathbb{Z} - \{0\}$, try to construct n_0 in \mathbb{N} such that all solutions of the Fermat equations (F_n) are trivial when $n \geq n_0$:

$$(F_n)$$
 $ax_0^n + bx_1^n + cx_2^n + dx_3^n + ex_4^n = 0, \quad x \in S(\mathbb{Z}), \quad n \in \mathbb{N}.$

As S is a rational surface over \mathbb{Q} , the infinite set $S(\mathbb{Q})$ is 'large' and hence the Diophantine problem (F) is 'non-trivial'. In particular, for any $n \in \mathbb{N}$ there exist nonzero $a,b,c,d,e \in \mathbb{Z}$ such that (F_n) has a non-trivial solution and thus n_0 has to depend on a,b,c,d,e if it exists. We conjecture that (F) can be solved if and only if $(S \cap Z)(\mathbb{Q})$ is trivial, where $Z \subset \mathbb{P}^4$ is given by

$$Z = \cap_{j} \cup_{i \neq j} V_{+}(f_{ij}), \quad f_{ij} = x_{i}^{2} x_{j} - x_{j}^{3}.$$
 (1)

Fermat problem: The classical case $S = \mathbb{P}^2$ and the ico case $S = S^{\text{ico}}$

If $S = \mathbb{P}^2 \subset \mathbb{P}^4$: $x_3 = 0 = x_4$, then the Fermat problem (F) is the classical Fermat problem solved by Wiles for a = b = -c = 1 with optimal $n_0 = 3$.

Now, we replace the surface $S=\mathbb{P}^2$ by the birationally equivalent surface $S^{\rm ico}\subset\mathbb{P}^4:\sigma_2=0=\sigma_4.$ Then our Theorem (A) allows us to solve the Fermat problem (F) for $S=S^{\rm ico}$.

Corollary. If $S = S^{\text{ico}}$ then all solutions x of (F_n) , $n \in \mathbb{N}$, satisfy

$$\log \max |x_i| \le k \cdot \nu^{\kappa}, \quad \nu = \operatorname{rad}(abcde), \quad k = 10^{10^{12}}, \quad \kappa = 24.$$

Moreover there is $n_0 \in \mathbb{N}$ such that all solutions of (F_n) are trivial when $n \geq n_0$.

The analogue of this Corollary is still open for general a,b,c in the classical case $S = \mathbb{P}^2$. However if $S = \mathbb{P}^2$ then for large classes of a,b,c optimal results are known and many of these results actually hold in more general situations (e.g. with different exponents n_1, n_2, n_3 or in certain number fields $K \neq \mathbb{Q}$).

As the underlying geometry of (F) is equivalent, we conjecture that (F) behaves similarly (or might be even related) for \mathbb{P}^2 , S^{ico} and other rational surfaces S.

4. Non-degeneracy: Definition and basic idea

Let $m, n \in \mathbb{Z}_{\geq 1}$, $i \in \{1, ..., m\}$, $f_i \in \mathbb{Z}[x_0, ..., x_n]$ homogeneous of degree ≥ 1 .

Definition. The equations $(f_1 = 0, ..., f_m = 0)$ are called non-degenerate if $V(f_1, ..., f_m) \subseteq \mathbb{P}^n$ satisfies a certain geometric non-degenerate criterion.

Key property. If V is non-degenerate then there exists an open dense $U \subseteq V$ which is a coarse moduli scheme of finite level: Roughly speaking this means

$$\textit{U}(\bar{\mathbb{Q}}) \cong \{(\textit{A}, \alpha); \ \textit{A} \in \underline{\textit{A}}_{\textit{g}}, \alpha \in \mathcal{P}(\textit{A})\}, \quad \underline{\textit{A}}_{\textit{g}} = \{\textit{A}/\bar{\mathbb{Q}} \ \text{AV of dim}(\textit{A}) = \textit{g}\}$$

for $g \in \mathbb{Z}_{\geq 1}$ and $\mathcal{P}(A)$ a finite set associated to the AV=abelian variety $A/\bar{\mathbb{Q}}$.

