
Bounds for the number of distinct squares in
binary recurrence sequences

Paul Voutier (London)

25 April 2025



Introduction

Recurrence sequences are ubiquitous in maths and nature [12].
Arithmetic properties of important sequences are valuable.
Eg. 0, 1, 8, 144: all powers in Fibonacci sequence (BMS 2006 [2]).

Squares related to aX 2 − bY 4 = c (quartic model of elliptic curve)
Long history: Mordell, Ljunggren,. . .
Sharp bounds for number of integer solutions for c = ±1,±2,±4.
See Akhtari 2009 [1] and references there.

Other values of c? Not a lot known.

X 2 −
(
22m + 1

)
Y 4 = −22m: ≤ 12 odd positive integer solutions.

He, Togbé and Walsh 2009 [4].

Improved to at most 3 such solutions.
Stoll, Walsh and Yuan 2009 [5].

Uses hypergeometric method.



New Results (I): X 2 −
(
a2 + b

)
Y 4 = −b

Theorem (V. 2024, Corollary 1.3, ref. 8)

Let a, m and p be non-negative integers with a ≥ 1, p a prime and
put b = pm or 4pm. Suppose that gcd

(
a2, b

)
is squarefree, a2 + b

is not a square and that x2 −
(
a2 + b

)
y2 = −4 has a solution in

positive integers.
(a) If b is a square, then X 2 −

(
a2 + b

)
Y 4 = −b has at most two

coprime positive integer solutions.
(b) If b is not a square, then X 2 −

(
a2 + b

)
Y 4 = −b has at most

three coprime positive integer solutions.

Generalises and improves SWY result (a = 1 and b = 22m).

Also best possible:
Let b > 5, with b ≡ 1 (mod 4) and 5 ∤ b, a = (b − 5) /4.
(X ,Y ) = (a, 1),

((
b3 + 5b2 + 15b − 5

)
/16, (b + 1)/2

)
.

Proof is actually about squares in binary recurrence sequences.



Our Sequences

a, b and d positive integers, d not a square.
α = a+ b2

√
d with norm Nα = a2 − b4d ,

ε =
(
t + u

√
d
)
/2 a unit in OQ(

√
d), t, u positive integers.

Define (xk)
∞
k=−∞ and (yk)

∞
k=−∞ by

xk + yk
√
d = α · ε2k .

E.g., ε =
(
1 +

√
5
)
/2, α = 2ε, xk = L2k+1 and yk = F2k+1.

Observe that x2k − dy2k = Nα.

Choose α such that b2 = y0 is the smallest square among the yk ’s.

Conjecture

There are at most four distinct integer squares among the yk ’s.

If sf (|Nα|) |(2p), where p is an odd prime, there are at most three
distinct integer squares among the yk ’s.

Furthermore, if |Nα| is a perfect square, then there are at most two
distinct integer squares among the yk ’s.

The arithmetic of Nα matters.



New Results (II): b = 1

Theorem (V. 2024, Theorem 1.2, ref. 8)

Let a, m and p be non-negative integers with a ≥ 1, p a prime.
Put b = 1 and Nα = −pm, −2pm, −4pm, −8pm or −16pm.
Suppose that d = a2 − Nα > 0 is not a square.
(a) If −Nα is a square, then there are at most 2 distinct integer
squares among the yk ’s
(b) If −Nα is not a square, then there are at most 3 distinct
integer squares among the yk ’s.

Theorem (V. 2024, Theorem 1.4, ref. 7)

Let b = 1, a and d be positive integers, where d is not a square,
Nα < 0 and −Nα is a square.
(a) If u = 1, 2, t2 − du2 = −4 and one of y±1 is a perfect square,
then there are at most 3 distinct squares among the yk ’s.
(b) Otherwise, there are at most 2 distinct squares among the yk ’s.



New Results (III): b ≥ 1

Let K be the largest negative integer such that yK > b2 = y0.

