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Pell equations I

Let d > 1 be a given positive integer that is not a perfect
square. Then it is well known that all solutions (X ,Y ) ∈ Z2

of the Diophantine equation

X 2 − dY 2 = 1

can be obtained from the formula

X + Y
√

d = ±ϵk , k ∈ Z

where ϵ = X0 + Y0
√

d and (X0,Y0) ∈ Z2 is the solution with
X0,Y0 > 0 and Y0 is minimal among all such solutions. We
call ϵ = X0 + Y0

√
d the fundamental solution.
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Pell equations II

It is also well known that such a fundamental solution ϵ
always exists.

However, for d large (say d > 107) it is quite a computional
challenge to find a fundamental solution for given d , unless
d is of some special form like d = n2 ± 1 for some integer n.
If we have found a fundamental solution ϵ to X 2 − dY 2 = 1,
then we have

X =
ϵk + ϵ−k

2
Y =

ϵk − ϵ−k

2
√

d
.
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Systems of Pell equations

Let a > b ≥ 2 be integers. In this talk we consider the
system

X 2 − a Y 2 = 1 Z 2 − b X 2 = 1

of Pell equations.

Assume that neither a nor b are both perfect squares. Then
each individual equation has infinitely many solutions.
However, the system has at most finitely many solutions.
The question remains how many solutions?

Conjecture

The system of Pell equations

X 2 − a Y 2 = 1 Z 2 − b X 2 = 1

has at most one solution in positive integers.
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What do we know

The system of Pell equations

X 2 − a Y 2 = 1 Z 2 − b X 2 = 1,

with X ,Y ,Z > 0 has
at most two solutions (Cipu, Mignotte 2007);

has at most one solution if b = m2 − 1 for some integer
m (Yuan 2002, Cipu 2007);
All solutions are knonw if b = 24 and a is a prime (Ai,
Chen, Zhang, Hu 2015);
All solutions are known if b = m2 − 1 and a = pq or
a = 2pq (Cipu 2018, Jiang 2020).
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Main result

Most of the results require the special form that b is almost
a square, e.g. that b = m2 ± 1.

Theorem (Hilgart, Z. 2024)

Let a > b ≥ 2 be two positive integers, where b is fixed.
Then there exists an effectively computable constant a0,
dependent only on b, such that for a ≥ a0 the simultaneous
Pell equations

X 2 − a Y 2 = 1, Z 2 − b X 2 = 1 (1)

have at most one solution (X ,Y ,Z ) in positive integers.
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Note that the bound a0 is typically very large. However, one
can use reduction methods to resolve the conjecture for any
given (not too large) b:

Theorem (Hilgart, Z. 2024)

For 1 ≤ b ≤ 10 000, the simultaneous Pell equations

X 2 − a Y 2 = 1, Z 2 − b X 2 = 1,

have at most one solution (X ,Y ,Z ) in positive integers for
any a ≥ b.
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How to solve a system of Pell equations I

Let us assume that a and b are fixed. That is we know the
fundamental solution ϵ = X0 + Y0

√
a of the Pell equation

X 2 − a Y 2 = 1

And we know the fundamental solution δ = Z0 + X0
√

b of
the Pell equation

Z 2 − b X 2 = 1.

That is any solution (X ,Y ,Z ) of the system of Pell
equations satisfies

ϵk + ϵ−k

2
= X =

δℓ − δ−ℓ

2
√

b
.

Note that ϵk ≃ δℓb−1/2.
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How to solve a system of Pell equations II

We obtain ∣∣∣ϵkδ−ℓ
√

b − 1
∣∣∣ ≪ ϵ−2k ∼ bδ−2ℓ.

Since log(1 + x) ∼ x for x small, the above inequality
implies with x = ϵkδ−ℓ

√
b − 1 the upper bound∣∣∣k log ϵ− ℓ log δ + log

√
b
∣∣∣ ≪ ϵ−2k .

By Baker’s theory of linear forms in logarithms (we apply a
theorem of Matveev) we obtain

exp (−C log ϵ log δ log b log k) ≪
∣∣∣ϵkδ−ℓ

√
b − 1

∣∣∣ ≪ ϵ−2k

for some (large) constant C.
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How to solve a system of Pell equations III

Hence we have

C log ϵ log δ log b log k ≫ k log ϵ

and we obtain

k ≪ log δ log b log (log δ log b) .

If b is fixed we get an upper bound for k . Since also a and
therefore also log ϵ is fixed we can “find” all solutions to the
given system of Pell equations

X 2 − a Y 2 = 1, Z 2 − b X 2 = 1

and eventually prove that this system has at most one
solution.
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Two problems

If only b is fixed but a is arbitrary we run into two problems:
1 We still obtain an absolute bound for k , but we do not

find a bound for ℓ, since k log ϵ ≃ ℓ log δ.

2 We still can prove that the system has at most a fixed
number of solutions (the bound for k ) for arbitrary a, but
we are far off proving that there exists at most one
solution.

However, we made no use that two (or more) solutions
might exist.



On the unique
solvability of
simultaneous

Pell equations.