Idea. Study subset S of $\{x \in \mathbb{Z}^{n+1}; f_i(x) = 0, \gcd(x_j) = 1\} = V(\mathbb{Q})$ via

$$V(\mathbb{Q}) = U(\mathbb{Q}) \cup (V \setminus U)(\mathbb{Q})$$
 and $U(\mathbb{Q}) = \phi^{-1}(\phi(U(\mathbb{Q})))$

where $\phi:U(\mathbb{Q})\to \underline{A}_g$ is simply the forgetful map

$$\phi: U(\mathbb{Q}) \subset U(\bar{\mathbb{Q}}) \to \underline{A}_{g} \quad (A, \alpha) \mapsto A.$$

Here $(V \setminus U)(\mathbb{Q})$ is usually simpler than $V(\mathbb{Q})$ since $\dim(V \setminus U) < \dim(V)$; e.g. $V \setminus U$ is automatically finite if m = 1, n = 2 (i.e. $V = V_+(f_1) \subset \mathbb{P}^2$ is a curve).

Strategy to prove explicit height bounds

Suppose $(f_1 = 0, ..., f_m = 0)$ are non-degenerate, $V = V(f_i)$, $h = \log \max |x_j|$

Goal: For $S \subset \{x \in \mathbb{Z}^{n+1}; f_i(x) = 0, \gcd(x_j) = 1\} = V(\mathbb{Q})$, try to bound h on S

We use a strategy which was developed over the last 70 years by many people: It combines the method of Faltings (Arakelov, Parsin, Szpiro) with modularity and Masser–Wüstholz isogeny estimates. Very rough outline:

- (a) Effective Parsin. Try to control h on $(V \setminus U)(\mathbb{Q})$ and try to show that the forgetful map $\phi: U(\bar{\mathbb{Q}}) \to \underline{A}_g$ satisfies $h(x) \ll h_F(\phi(x))$ for all $x \in U(\bar{\mathbb{Q}})$, where h_F is the stable Faltings height on \underline{A}_g .
- **(b) Effective Shafarevich.** Try to explicitly bound h_F on $\mathcal{A} = \phi(\mathcal{S} \cap U(\mathbb{Q}))$:
 - (i) To control the variation of h_F in the isogeny class of each $A \in \mathcal{A}$, combine a formula of Faltings with the deep Masser–Wüstholz isogeny estimates based on transcendence (fully explicit version of Gaudron–Rémond).
- (ii) Try to control h_F on $\mathcal A$ modulo isogenies, by combining geometric version of modularity (using Tate conjecture proven by Faltings) with averaged Colmez formula for A with CM, explicit analytic estimates and explicit results from Arakelov theory. This part (ii) works unconditionally in the GL_2 -case using Serre's modularity conjecture (proven by Khare and Wintenberger), GL_2 -type constructions, Belyi degree results,

Remark. The effective Parsin step (a) is usually a purely geometric/analytic problem, while step (b) usually requires deep arithmetic results.

Strategy to prove explicit height bounds: Applications

Suppose $(f_1 = 0, ..., f_m = 0)$ are non-degenerate. Then $V = (f_1, ..., f_m) \subseteq \mathbb{P}^n$ contains an open dense $U \subseteq V$ which is a coarse moduli scheme of finite level.

The strategy currently can be applied in the following situations:

- (GL₂) **Thm (K., 2013).** The variety U/\mathbb{Q} is a moduli scheme of GL_2 -type: All points of U parametrize (A, α) where A is an AV of GL_2 -type.
 - (H) **Thm (K.–Kret, 2019).** The variety U/\mathbb{Q} is a Hilbert moduli scheme: All points of U parametrize (A, α) where A is an AV with real multiplications.
- (cH) Thm (K.–Kret, 2023). The variety U/\mathbb{Q} is a coarse Hilbert moduli scheme with empty branch locus: $U(\bar{\mathbb{Q}})$ parametrizes (A,α) as in (H) and the underlying stack $\mathcal{M}_{\mathcal{P}}$ of (A,α) is étale over U via $\pi:\mathcal{M}_{\mathcal{P}}\to U$.

Strategy to prove explicit height bounds: Examples

The strategy currently can be applied in the following situations:

- (GL₂) **Thm (K., 2013).** The variety U/\mathbb{Q} is a moduli scheme of GL_2 -type: All points of U parametrize (A, α) where A is an AV of GL_2 -type.
 - (H) **Thm (K.–Kret, 2019).** The variety U/\mathbb{Q} is a Hilbert moduli scheme: All points of U parametrize (A, α) where A is an AV with real multiplications.
- (cH) Thm (K.–Kret, 2023). The variety U/\mathbb{Q} is a coarse Hilbert moduli scheme with empty branch locus: $U(\bar{\mathbb{Q}})$ parametrizes (A,α) as in (H) and the underlying stack $\mathcal{M}_{\mathcal{P}}$ of (A,α) is étale over U via $\pi:\mathcal{M}_{\mathcal{P}}\to U$.

Examples.