Theorem (V. 2025, ref. 9, 10, 11)

(a) Let −Nα be a positive square. There are at most two distinct
squares among the yk ’s with k ≥ 2 or k ≤ K − 1, and

yk >
16.33b8/3 |Nα|2√

d
.

(b) Let Nα = −2ℓpm with p an odd prime and ℓ, m non-negative
integers. There are at most four distinct squares among the yk ’s
with k ≥ 2 or k ≤ K − 1, and

yk >
336b8/3 |Nα|2√

d
.

(c) Suppose Nα < 0. There are at most four distinct squares
among the yk ’s with k ≥ 3 or k ≤ K − 2, and

yk >
16b4 |Nα|4√

d
.



New Results (IV): b ≥ 1

Theorem (V. 2025, ref. 9, 10, 11)

(a) Suppose −Nα is a positive square.
(a-i) For 1 ≤ b ≤ 11, at most 5 distinct squares in (yk)

∞
k=−∞.

(a-ii) For b ≥ 12, at most 5 distinct squares in (yk)
∞
k=−∞, if

d ≥ 30 |Nα|1/2 b28/13

u24/13
.

(b) Nα = −2ℓpm with p an odd prime and ℓ,m ∈ Z≥0.
(b-i) For 1 ≤ b ≤ 5, at most 7 distinct squares in (yk)

∞
k=−∞.

(b-ii) For b ≥ 6, at most 7 distinct squares in (yk)
∞
k=−∞, if

d ≥ 59 |Nα|1/2 b28/13

u24/13
.

(c) Suppose Nα < 0.
(c-i) For b = 1, 2, 3, at most 9 distinct squares among the yk ’s.
(c-ii) For b ≥ 4, at most 9 distinct squares in (yk)

∞
k=−∞, if

d ≥ 15 |Nα|3/4 b3/2

u3/2
.



Hypergeometric method crash course

For positive integers m and n with 0 < m < n/2 and
gcd(m, n) = 1 and non-negative integer r , put

Xm,n,r (z) = 2F1(−r−m/n,−r , 1−m/n, z), Ym,n,r = z rXm,n,r

(
z−1
)
,

Rm,n,r (z) =
(m/n) · · · (r +m/n)

(r + 1) · · · (2r + 1)
2F1 (r + 1, r + 1−m/n; 2r + 2; 1− z) ,

where 2F1 denotes the classical hypergeometric function.

Key relationship:

zm/nYm,n,r (z)− Xm,n,r (z) = (z − 1)2r+1Rm,n,r (z).

Xm,n,r (z),Ym,n,r (z) ∈ Q[z ].

denominators of coefficients of Xm,n,r (z) grow like c1(n)c2(n)
r .

|Xm,n,r (z)| < c3(n, r)
∣∣1 +√

z
∣∣2r for |z | ≤ 1.∣∣(z − 1)2r+1Rm,n,r (z)

∣∣ ≤ c4(n, r)
∣∣1−√

z
∣∣2r ,

for |z | ≤ 1, |z − 1| < 1.



Folklore Lemma (à la Evertse [3])

Lemma

Let θ ∈ C and K an imaginary quadratic field. Suppose k0, ℓ0 > 0
and E ,Q > 1 such that for all non-negative integers r , there are
algebraic integers pr and qr in K with |qr | < k0Q

r and
|qrθ − pr | ≤ ℓ0E

−r satisfying prqr+1 ̸= pr+1qr .

For any p, q ∈ OK, let r0 be the smallest positive integer such that
(Q − 1/E ) ℓ0|q|/ (Q − 1) < cE r0 , where 0 < c < 1.
(a) We have

|qθ − p| > 1− c/E

k0Qr0+1
.

(b) When p/q ̸= pr0/qr0 , we have

|qθ − p| > 1− c

k0Qr0
.

Usually

∣∣∣∣θ − p

q

∣∣∣∣ > 1
c|q|κ+1 , where c = 2k0Q(2ℓ0E )

κ and κ = logQ
log E .