Ziegler

Two problems

If only b is fixed but a is arbitrary we run into two problems:
1 We still obtain an absolute bound for k , but we do not

find a bound for ℓ, since k log ϵ ≃ ℓ log δ.
2 We still can prove that the system has at most a fixed

number of solutions (the bound for k ) for arbitrary a, but
we are far off proving that there exists at most one
solution.

However, we made no use that two (or more) solutions
might exist.



On the unique
solvability of
simultaneous

Pell equations.

Ziegler

Two problems

If only b is fixed but a is arbitrary we run into two problems:
1 We still obtain an absolute bound for k , but we do not

find a bound for ℓ, since k log ϵ ≃ ℓ log δ.
2 We still can prove that the system has at most a fixed

number of solutions (the bound for k ) for arbitrary a, but
we are far off proving that there exists at most one
solution.

However, we made no use that two (or more) solutions
might exist.



On the unique
solvability of
simultaneous

Pell equations.

Ziegler

Assumption of two solutions

Let us assume that two solutions (X1,Y1,Z1) and
(X2,Y2,Z2) exist (without loss of generality X1 < X2) and we
have two intersections:

ϵk1 + ϵ−k1

2
= X1 =

δℓ1 − δ−ℓ1

2
√

b
and

ϵk2 + ϵ−k2

2
= X2 =

δℓ2 − δ−ℓ2

2
√

b
.
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Two linear forms in logarithms

We obtain now two linear forms in logarithms:∣∣∣k1 log ϵ− ℓ1 log δ + log
√

b
∣∣∣ ≪ bδ−2ℓ1

and ∣∣∣k2 log ϵ− ℓ2 log δ + log
√

b
∣∣∣ ≪ bδ−2ℓ2 .

We eliminate log ϵ form this system of inequalities and obtain∣∣∣(k2 − k1) log
√

b − (ℓ1k2 − ℓ2k1) log δ
∣∣∣ ≪ k2δ

−ℓ1 .

Note that

log δ log b log (log δ log b) ≫ k2 > k2 − k1 > (ℓ1k2 − ℓ2k1).
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Upper bounds

That is, we obtain from Baker’s theory for linear forms in
logarithms

ℓ1 log δ ≪ log b log δ log (log δ log b)

≪ 1.

Since we have
√

a < ϵ ≤ ϵk1 ≪ X1 ≪ δℓ1 ≪ 1,

the system of Pell equations has two solutions only if a is
“small”.
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Final Computations – Step I

Problem

The bound a0 for a such that for a > a0 the system of Pell
equations has at most one solutions is huge.

For b = 24 we get a0 ≃ 103.3×106
. How to solve all

remaining Pell equations for a fixed b (say b = 24) to prove
the second theorem?

We assume that b is fixed.
Step 1: We use best approximation properties of continued
fractions (instead of Baker’s theory) and apply it to∣∣∣∣ k2 − k1

ℓ1k2 − ℓ2k1
− log δ

log
√

b

∣∣∣∣ ≪ δ−ℓ1 .

This yields a small bound L for ℓ1.
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Final Computations – Step II

Step 2: For each ℓ between 1 and L we compute
xℓ = δℓ−δ−ℓ

2
√

b
. Each xℓ is a candidate for X , such that

(X ,Y ,Z ) is a solution to

X 2 − a Y 2 = 1, Z 2 − b X 2 = 1.
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Final Computations – Step III

Step 3: We compute for each ℓ between 1 and L the
quantity

γℓ = xℓ +
√

x2
ℓ − 1.

If xℓ is part of a solution to the system of Pell equations

X 2 − a Y 2 = 1, Z 2 − b X 2 = 1,

then we have x2
ℓ − 1 = ay2

ℓ . That is

γℓ = xℓ + yℓ
√

a

yields a solution to X 2 − aY 2 = 1 and γℓ = ϵκ.
If we compute the square-free part s of x2

ℓ − 1 = ay2
ℓ we

obtain a lower bound for a.
We obtain κ ≤ 2 log γ

log s := M. Note that ϵ >
√

a ≥
√

s.
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Final Computations – Step IV

Step 4: We replace log ϵ by 1
κ log γℓ in one of the linear

forms in logarithms and obtain:∣∣∣k2 log γℓ − κℓ2 log δ + κ log
√

b
∣∣∣ ≪ δ−2ℓ2 .

Using the “Baker-Davenport reduction” we obtain an upper
bound for ℓ2 for every possible κ ≤ M.

That is we find a small upper bound L̃ for ℓ2.
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Final Computations – Step V

Step 5: For all 1 ≤ ℓ ≤ L and 1 ≤ ℓ′ ≤ L̃ we check if xℓ and
xℓ′ are part of two solutions to the system of Pell equations

X 2 − a Y 2 = 1, Z 2 − b X 2 = 1.

If they are part of two solutions we have

(x2
ℓ − 1)(x2

ℓ′ − 1) = ay2
ℓ ay2

ℓ′ = (ayℓyℓ′)
2 .

That is we can check numeically whether√
(x2

ℓ − 1)(x2
ℓ′ − 1)

is an integer or not. Only if it is an integer, two solutions
exist.
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Computation time

We implemented this idea in Sage.
Checking all (non-square) b in the range from 1 to
10 000 took approximately 100 hours on a standard
desktop PC.

A single b took about 37 seconds on average, while the
longest run was around 196 seconds.
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Thank you for your Attention!