- If V, V' are the Clebsch–Klein surfaces of part 1, then U, U' satisfy (cH).
- If X_f in part 2 is non-degenerate, then $V = U = X_f$ satisfies (cH).
- ullet All curves $V\subset \mathbb{P}^2_{\mathbb{Q}}$ satisfying Criterion (au) in part 6.

The following examples still require to work out the effective Parsin step (a):

- If there exists an abelian scheme A_0/U of GL_2 -type, then U satisfies (GL_2) .
- If U admits a quasi-finite morphism to a representable Hilbert modular variety over Q, then U satisfies (H).
- Alpöge's examples (including a nice explicit family) in his thesis in which he studied the problem of constructing curves V = U satisfying (GL_2) or (H_1).

5. Non-degenerate curves

Plane models of curves and ico models of curves

Write $\mathbb{A}^n = \mathbb{A}^n_{\mathbb{Q}}$ for $n \in \mathbb{N}$

Let X be a curve¹ over \mathbb{Q} . For example if $F \in \mathbb{Q}[x,y]$ has degree ≥ 1 then $X = V(F) \subset \mathbb{A}^2$ is a curve over \mathbb{Q} with $X(\mathbb{Q}) = \{(x,y) \in \mathbb{Q}^2; F(x,y) = 0\}$.

Classical result. Each irreducible component of X is birational² over \mathbb{Q} into some plane curve $V(F) \subset \mathbb{A}^2$.

On using classical constructions of Clebsch and Klein, we obtain analogue:

Theorem (B)

Each irreducible component of X is birational over $\mathbb Q$ into some curve X_f .

Definitions.

- If X is birational over $\mathbb Q$ into some curve $V(F)\subset \mathbb A^2$ then call V(F) plane model of X.
- If X is birational over \mathbb{Q} into some curve X_f then call X_f ico model of X.

 $^{^1\}mathrm{A}$ curve over a field k is a finite type separated k-scheme whose irreducible components all have dimension one.

²A curve X over $\mathbb Q$ is birational over $\mathbb Q$ into another curve Y over $\mathbb Q$ if there exists an open dense $U\subseteq X$ with an immersion $U\hookrightarrow Y$.

Non-degenerate curves

Let X be a curve over \mathbb{Q} .

Theorem B gives that (each irred. component of) X has many ico models X_f .

Non-degenerate criterion:

ullet X is non-degenerate if X has at least one non-degenerate ico model X_f

Non-degenerate equations. If $X = V(f_1, \dots, f_m) \subseteq \mathbb{P}^n$ is a non-degenerate curve over \mathbb{Q} where $n, m \in \mathbb{N}$, then the equations

$$(f_1=0,\ldots,f_m=0)$$

are an example of equations which we call non-degenerate.

As almost all X_f are non-degenerate, there exist many non-degenerate curves X over \mathbb{Q} . What is relation of non-degeneracy to property that X has genus³ ≥ 2 ?

$\mathsf{Theorem}\;(\mathsf{C})$

If X is non-degenerate then X has genus ≥ 2 .

 $[\]overline{\ \ \ }^3$ For each $g\in\mathbb{N}$, the curve X has genus $\geq g$ if all irreducible components of $X_{\overline{\mathbb{Q}}}$ have geometric genus $\geq g$.

Let X be a curve over \mathbb{Q} . Recall the following:

Theorem (C)

If X is non-degenerate then X has genus ≥ 2 .

The converse is the following open problem.

Open problem: Determine which X over \mathbb{Q} of genus ≥ 2 are non-degenerate.

Known for large classes of (explicit) curves X over \mathbb{Q} :

- If $X = X_f$ has $\Delta \neq 0$ then X has genus ≥ 2 and X is non-degenerate.
- If $X = V(F) \subset \mathbb{A}^2$ satisfies the explicit geometric criterion (τ) then X has genus ≥ 2 and X is non-degenerate. We shall explain criterion (τ) later.

Height bounds for rational points on non-degenerate curves

Let X be an irreducible (and reduced) curve over \mathbb{Q} . Assume $X \subseteq \mathbb{P}^m$ is quasi-projective over \mathbb{Q} and let h be the usual logarithmic Weil height on \mathbb{P}^m .

