Bounds for the number of distinct squares in binary recurrence sequences

Paul Voutier (London)

25 April 2025

Introduction

- Recurrence sequences are ubiquitous in maths and nature [12]. Arithmetic properties of important sequences are valuable.
 Eg. 0, 1, 8, 144: all powers in Fibonacci sequence (BMS 2006 [2]).
- Squares related to aX² bY⁴ = c (quartic model of elliptic curve) Long history: Mordell, Ljunggren,...
 Sharp bounds for number of integer solutions for c = ±1, ±2, ±4.
 See Akhtari 2009 [1] and references there.
- Other values of c? Not a lot known.
- $X^2 (2^{2m} + 1) Y^4 = -2^{2m}$: ≤ 12 odd positive integer solutions. He, Togbé and Walsh 2009 [4].
- Improved to at most 3 such solutions. Stoll, Walsh and Yuan 2009 [5].
- Uses hypergeometric method.

Theorem (V. 2024, Corollary 1.3, ref. 8)

Let a, m and p be non-negative integers with $a \ge 1$, p a prime and put $b = p^m$ or $4p^m$. Suppose that gcd (a^2, b) is squarefree, $a^2 + b$ is not a square and that $x^2 - (a^2 + b) y^2 = -4$ has a solution in positive integers. (a) If b is a square, then $X^2 - (a^2 + b) Y^4 = -b$ has at most two

(a) If b is a square, then $X^2 - (a^2 + b) Y^4 = -b$ has at most two coprime positive integer solutions.

(b) If b is not a square, then $X^2 - (a^2 + b) Y^4 = -b$ has at most three coprime positive integer solutions.

• Generalises and improves SWY result $(a = 1 \text{ and } b = 2^{2m})$.

• Also best possible:

Let b > 5, with $b \equiv 1 \pmod{4}$ and $5 \nmid b$, a = (b-5)/4. (X, Y) = (a, 1), ($(b^3 + 5b^2 + 15b - 5)/16, (b+1)/2$).

• Proof is actually about squares in binary recurrence sequences.

Our Sequences

a, b and d positive integers, d not a square. α = a + b²√d with norm N_α = a² - b⁴d, ε = (t + u√d)/2 a unit in O_{Q(√d)}, t, u positive integers.
Define (x_k)[∞]_{k=-∞} and (y_k)[∞]_{k=-∞} by

$$x_k + y_k \sqrt{d} = \alpha \cdot \varepsilon^{2k}.$$

- E.g., $\varepsilon = (1 + \sqrt{5})/2$, $\alpha = 2\varepsilon$, $x_k = L_{2k+1}$ and $y_k = F_{2k+1}$.
- Observe that $x_k^2 dy_k^2 = N_{\alpha}$.
- Choose α such that $b^2 = y_0$ is the smallest square among the y_k 's.

Conjecture

There are at most four distinct integer squares among the y_k 's. If sf $(|N_{\alpha}|)|(2p)$, where p is an odd prime, there are at most three distinct integer squares among the y_k 's. Furthermore, if $|N_{\alpha}|$ is a perfect square, then there are at most two distinct integer squares among the y_k 's.

• The arithmetic of N_{α} matters.

Theorem (V. 2024, Theorem 1.2, ref. 8)

Let a, m and p be non-negative integers with $a \ge 1$, p a prime. Put b = 1 and $N_{\alpha} = -p^{m}$, $-2p^{m}$, $-4p^{m}$, $-8p^{m}$ or $-16p^{m}$. Suppose that $d = a^{2} - N_{\alpha} > 0$ is not a square. (a) If $-N_{\alpha}$ is a square, then there are at most 2 distinct integer squares among the y_{k} 's (b) If $-N_{\alpha}$ is not a square, then there are at most 3 distinct integer squares among the y_{k} 's.

Theorem (V. 2024, Theorem 1.4, ref. 7)

Let b = 1, a and d be positive integers, where d is not a square, $N_{\alpha} < 0$ and $-N_{\alpha}$ is a square. (a) If u = 1, 2, $t^2 - du^2 = -4$ and one of $y_{\pm 1}$ is a perfect square, then there are at most 3 distinct squares among the y_k 's. (b) Otherwise, there are at most 2 distinct squares among the y_k 's.

New Results (III): $b \ge 1$

Let K be the largest negative integer such that $y_K > b^2 = y_0$.

Theorem (V. 2025, ref. 9, 10, 11)

(a) Let $-N_{\alpha}$ be a positive square. There are at most two distinct squares among the y_k 's with $k \ge 2$ or $k \le K - 1$, and

$$y_k > rac{16.33b^{8/3} |N_{lpha}|^2}{\sqrt{d}}.$$

(b) Let $N_{\alpha} = -2^{\ell} p^{m}$ with p an odd prime and ℓ , m non-negative integers. There are at most four distinct squares among the y_{k} 's with $k \geq 2$ or $k \leq K - 1$, and

$$y_k > \frac{336b^{8/3} \left| N_\alpha \right|^2}{\sqrt{d}}$$

(c) Suppose $N_{\alpha} < 0$. There are at most four distinct squares among the y_k 's with $k \ge 3$ or $k \le K - 2$, and

$$y_k > \frac{16b^4 \left| N_\alpha \right|^4}{\sqrt{d}}.$$

New Results (IV): $b \ge 1$

Theorem (V. 2025, ref. 9, 10, 11)

(a) Suppose $-N_{\alpha}$ is a positive square. (a-i) For $1 \le b \le 11$, at most 5 distinct squares in $(y_k)_{k=-\infty}^{\infty}$. (a-ii) For $b \ge 12$, at most 5 distinct squares in $(y_k)_{k=-\infty}^{\infty}$, if $d \ge \frac{30 |N_{\alpha}|^{1/2} b^{28/13}}{u^{24/13}}$.

