SOLVING PROBLEMS OF ERDÖS USING ELLIPTIC CURVES AND AN ANALOGUE OF AAC

Gary Walsh

gwalsh@uottawa.ca

Tutte Institute and Dept. Math. University of Ottawa Ottawa, Ontario, Canada

University of Debrecen Online Number Theory Seminar June 21, 2024

1/23

Powerful and k-full Numbers

 $n \in \mathbb{Z}^+$ such that $p^2 | n$ whenever a prime p | n.

i.e. $n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$ with each p_i prime and $e_i \ge 2$.

Equivalently: $n = ab^2$ for integers a, b with rad(a)|b.

Also called square-full numbers.

Powerful and k-full Numbers

 $n \in \mathbb{Z}^+$ such that $p^2 | n$ whenever a prime p | n.

i.e. $n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$ with each p_i prime and $e_i \ge 2$.

Equivalently: $n = ab^2$ for integers a, b with rad(a)|b.

Also called square-full numbers.

Generalization: n is k-full if $p^k | n$ whenever a prime p | n.

Distribution Problems (short intervals, counting, analytic number theoretical)

Additive Problems (sums and differences of powerful numbers)

Connections to the abc conjecture (polynomial values, linear recurrences)

Consecutive Integers (three consecutive powerful numbers?)

Arithmetic progressions of coprime powerful numbers (Erdös asked for four, solved by Bajpai, Bennett and Chan)

Three-term Equations (x + y = z in coprime *k*-full numbers)

GARY WALSH GWALSH@UOTTAWA.CA POWERFUL NUMBERS

E ► < E ► 4/23

Image: Image:

æ.

GARY WALSH GWALSH@UOTTAWA.CA POWERFUL NUMBERS

E ► < E ► 4/23

Image: Image:

æ.

k = 2

Infinitely many solutions: $x^2 + y^2 = z^2$.

3

프 🕨 🔺 프 🕨 👘

Image: A matrix

Infinitely many solutions: $x^2 + y^2 = z^2$.

k = 3 (posed by Erdös)

→ 글 → 글

k = 2

Infinitely many solutions: $x^2 + y^2 = z^2$.

k = 3 (posed by Erdös)

Infinitely many solutions (Nitaj, Cohn).

k = 2

Infinitely many solutions: $x^2 + y^2 = z^2$.

k = 3 (posed by Erdös)

Infinitely many solutions (Nitaj, Cohn).

k = 4

k = 2

Infinitely many solutions: $x^2 + y^2 = z^2$.

k = 3 (posed by Erdös)

Infinitely many solutions (Nitaj, Cohn).

k = 4

abc implies only finitely many solutions (Luca-de Koninck).

k = 2

Infinitely many solutions: $x^2 + y^2 = z^2$.

k = 3 (posed by Erdös)

Infinitely many solutions (Nitaj, Cohn).

k = 4

abc implies only finitely many solutions (Luca-de Koninck).

OPEN PROBLEM Find a solution for k = 4 or prove that no solution exists.

A new construction to solve the case k = 3.

Construct integer solutions to

$$x^3 + y^3 = Nz^3$$

with rad(N)|z and gcd(x, y) = 1.

5/23

A new construction to solve the case k = 3.

Construct integer solutions to

$$x^3 + y^3 = Nz^3$$

with rad(N)|z and gcd(x, y) = 1.

The curve $x^3 + y^3 = Nz^3$ is birational to $Y^2 = X^3 - 432N^2$ by

$$x = Numer\left(\frac{36N+Y}{6X}\right), y = Numer\left(\frac{36N-Y}{6X}\right),$$
$$z = Denom\left(\frac{36N+Y}{6X}\right).$$

- Start: find an integer *N* for which the rank is positive.
- We will focus on the case N = p is prime.

Lemma

Let p > 3 denote an odd prime, and let

$$E: Y^2 = X^3 - 432p^2.$$

If $P = (u/d^2, v/d^3)$ is a point of infinite order on *E*, with p|d, then (x, y) = 1 and p|z.

i.e.
$$x^3 + y^3 = p^4 (z/p)^3$$
 and $gcd(x, y) = 1$.