What does this have to do with squares in sequences?

n ≥ 3, D < 0, A,B,m ∈ Q
(√

D
)
, an integer solution, (X ,Y ), of

B
(
X + Y

√
D
)n

− A
(
X − Y

√
D
)n

= m(
X + Y

√
D
)
/
(
X − Y

√
D
)
: a good approximation to (A/B)1/n.

If we can associate our problem with an equation of form

B
(
X + Y

√
D
)n

− A
(
X − Y

√
D
)n

= m

having A/B near 1, then we can use hypergeometric method.

Recall: xk + yk
√
d = αε2k with yk = y2 and Nα < 0.

We have x + y2
√
d = αϵ2 (ϵ = εk),

take norm and rearrange: x2 − NαN
2
ϵ = dy4.

Factoring goal: with d̃ , ỹ ∈ Q
(√

Nα

)
,

x + Nϵ

√
Nα = d̃ × ỹ4 and x − Nϵ

√
Nα = d̃ × ỹ

4
.

If so, then d̃ ỹ4 − d̃ ỹ
4
= 2Nϵ

√
Nα.



Representation Lemma

Lemma (Prop 3.1, ref. 7)

Let a, b, d ∈ Z with a ̸= 0, b, d > 0 and d is not a square, put
α = a+ b2

√
d. Suppose that Nα is not a square, x ̸= 0 and y > 0

are rational integers with
x + y2

√
d = αϵ2,

where ϵ =
(
t + u

√
d
)
/2 ∈ OQ(

√
d) is a unit with norm Nϵ.

(a) We can write

±f 2
(
x + Nϵ

√
Nα

)
=
(
a+

√
Nα

)(
r + s

√
sf (Nα)

)4
and

fy = b
(
r2 − sf (Nα) s

2
)
,

for f , r , s ∈ Z, f ̸= 0, f |
(
4b2 sf (|Nα|)

)
, f ≤ 4b2

√
sf (|Nα|).

(b) If |Nα| is a square, then f |b2.
(c) If |Nα| = 2ℓpm where p is an odd prime, then we have f |

(
4b2
)

when Nα ≡ 1 mod 4 and f |
(
2b2
)
otherwise.

Proof:
(
x + Nε

√
Nα

)
/
(
a+

√
Nα

)
is a square in Q

(√
Nα

)
.

Write multiple of square root as a square, work with valuations.



Lower bound for yk , k ̸= 0

Lemma (Lemma 3.5, ref. 7)

Let the yk ’s be defined as above. Suppose that Nα < 0.
Let K be the largest negative integer such that yK > b2 = y0.
(a) For all k, 2yk is a positive integer.
(b) The sequences (yk)k≥0 and (yK+1, yK , yK−1, yK−2, . . .) are
increasing sequences of positive numbers.
(c) We have

yk ≥

{ (
|Nα| u2/

(
4b2
)) (

2du2/5
)k−1

for k > 0,(
|Nα| u2/

(
4b2
)) (

2du2/5
)max(0,K−k)

for k < 0.

Proof: induction.

For k ≥ 3 or k ≤ K − 2,

yk ≥ |Nα| d2u6

25b2
.



Gap Principle

Lemma (Lemma 3.3, ref. 11)

Let the yk ’s be defined as before with Nα < 0.
(a) Suppose that −Nα is a square. If yi and yj are distinct squares

with i , j ̸= 0 and yj > yi ≥ max
{
4
√
|Nα| /d , b2 |Nα| /d

}
, then

yj > 57.32

(
d

b2 |Nα|

)2

y3i .

(b) Suppose −Nα is not a square. If yk1 , yk2 and yk3 are three
distinct squares with none of k1, k2 or k3 between K + 1 and 0,
inclusive, and

yk3 > yk2 > yk1 ≥ max

{
4
√

|Nα| /d ,
(
16b2 |Nα|2 /d

)2
/60

}
,

then there exist distinct i , j ∈ {k1, k2, k3} such that

yj > 1.43
d

b2 |Nα|2
y
5/2
i .