Theorem (D)

Suppose X is non-degenerate. For any non-degenerate ico model X_f of X, there exists a controlled open dense $U\subseteq X$ such that all $x\in U(\mathbb{Q})$ satisfy

$$h(x) \leq c \cdot d_X \nu_f^{\kappa} + h_X, \quad \nu_f = \operatorname{rad}(\Delta), \quad c = 10^{10^{12}}, \quad \kappa = 24.$$

$$d_X=\deg(ilde{X} o X)\deg(\overline{X})$$
 for $ilde{X} o X$ normalization and $\overline{X}\subseteq\mathbb{P}^m$ closure

$$h_X = \text{height of } \tilde{X} \text{ inside } \mathbb{P}^4 \times \mathbb{P}^m$$

$$U \subseteq X$$
 is largest open of X with an immersion $U \hookrightarrow X_f$

Application. To deduce from Theorem (D) explicit Weil height bounds for all $x \in X(\mathbb{Q})$, one can proceed as follows:

- (i) Construct a non-degenerate ico model X_f of X with ν_f controlled.
- (ii) Control h(x) for the finitely many $x \in (X \setminus U)(\bar{\mathbb{Q}})$.

We emphasize that (i) and (ii) are both geometric problems. To illustrate the application of Theorem (D) via (i) and (ii) we will consider a special class of non-degenerate plane curves satisfying a simple non-degeneracy criterion (τ) .

6. Equations F(x, y) = 0

Criterion (τ) for plane curves

Motivation. We introduce a simple non-degeneracy criterion for plane curves which allows to explicitly produce large classes of non-degenerate plane curves.

Let
$$F \in \mathbb{Z}[x,y]$$
 be of degree $d \geq 1$ and consider $X = V(F) \subset \mathbb{A}^2 \subset \mathbb{P}^2$.

Criterion (τ) . Let $\tau: \mathbb{P}^2 \dashrightarrow \mathbb{P}^4$ be the explicit rational map over \mathbb{Q} defined in the next slide, and let $e_i \in \mathbb{P}^4$ be the five permutations of $e_1 = (1, 0, \dots, 0)$.

Criterion (τ) The closed image $\overline{\tau(X)}$ contains no e_i .

The rational map $\tau: \mathbb{P}^2 \dashrightarrow \mathbb{P}^4$ over \mathbb{Q} is birational onto its image and for any given F one can compute (over \mathbb{Q} or \mathbb{C}) whether (τ) holds.

Theorem (E)

If X = V(F) satisfies (τ) then X is non-degenerate.

Non-degenerate equations. For each $F \in \mathbb{Z}[x,y]$ such that $V(F) \subset \mathbb{A}^2$ satisfies (τ) , Theorem (E) implies that the equation

$$F^h = 0$$
, $F^h \in \mathbb{Z}[x, y, z]$ homogenization,

is an example of an equation which we call non-degenerate.

Criterion (τ) for plane curves: Definition of τ

We define homogeneous polynomials τ_i in $\mathbb{Z}[x,y,z]$ of degree 12 as follows: We put $\tau_i = -(\prod_{i \neq i} t_j)(\sum t_j)$ for $i \in \{0,1,2,3\}$ and $\tau_4 = \prod t_j$, where

$$t_0 = (y - z)(xy + xz - z^2),$$
 $t_1 = xz^2 + yz^2 - x^2y - z^3,$
 $t_2 = x(z^2 - y^2 - xz),$ $t_3 = z(yz - xz + x^2 - y^2).$

The five τ_i define a morphism $\tau: \mathbb{P}^2 \setminus T_\tau \to \mathbb{P}^4$ where $T_\tau = \cap V_+(\tau_i)$ is finite.

Explicit classes of plane curves satisfying criterion (τ) .

One can explicitly construct large classes of plane curves satisfying criterion (τ) . To illustrate this, we take $n \in \mathbb{Z}_{\geq 1}$ and we define

$$r = \begin{cases} 5 & \text{if } n = 1, \\ 4n^2 - 4n + 6 & \text{if } n \ge 2. \end{cases}$$

Theorem (F)

For each $n \in \mathbb{Z}_{\geq 1}$ there exist r explicit polynomials $F_i \in \mathbb{Q}[x,y]$ such that:

- The r polynomials $F_i \in \mathbb{Q}[x,y]$ are \mathbb{Q} -linearly independent.
- For all $a \in \mathbb{Q}^r$ with $\prod_{i=1}^5 a_i \neq 0$, the curve $V(\sum a_i F_i) \subset \mathbb{A}^2$ satisfies (τ) .

The F_i can be computed directly as follows: One can simply take

$$F_i = \tau^* f_i(x, y, 1), \quad \tau^* f_i = f_i(\tau_0, \dots, \tau_4) \in \mathbb{Q}[x, y, z],$$

where $f_i \in \mathbb{Q}[x_0,\ldots,x_4]$ are monomials of degree n forming a \mathbb{Q} -basis of the n-th graded part of $\mathbb{Q}[x_0,\ldots,x_4]/(\sigma_2,\sigma_4)$ such that $f_i=x_{i-1}^n$ for $i\leq 5$.