POINT: locate points on *E* which have p|d.

```
E:=EllipticCurve([0,-432*49]);
Generators(E):
P:=Generators(E)[1];
for i in [1..10000] do
0:=i*P;
X:=0[1];
Y:=Q[2];
d:=Integers()!Floor(Denominator(X)^(1/2));
if d mod 7 eg 0 then
x:=Numerator((36*7+Q[2])/(6*Q[1]));
v:=Numerator((36*7-0[2])/(6*0[1]));
z:=Denominator((36*7+Q[2])/(6*Q[1]));
z1:=Integers()!(z/7);
[i,x,y,z1,Gcd(x,y),x^3+y^3-7^4*z1^3];break;
end if:
end for;
```

Cancel

Submit

GARY WALSH GWALSH@UOTTAWA.CA PO

POWERFUL NUMBERS

ъ

A Divisibility Sequence (from multiples of a point)

Let *E* be an elliptic curve over \mathbb{Q} and $P \in E$ a rational point of infinite order. For $k \ge 1$ define d_k by

$$kP = (u/d_k^2, v/d_k^3) \quad \operatorname{gcd}(u, d_k) = 1.$$

Then the sequence $\{d_k\}$ is a *divisibility sequence*. That is, if k|l, then $d_k|d_l$.

A Divisibility Sequence (from multiples of a point)

Let *E* be an elliptic curve over \mathbb{Q} and $P \in E$ a rational point of infinite order. For $k \ge 1$ define d_k by

$$kP = (u/d_k^2, v/d_k^3) \quad \operatorname{gcd}(u, d_k) = 1.$$

Then the sequence $\{d_k\}$ is a *divisibility sequence*. That is, if k|l, then $d_k|d_l$.

Corollary There are infinitely many solutions to Erdös' problem.

Proof. For every $k \ge 1$, the point Q = (21k)P has denominator divisible by 7, giving infinitely many pairwise coprime integer solutions to

$$x^3 + y^3 = 7^4 z^3.$$

```
E:=EllipticCurve([0,-432*49]);
P:=Generators(E)[1];
Q:=42*P;
x:=Numerator((36*7-Q[2])/(6*Q[1]));
y:=Numerator((36*7-Q[2])/(6*Q[1]));
z:=Integers()!(z1/7);
Ggg(QuL);
X:=9condinator((36*7+4Q[2])/(6*Q[1]);
Z:=Netegers()!(z1/7);
Ggg(QuL);
X:==Netegers()!(z1/7);
Z:=Z=Netegers()!(z1/7);
Z:=Z=Ne
```

Cancel

-349129596411643486287421915466340994542177349732209156291625034686096766096525

ERS

프 🕨 🗆 프

A Variant of Erdós' Problem

x + y = z in coprime k-full numbers with varying k

Erdós had remarkable intuition!

The **configuration** (3, 3, 3) has infinitely many solutions 'because'

$$\frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 1.$$

Other such configurations for this problem:

(2, 3, 6), (2, 4, 4)

10/23

The configuration (2,3,6)

$$y^2 = x^3 + \rho z^6$$
 with $\rho | z, \gcd(x, y) = 1.$

Find a prime for which E_p : $Y^2 = X^3 + p$ has positive rank, and then find points (*X*, *Y*) on *E* with *Denom*(*X*) divisible by *p*.

11/23

The configuration (2,3,6)

$$y^2 = x^3 + pz^6$$
 with $p|z, gcd(x, y) = 1$.

Find a prime for which E_p : $Y^2 = X^3 + p$ has positive rank, and then find points (X, Y) on *E* with Denom(X) divisible by *p*.