E.g., a = 140, b = 1, d = 48024901, t = 13860, u = 2,
Nα = −3 · 23 · 41 · 71 · 239, y−1 = 97012, y1 = 98992.



Proof Strategy

For b = 1 and −Nα square: assume two distinct squares,
yℓ > yk > 1, satisfying k , ℓ ̸= 0.

apply gap principle once.

For any b and any Nα < 0: assume five distinct squares,
yk5 > yk4 > yk3 > yk2 > yk1 satisfying k1 ≥ 3 or k1 ≤ K − 2.

allows us to apply gap principle twice: m1, m2 and m3.

ωm1 =
(
xm1 + Nεm1

√
Nα

)
/
(
xm1 − Nεm1

√
Nα

)
and ζ4 satisfies∣∣∣∣∣ω1/4

m1 − ζ4
x − y

√
sf (Nα)

x + y
√

sf (Nα)

∣∣∣∣∣ = min
0≤j≤3

∣∣∣∣∣ω1/4
m1 − e2jπi/4

x − y
√

sf (Nα)

x + y
√
sf (Nα)

∣∣∣∣∣
where
q = x + y

√
sf (Nα) =

(
rm1 − sm1

√
sf (Nα)

)(
rm3 + sm3

√
sf (Nα)

)
with rm1 , sm1 and rm3 , sm3 as in the Representation Lemma.

Put p = q and apply “bucketing” from Folklore Lemma.



Step 1: r0 = 1 and ζ4p/q ̸= pr0/qr0
Folklore Lemma with |q| =

√
fm1fm3 (ym1ym3)

1/4 /b and c = 0.75,

0.99b

k0Qr0
√
fm1fm3 (ym1ym3)

1/4
< 3.96

∣∣∣∣∣ω1/4
m1 − ζ4

x − y
√

sf (Nα)

x + y
√
sf (Nα)

∣∣∣∣∣ < 2
√

|Nα|√
d ym3

.

Since |qr0 | < k0Q
r0 with Q < 10.74

√
d ym1 and k0 < 0.89,(

3.24Nαfm1fm3

b2

)2

10.744r0d2r0−2y4r0+1
m1

> y3m3
.

For r0 = 1, with fm1fm3 ≤ 16b4 |Nα|,

ym3 < 331N4/3
α b4/3y

5/3
m1 .

Applying the Gap Principle Lemma (b) twice, we have

ym3 >

(
1.43d

b2 |Nα|2

)
y
5/2
m2 >

(
1.43d

b2 |Nα|2

)7/2

y
25/4
m1 .

Not possible if

ym1 >
2.7b20/11 |Nα|20/11

d42/55
.



Step 1 (cont.): r0 = 1 and ζ4p/q ̸= pr0/qr0

Suppose

ym1 <
2.7b20/11 |Nα|20/11

d42/55
.

Since m1 ≥ 3 or m1 ≤ K − 2, from our lower bound lemma,

ym1 ≥
|Nα| d2u6

25b2
.

These bounds contradict each other when

d >
4.6 |Nα|45/152 b105/76

u165/76
.

Hence r0 = 1 and ζ4p/q ̸= p1/q1 is not possible for such d or ym1

under our assumptions.



Step 2: r0 = 1 and ζ4p/q = pr0/qr0
For any r0 ≥ 1, using hypergeometric functions directly,∣∣∣∣∣ω1/4

m1 − ζ4
x − y

√
sf (Nα)

x + y
√

sf (Nα)

∣∣∣∣∣ > 0.291

4r0 · r1/20

(
|Nα|
d

)r0+1/2( 1

ym1

)2r0+1

.

This and upper bound yield 1.73r
1/2
0

(
4

d

|Nα|

)r0

y2r0+1
m1

> ym3 .

For r0 = 1 and applying the gap principle twice, we obtain

6.92
d

|Nα|
y3m1

> ym3 >

(
1.43d

b2 |Nα|2

)
y
5/2
m2 >

(
1.43d

b2 |Nα|2

)7/2

y
25/4
m1 .

