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[2] A. Bazsó, A. Bérczes, L. Hajdu, and F. Luca. Polynomial values of sums of products of consecutive integers.
Monatsh. Math., 187(1):21–34, 2018.
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[19] Attila Bérczes, Andrej Dujella, Lajos Hajdu, and Florian Luca. On the size of sets whose elements have perfect
power n-shifted products. Publ. Math., 79(3-4):325–339, 2011.
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[46] K. Győry, L. Hajdu, and A. Sárközy. On additive and multiplicative decompositions of sets of integers with
restricted prime factors. I: Smooth numbers. Indag. Math., New Ser., 32(2):365–374, 2021.
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[48] K. Győry, L. Hajdu, and R. Tijdeman. Representation of finite graphs as difference graphs of S-units. I. J. Comb.
Theory, Ser. A, 127:314–335, 2014.
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