 $E_5: Y^2 = X^3 + 5$ has rank 1 generated by (X, Y) = (-1, 2). Let P = (-1, 2) and $kP = (u_k/d_k^2, v_k/d_k^3)$, then $5|d_k$ iff 5|k.

```
p:=5;
E:=EllipticCurve([0,p]);
P:=Generators(E)[1];P;
for j in [1.3] do
Q:=(5*i)*P;
x:=Humerator(Q[1]);
z1:=Integers()!Isert(Denominator(Q[1]));
z1:=Integers()!Isert(Denominator(Q[1]));
z1:=Integers()!Isert(Denominator(Q[1]));
p:=turerator();
Gcd(X_U);
y^2=X*3-57*2*6;
[X_U,T];
print("");
end for;
```

Cancel

```
(-1:-2:1)
0
[ 176488611599, -74143869240845882, 6421 ]
1
0
[ 970204503045428758752270929324937501564538601,
-30220995810923375045116413076859646891648727878279664404534199542901,
952155568790942816644 ]
1
0
[ 16611492420068888193353468669316653909172690619241013756281176046178025167315\
8911019175850321746094399, -677283719545010284053159583399080517654063074124630
2953594034566454869475410088029884928697747854567357424561411632444405112715320
8205280114480349016482, 18689272713739456282430157670965661279317810508563 ]
                                                                                           < 注 → …
                                               POWERFUL NUMBERS
```

3

The configuration (2, 4, 4)

Solve $py^2 = x^4 + z^4$ with gcd(x, z) = 1 and p|y.

Work with the curve

$$H: Y^2 = pX^4 + pZ^4$$
, (want $p^2|Y$)

where *p* is any prime which is a sum of two fourth powers. (use the summands to create a *base point* on the hyperelliptic curve, and transform it into a Weierstrass model, and use the structure of the MW group).

The configuration (2, 4, 4)

Solve $py^2 = x^4 + z^4$ with gcd(x, z) = 1 and p|y.

Work with the curve

$$H: Y^2 = pX^4 + pZ^4$$
, (want $p^2|Y$)

where *p* is any prime which is a sum of two fourth powers. (use the summands to create a *base point* on the hyperelliptic curve, and transform it into a Weierstrass model, and use the structure of the MW group).

$$p = 17 = 1^4 + 2^4$$
 works like a charm!!

```
R<x>:=PolynomialRing(Rationalg());b:=17;
h:=HyperellipticCurve(b*x^4+b);h;
e_stp::=EulerticCurve(h_h![2,17,1]);e;
MinimalModel(e);Rank(e);#Generators(e);
__efcom := Eulertible(eto);
```

```
P1:=Generators(e)[1];P2:=Generators(e)[2];P3:=Generators(e)[3];P4:=Generators(e)[4];
for i in [0..0] do for j in [0..0] do for k in [-1..-1] do for 1 in [-2..-2] do
Q:=efrom(i*P1+j*P2+k*P3+1*P4);q:=Integers()!Q[2];
if q mod 17^2 eg 0 then print(" ");
y1:=Integers()!Q[2]:y:=Integers()!Q[1];z:=Integers()!Q[3];
```

[x,y,z];17^3*y^2-x^4-z^4;Gcd(x,z);

end if;end for;end for;end for;end for;

Cancel

```
Hyperelliptic Curve defined by y^2 = 17*x^4 + 17 over Rational Field
Elliptic Curve defined by y^2 + 8/17*x*y + 15360/4913*y = x^3 - 784/280*x*2 -
160768/83521*x over Rational Field
Elliptic Curve defined by y^2 = x^3 - 1156*x over Rational Field
2 true
4
[ 427511122, -25071676161582497, 1322049209 ]
0
1
```

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ へ (~ ERS 14/23

Part II. An Elliptic Curve Analogue of the Ankeny-Artin-Chowla Conjecture

Consider the family of curves from earlier

$$y^2 = x^3 - 432p^2$$
 (p > 3, prime),

and assume (for simplicity) that rank(E) = 1, and that *E* has no non-trivial torsion.

Question: For which multiples of the generator does *p* divide the denominator?