Not possible if ym1 >
1.24 |Nα|24/13 b28/13

d10/13
.

Applying lower bound lemma to ym1 , this is not possible if

d >
3.45 |Nα|11/36 b3/2

u13/6
.



Step 3: r0 > 1 and ζ4p/q ̸= pr0/qr0
Gap principle not good enough. Use def’n of r0 in Folklore Lemma:√

fm1fm3 (ym1ym3)
1/4 /b = |q| > 0.86cE r0−1/ℓ0.

With E > 0.366
√
d ym1/ |Nα| and ℓ0 < 0.46

√
|Nα|/ |xm1 |, implies

ym3 >

(
3.7

√
|Nα|
fm1fm3

)4(
0.366

|Nα|

)4r0

d2r0y4r0−1
m1

.

Recall from Step 1:(
3.24Nαfm1fm3

b2

)2

10.744r0d2r0−2y4r0+1
m1

> y3m3
.

Yields
14.8 · 67.11/(2r0−1) |Nα|3/2+5/(2(2r0−1)) b7/(2r0−1)

d1/2+1/(2r0−1)
> ym1 .

Since r0 ≥ 2, simplifies to
61b7/31 |Nα|7/3

d1/2
> ym1 .

Applying lower bound lemma to ym1 and r0 ≥ 2, not possible if

d >
15 |Nα|8/17 b20/17

u36/17
.



Step 4: r0 > 1 and ζ4p/q = pr0/qr0
From Step 3 (i.e., via definition of r0 in Folklore Lemma):

ym3 >

(
3.7

√
|Nα|
fm1fm3

)4(
0.366

|Nα|

)4r0

d2r0y4r0−1
m1

.

From Step 2:

1.73r
1/2
0

(
4

d

|Nα|

)r0

y2r0+1
m1

> ym3 .

Yields

16.33
b2/(r0−1) |Nα|3/2+3/(2(r0−1)) · 4221/(2(r0−1))

d1/2+1/(2(r0−1))
> ym1 .

Since r0 ≥ 2, simplifies to
238b2 |Nα|3

d1/2
> ym1 .

Applying lower bound lemma to ym1 and r0 ≥ 2, not possible if

d >
15b4/3 |Nα|2/3

u2
.



Consolidation

Get contradiction from assumption of 10 distinct squares
(five yk ’s with k ≥ 3 or k ≤ K − 2 and remaining yK−1, yK , y0, y1,
y2) and that ym1 or d is sufficiently large.

Gap principle lemma requires, ym1 ≥ 4 |Nα| /
√
d and

ym1 ≥ (64/15)b4 |Nα|4 /d2.

Combined with steps (1)–(4),

ym1 ≥ yk1 >max


2.7b20/11 |Nα|20/11

d42/55
,
1.3 |Nα|24/13 b28/13

d10/13
,

61b7/3 |Nα|7/3

d1/2
,
238b2 |Nα|3

d1/2


Hence

yk1 >
16b4 |Nα|4√

d

Similarly,

d ≥ 15 |Nα|3/4 b3/2

u3/2
.

small b: computation. Nα < 0 implies finitely many a for each d .



Future Directions

Treatment of small squares among the yk ’s.
This would provide unconditional results like our conjectures.

Better treatment of r0 = 1 steps in our proof.
Try to apply gap principle just once.
Can the simple expressions for r0 = 1 hypergeometric fcns help?
This would yield improved results.

Generalisation to sequences generated by ε with |Nε| ≠ 1.
Possible since in Representation Lemma only depend on rad (Nε).

What about sequences with Nα > 0?
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Thank you to Professor Győry and his colleagues for the invitation.
Thank you to all for attending.

https://doi.org/10.2140/moscow.2022.11.161
https://arxiv.org/abs/2401.01293
https://arxiv.org/abs/1807.04116
https://arxiv.org/abs/2502.14875
https://arxiv.org/abs/2504.07040

