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Powerful and k-full Numbers

n ∈ Z+ such that p2|n whenever a prime p|n.

i.e. n = pe1
1 pe2

2 . . . pek
k with each pi prime and ei ≥ 2.

Equivalently: n = ab2 for integers a,b with rad(a)|b.

Also called square-full numbers.

Generalization: n is k -full if pk |n whenever a prime p|n.
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VARIOUS RESEARCH TOPICS ON POWERFUL NUMBERS

Distribution Problems (short intervals, counting, analytic
number theoretical)

Additive Problems (sums and differences of powerful
numbers)

Connections to the abc conjecture (polynomial values, linear
recurrences)

Consecutive Integers (three consecutive powerful numbers?)

Arithmetic progressions of coprime powerful numbers
(Erdös asked for four, solved by Bajpai, Bennett and Chan)

Three-term Equations (x + y = z in coprime k -full numbers)
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x + y = z in coprime k -full Integers x , y , z

k = 2

Infinitely many solutions: x2 + y2 = z2.

k = 3 (posed by Erdös)

Infinitely many solutions (Nitaj, Cohn).

k = 4

abc implies only finitely many solutions (Luca-de Koninck).

OPEN PROBLEM Find a solution for k = 4 or prove that no
solution exists.
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A new construction to solve the case k = 3.

Construct integer solutions to

x3 + y3 = Nz3

with rad(N)|z and gcd(x , y) = 1.

The curve x3 + y3 = Nz3 is birational to Y 2 = X 3 − 432N2 by

x = Numer
(

36N + Y
6X

)
, y = Numer

(
36N − Y

6X

)
,

z = Denom
(

36N + Y
6X

)
.

• Start: find an integer N for which the rank is positive.
• We will focus on the case N = p is prime.
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Lemma

Let p > 3 denote an odd prime, and let

E : Y 2 = X 3 − 432p2.

If P = (u/d2, v/d3) is a point of infinite order on E , with p|d ,

then (x , y) = 1 and p|z.

i.e. x3 + y3 = p4(z/p)3 and gcd(x , y) = 1.

POINT: locate points on E which have p|d .
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A Divisibility Sequence (from multiples of a point)

Let E be an elliptic curve over Q and P ∈ E a rational point of
infinite order. For k ≥ 1 define dk by

kP = (u/d2
k , v/d3

k ) gcd(u,dk ) = 1.

Then the sequence {dk} is a divisibility sequence. That is, if
k |l , then dk |dl .

Corollary There are infinitely many solutions to Erdös’ problem.

Proof. For every k ≥ 1, the point Q = (21k)P has denominator
divisible by 7, giving infinitely many pairwise coprime integer
solutions to

x3 + y3 = 74z3.
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A Variant of Erdós’ Problem

x + y = z in coprime k-full numbers with varying k

Erdós had remarkable intuition!

The configuration (3,3,3) has infinitely many solutions
’because’

1
3
+

1
3
+

1
3
= 1.

Other such configurations for this problem:

(2,3,6), (2,4,4)
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The configuration (2,3,6)

y2 = x3 + pz6 with p|z, gcd(x , y) = 1.

Find a prime for which Ep : Y 2 = X 3 + p has positive rank, and
then find points (X ,Y ) on E with Denom(X ) divisible by p.

E5 : Y 2 = X 3 + 5 has rank 1 generated by (X ,Y ) = (−1,2).

Let P = (−1,2) and kP = (uk/d2
k , vk/d3

k ), then

5|dk iff 5|k .
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The configuration (2,4,4)

Solve py2 = x4 + z4 with gcd(x , z) = 1 and p|y .

Work with the curve

H : Y 2 = pX 4 + pZ 4, (want p2|Y )

where p is any prime which is a sum of two fourth powers.
(use the summands to create a base point on the hyperelliptic
curve, and transform it into a Weierstrass model, and use the
structure of the MW group).

p = 17 = 14 + 24 works like a charm!!
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Part II. An Elliptic Curve Analogue of the
Ankeny-Artin-Chowla Conjecture

Consider the family of curves from earlier

y2 = x3 − 432p2 (p > 3, prime),

and assume (for simplicity) that rank(E) = 1, and
that E has no non-trivial torsion.