(similar to asking when does $p|U_k$, where $\frac{T_k+U_k\sqrt{p}}{2} = \epsilon_p^k$, where ϵ_p is the fundamental unit in a quadratic field.)

```
for j in [3..20] do
p:=NthPrime(j);
E:=EllipticCurve([0,-432*p^2]);
if Rank(E)*#TorsionSubgroup(E) eq 1 then
P:=Generators(E)[1];
for i in [1..1000] do
Q:=i*P;X:=Q[1];Y:=Q[2];
tell,d:=IsSquare(Denominator(X));
if d mod p eq 0 then
x:=Numerator((36*p+Q[2])/(6*Q[1]));
y:=Numerator((36*p-Q[2])/(6*Q[1]));
z:=Denominator((36*p+Q[2])/(6*Q[1]));
z1:=Integers()!(z/p);
[p,p mod 3,i];break;
end if;
end for;
end if;
end for;
```

Cancel

[7,1,21] [13,1,39] [17,2,17] [31,1,93] [43,1,129] [53,2,53] [61,1,183] [67,1,201] [71,2,71] → 《≧》 ≧ ♡Q(♥

GARY WALSH GWALSH@UOTTAWA.CA POWERFUL NUMBERS

16/23

Theorem

Let p > 3 denote an odd prime. Let *E* denote the curve

$$E: Y^2 = X^3 - 432p^2.$$

Assume that $E_{tor} = \{O\}$, and rk(E) = 1 with generator P.

$$\mathsf{Let}\; \mu = \begin{cases} \mathsf{1} & \text{if}\; p \equiv \mathsf{2}\;(\mathsf{mod}\; \mathsf{3}) \\ \mathsf{3} & \text{if}\; p \equiv \mathsf{1}\;(\mathsf{mod}\; \mathsf{3}). \end{cases}$$

Then for every positive integer *k*, the point $Q = k \cdot (\mu P)$ has denominator divisible by *p*.

Proof. (Neron) $E(\mathbb{Q}_p)$ has additive type IV reduction mod p, the order of P in $E(\mathbb{Q}_p)/E_0(\mathbb{Q}_p)$ divides 3p, where $E_0(\mathbb{Q}_p)$ is the set of \mathbb{Q}_p -points with non-singular reduction (see Ch.7 and Sect. 15 of Appendix C in Silverman).

The Ankeny-Artin-Chowla Conjecture (AAC) Let $p \equiv 1 \pmod{4}$ denote an odd prime and

$$\epsilon_p = \frac{T + U\sqrt{p}}{2}$$

denote the fundamental unit in $\mathbb{Q}(\sqrt{p})$. Then $p \not| U$.

18/23

The Ankeny-Artin-Chowla Conjecture (AAC) Let $p \equiv 1 \pmod{4}$ denote an odd prime and

$$\epsilon_{p} = \frac{T + U_{\sqrt{p}}}{2}$$

denote the fundamental unit in $\mathbb{Q}(\sqrt{p})$. Then $p \not| U$.

- False for composite discriminants: $d \in \{46, 430, 1817, \ldots\}$
- Extended to $p \equiv 3 \pmod{4}$ by Mordell, but recently shown to be **false** by Andreas Reinhart (2024).
- No theoretical basis, a dubious conjecture.

The Ankeny-Artin-Chowla Conjecture (reformulated)

Let $p \equiv 1 \pmod{4}$ denote an odd prime, $k \ge 1$, and

$$\epsilon_p^k = \frac{T_k + U_k \sqrt{p}}{2},$$

where ϵ_p denotes the fundamental unit in $\mathbb{Q}(\sqrt{p})$. If $p|U_k$, then p|k.

Proof. The binomial theorem.

The Ankeny-Artin-Chowla Conjecture (reformulated)

Let $p \equiv 1 \pmod{4}$ denote an odd prime, $k \ge 1$, and

$$\epsilon_p^k = \frac{T_k + U_k \sqrt{p}}{2},$$

where ϵ_p denotes the fundamental unit in $\mathbb{Q}(\sqrt{p})$. If $p|U_k$, then p|k.

Proof. The binomial theorem.