Height bounds for rational points on plane curves: Conjecture (EM)

Let $F \in \mathbb{Z}[x,y]$ be of degree $d \ge 1$ with coefficients a_{ι} , and set $|F| = \max |a_{\iota}|$. If $X = V(F) \subset \mathbb{A}^2$ has genus ≥ 2 , then $X(\mathbb{Q}) = \{(x,y) \in \mathbb{Q}^2; \ f(x,y) = 0\}$ is finite by the Mordell conjecture proven by Faltings (1983). This motivates:

Conjecture (EM). If $X = V(F) \subset \mathbb{A}^2$ has genus ≥ 2 then each $(x,y) \in \mathbb{Q}^2$ with F(x,y) = 0 satisfies $\max(h(x),h(y)) \leq c_d |F|^{\kappa_d}$ for effective c_d,κ_d .

Here effective means $c_d = \exp^{(\circ n)}(d)$ for an explicit n, while h is usual logarithmic Weil height: $h(x) = \log \max(|m|, |n|)$ for $x = \frac{m}{n} \in \mathbb{Q}$, $m, n \in \mathbb{Z}$ coprime.

Height bounds for points on plane curves: Some known results

Integral analogue.

- After Baker's breakthrough (1966), many authors used logarithmic forms to establish the S-integral analogue (e.g. $(x,y) \in \mathbb{Z}_{S}^{2}$) of Conjecture (EM) for large classes of (explicit) curves over any number field K; see e.g. the excellent books of Baker–Wüstholz⁴ and Evertse–Győry⁵⁶ for overviews.
- Recently Corvaja–Lombardo–Zannier (2024) made important progress on this S-integral analogue for large classes of genus two curves over any K.

Under certain rank assumptions.

- In case certain rank assumptions are satisfied, there are powerful methods (e.g. Chabauty's method,...) giving very strong Diophantine results for $X(\mathbb{Q}) = \{(x,y) \in \mathbb{Q}^2, \ F(x,y) = 0\}$ which often allow to determine $X(\mathbb{Q})$.
- These methods usually work very well in practice for a given F.
- Some of these methods also work for certain families of F. For example, in a series of papers, Viada, Checcoli–Veneziano–Viada and Veneziano–Viada established over the last years a sharper version of Conjecture (EM) for large families of (explicit) curves over any K of growing genus. Their proofs build on the theory of anomalous intersections of Bombieri, Masser, Zannier, and their bounds allow them to determine $X(\mathbb{Q})$.

⁴Logarithmic Forms and Diophantine Geometry

⁵Unit Equations in Diophantine Number theory

⁶Discriminant equations in Diophantine Number theory

Proof of Conjecture (EM) for X satisfying (τ) via Theorems (D) and (E)

Suppose X = V(F) satisfies (τ) . Then X is non-degenerate by Theorem (E).

Theorem (D): For any non-degenerate ico model X_f of X, there exists a controlled open dense $U \subseteq X$ such that all $x \in U(\mathbb{Q})$ satisfy

$$h(x) \le c \cdot d_X \nu_f^{\kappa} + h_X, \quad \nu_f = \operatorname{rad}(\Delta), \quad c = 10^{10^{12}}, \quad \kappa = 24.$$

Application. To deduce explicit height bounds for all $x \in X(\mathbb{Q})$:

- (i) Construct a non-degenerate ico model X_f of X with ν_f controlled.
- (ii) Control h(x) for the finitely many $x \in (X \setminus U)(\bar{\mathbb{Q}})$.

For (i) combine algebraic geometry with theory of heights of projective varieties, while for (ii) exploit the explicit τ to get $h(x) \leq 10$ for all $x \in (X \setminus U)(\overline{\mathbb{Q}})$.

Corollary. If X = V(F) satisfies (τ) , then the curve X over \mathbb{Q} is non-degenerate and Conjecture (EM) holds with $\kappa_d = 8^8 d^2$ and $c_d = 8^{d\kappa_d^2}$.

Theorem (F) constructs large classes of explicit plane curves satisfying (τ) : For each $n \in \mathbb{Z}_{\geq 1}$ the space $\mathbb{A}^r \setminus (\cup_{i=1}^5 V(z_i))$ of dimension $r \sim 4n^2$ parametrizes such curves of degree 12n, and for each odd square $g \geq 2$ there exists a moduli space of dimension $\sim g$ which parametrizes such curves of geometric genus g.

Thank you very much for your attention!