Question: For which multiples of the generator does p divide
the denominator?

(similar to asking when does p|Uk , where Tk+Uk
√

p
2 = ϵk

p,
where ϵp is the fundamental unit in a quadratic field.)
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Theorem
Let p > 3 denote an odd prime. Let E denote the curve

E : Y 2 = X 3 − 432p2.

Assume that Etor = {O}, and rk(E) = 1 with generator P.

Let µ =

{
1 if p ≡ 2 (mod 3)
3 if p ≡ 1 (mod 3).

Then for every positive integer k , the point Q = k · (µP) has
denominator divisible by p.

Proof. (Neron) E(Qp) has additive type IV reduction mod p, the
order of P in E(Qp)/E0(Qp) divides 3p, where E0(Qp) is the set
of Qp-points with non-singular reduction (see Ch.7 and Sect.
15 of Appendix C in Silverman).
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The Ankeny-Artin-Chowla Conjecture (AAC)

Let p ≡ 1 (mod 4) denote an odd prime and

ϵp =
T + U

√
p

2

denote the fundamental unit in Q(
√

p). Then p ̸ |U.

• False for composite discriminants: d ∈ {46,430,1817, . . .}
• Extended to p ≡ 3 (mod 4) by Mordell, but recently shown to
be false by Andreas Reinhart (2024).
• No theoretical basis, a dubious conjecture.
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The Ankeny-Artin-Chowla Conjecture (reformulated)

Let p ≡ 1 (mod 4) denote an odd prime, k ≥ 1, and

ϵk
p =

Tk + Uk
√

p
2

,

where ϵp denotes the fundamental unit in Q(
√

p).

If p|Uk , then p|k .

Proof. The binomial theorem.

Examples:
ϵ3
3 = (2 +

√
3)3 = 26 + 15

√
3 = 26 + 5 · 3

√
3

ϵ5
5 = (1+

√
5

2 )5 = 11+5
√

5
2

ϵ7
7 = (8 + 3

√
7)7 = 130576328 + 7050459 · 7

√
7

ϵ46 = 24335 + 3588
√

46 = 24335 + 78 · 46
√

46
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An Elliptic Curve analogue of AAC for rank 1 curves.

Let p > 3 denote an odd prime, Let E denote the curve

E : Y 2 = X 3 − 432p2.

Assume that Etor = {O}, and rk(E) = 1 with generator P.

If k ≥ 1 is a positive integer for which p|dk (the denominator of
kP), then p|k .

• false for composites: m = 1349, Em,4(Q) =< P > and the
denominator of P is divisible by 1349.
• Finding a counterexample is likely impossible because of the
size of the generators. A counterexample p is likely to exist with
p ≈ 1020 (very roughly speaking), and heuristics imply that a
generator would have roughly 1010 digits.
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A more general Elliptic Curve analogue of AAC.

Let p > 3 denote an odd prime, Let E denote the curve

E : Y 2 = X 3 − 432p2,

and assume that E has positive rank and no nontrivial torsion.

Then there is a point (u/d2, v/d3) on E for which gcd(p,d) = 1.
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Elliptic Wieferich Primes (for singular reductions)

p > 2 is a Wieferich Prime if 2p−1 ≡ 1 (mod p2).

Examples: 1093, 3511
(the only known examples up to 1.8 · 1019)

Definition Let p > 3 be a prime, µ = µ(p) as above, and let E
be given by

E : y2 = x3 − 432p2.

If P = (u/d2
1 , v/d3

1 ) ∈ E with (p,d1) = 1, (non-torsion)

then p is an Elliptic Wieferich Prime for (E ,P) if

Q = (µp)P = (up/d2
µp, vp/d3

µp)

satisfies p2|dµp.
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Computational Challenge

Find Elliptic Wieferich Primes or AAC counterexamples for
curves of the form

y2 = x3 − 432p2

or curves in other families having singular reduction (mod p).

(E : y2 = x3 + k with k = ±spt , s smooth and p > c0(s).)

, THANK YOU FOR YOUR ATTENTION ,
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