Examples:

$$\epsilon_3^3 = (2 + \sqrt{3})^3 = 26 + 15\sqrt{3} = 26 + 5 \cdot 3\sqrt{3}$$

 $\epsilon_5^5 = (\frac{1+\sqrt{5}}{2})^5 = \frac{11+5\sqrt{5}}{2}$
 $\epsilon_7^7 = (8 + 3\sqrt{7})^7 = 130576328 + 7050459 \cdot 7\sqrt{7}$
 $\epsilon_{46} = 24335 + 3588\sqrt{46} = 24335 + 78 \cdot 46\sqrt{46}$

An Elliptic Curve analogue of AAC for rank 1 curves.

Let p > 3 denote an odd prime, Let *E* denote the curve

$$E: Y^2 = X^3 - 432p^2.$$

Assume that $E_{tor} = \{O\}$, and rk(E) = 1 with generator P.

If $k \ge 1$ is a positive integer for which $p|d_k$ (the denominator of kP), then p|k.

An Elliptic Curve analogue of AAC for rank 1 curves.

Let p > 3 denote an odd prime, Let *E* denote the curve

$$E: Y^2 = X^3 - 432p^2.$$

Assume that $E_{tor} = \{O\}$, and rk(E) = 1 with generator *P*.

If $k \ge 1$ is a positive integer for which $p|d_k$ (the denominator of kP), then p|k.

• false for composites: m = 1349, $E_{m,4}(\mathbb{Q}) = < P >$ and the denominator of *P* is divisible by 1349.

An Elliptic Curve analogue of AAC for rank 1 curves.

Let p > 3 denote an odd prime, Let *E* denote the curve

$$E: Y^2 = X^3 - 432p^2.$$

Assume that $E_{tor} = \{O\}$, and rk(E) = 1 with generator P.

If $k \ge 1$ is a positive integer for which $p|d_k$ (the denominator of kP), then p|k.

• false for composites: m = 1349, $E_{m,4}(\mathbb{Q}) = < P >$ and the denominator of *P* is divisible by 1349.

• Finding a counterexample is likely impossible because of the size of the generators. A counterexample *p* is likely to exist with $p \approx 10^{20}$ (very roughly speaking), and heuristics imply that a generator would have roughly 10^{10} digits.

A more general Elliptic Curve analogue of AAC.

Let p > 3 denote an odd prime, Let *E* denote the curve

$$E: Y^2 = X^3 - 432p^2,$$

and assume that *E* has positive rank and no nontrivial torsion.

Then there is a point $(u/d^2, v/d^3)$ on *E* for which gcd(p, d) = 1.

21/23

Elliptic Wieferich Primes (for singular reductions)

p > 2 is a Wieferich Prime if $2^{p-1} \equiv 1 \pmod{p^2}$.

Examples: 1093, 3511 (the only known examples up to $1.8 \cdot 10^{19}$)

22/23

Elliptic Wieferich Primes (for singular reductions)

p > 2 is a Wieferich Prime if $2^{p-1} \equiv 1 \pmod{p^2}$.

Examples: 1093, 3511 (the only known examples up to $1.8 \cdot 10^{19}$)

Definition Let p > 3 be a prime, $\mu = \mu(p)$ as above, and let *E* be given by

$$E: y^2 = x^3 - 432p^2.$$

If $P = (u/d_1^2, v/d_1^3) \in E$ with $(p, d_1) = 1$, (non-torsion)

then p is an *Elliptic Wieferich Prime* for (E, P) if

$$Q=(\mu p)P=(u_{
ho}/d_{\mu p}^2,v_{
ho}/d_{\mu p}^3)$$

satisfies $p^2 | d_{\mu p}$.

Computational Challenge

Find Elliptic Wieferich Primes or AAC counterexamples for curves of the form

$$y^2 = x^3 - 432p^2$$

or curves in other families having singular reduction (mod p).

$$(E: y^2 = x^3 + k \text{ with } k = \pm sp^t, s \text{ smooth and } p > c_0(s).)$$

Computational Challenge

Find Elliptic Wieferich Primes or AAC counterexamples for curves of the form

$$y^2 = x^3 - 432p^2$$

or curves in other families having singular reduction (mod p).

$$(E: y^2 = x^3 + k \text{ with } k = \pm sp^t, s \text{ smooth and } p > c_0(s).)$$

© THANK YOU FOR YOUR ATTENTION ©