(b) $N_{\alpha} = -2^{\ell} p^{m}$ with p an odd prime and $\ell, m \in \mathbb{Z}_{\geq 0}$. (b-i) For $1 \leq b \leq 5$, at most 7 distinct squares in $(y_{k})_{k=-\infty}^{\infty}$. (b-ii) For $b \geq 6$, at most 7 distinct squares in $(y_{k})_{k=-\infty}^{\infty}$, if $d \geq \frac{59 |N_{\alpha}|^{1/2} b^{28/13}}{u^{24/13}}$.

(c) Suppose $N_{\alpha} < 0$. (c-i) For b = 1, 2, 3, at most 9 distinct squares among the y_k 's. (c-ii) For $b \ge 4$, at most 9 distinct squares in $(y_k)_{k=-\infty}^{\infty}$, if $d \ge \frac{15 |N_{\alpha}|^{3/4} b^{3/2}}{u^{3/2}}$.

Hypergeometric method crash course

• For positive integers *m* and *n* with 0 < m < n/2 and gcd(m, n) = 1 and non-negative integer *r*, put

$$X_{m,n,r}(z) = {}_{2}F_{1}(-r-m/n,-r,1-m/n,z), \quad Y_{m,n,r} = z^{r}X_{m,n,r}(z^{-1}),$$

$$R_{m,n,r}(z) = \frac{(m/n)\cdots(r+m/n)}{(r+1)\cdots(2r+1)} {}_{2}F_{1}(r+1,r+1-m/n;2r+2;1-z),$$

where $_2F_1$ denotes the classical hypergeometric function.

Key relationship:

$$z^{m/n}Y_{m,n,r}(z) - X_{m,n,r}(z) = (z-1)^{2r+1}R_{m,n,r}(z).$$

• $X_{m,n,r}(z), Y_{m,n,r}(z) \in \mathbb{Q}[z].$

- denominators of coefficients of $X_{m,n,r}(z)$ grow like $c_1(n)c_2(n)^r$.
- $|X_{m,n,r}(z)| < c_3(n,r) |1 + \sqrt{z}|^{2r}$ for $|z| \le 1$.

•
$$|(z-1)^{2r+1}R_{m,n,r}(z)| \le c_4(n,r) |1-\sqrt{z}|^{2r}$$
,
for $|z| \le 1$, $|z-1| < 1$.

Folklore Lemma (à la Evertse [3])

Lemma

Let $\theta \in \mathbb{C}$ and \mathbb{K} an imaginary quadratic field. Suppose $k_0, \ell_0 > 0$ and E, Q > 1 such that for all non-negative integers r, there are algebraic integers p_r and q_r in \mathbb{K} with $|q_r| < k_0 Q^r$ and $|q_r \theta - p_r| \le \ell_0 E^{-r}$ satisfying $p_r q_{r+1} \ne p_{r+1} q_r$.

For any $p, q \in \mathcal{O}_{\mathbb{K}}$, let r_0 be the smallest positive integer such that $(Q - 1/E) \ell_0 |q| / (Q - 1) < cE^{r_0}$, where 0 < c < 1. (a) We have

$$|q heta-p|>rac{1-c/E}{k_0Q^{r_0+1}}.$$

(b) When $p/q \neq p_{r_0}/q_{r_0}$, we have

$$|q heta-p|>rac{1-c}{k_0Q^{r_0}}.$$

Usually $\left|\theta - \frac{p}{q}\right| > \frac{1}{c|q|^{\kappa+1}}$, where $c = 2k_0Q(2\ell_0E)^{\kappa}$ and $\kappa = \frac{\log Q}{\log E}$.

What does this have to do with squares in sequences?

•
$$n \ge 3$$
, $D < 0$, $A, B, m \in \mathbb{Q}\left(\sqrt{D}\right)$, an integer solution, (X, Y) , of
 $B\left(X + Y\sqrt{D}\right)^n - A\left(X - Y\sqrt{D}\right)^n = m$
 $\left(X + Y\sqrt{D}\right) / \left(X - Y\sqrt{D}\right)$: a good approximation to $(A/B)^{1/n}$.

• If we can associate our problem with an equation of form $B\left(X + Y\sqrt{D}\right)^n - A\left(X - Y\sqrt{D}\right)^n = m$ having A/B near 1, then we can use hypergeometric method.

• Recall:
$$x_k + y_k \sqrt{d} = \alpha \varepsilon^{2k}$$
 with $y_k = y^2$ and $N_\alpha < 0$.

• We have
$$x + y^2 \sqrt{d} = \alpha \epsilon^2$$
 ($\epsilon = \varepsilon^k$),
take norm and rearrange: $x^2 - N_\alpha N_\epsilon^2 = dy^4$.

Factoring goal: with
$$\widetilde{d}, \widetilde{y} \in \mathbb{Q}(\sqrt{N_{\alpha}})$$
,
 $x + N_{\epsilon}\sqrt{N_{\alpha}} = \widetilde{d} \times \widetilde{y}^{4} \text{ and } x - N_{\epsilon}\sqrt{N_{\alpha}} = \overline{\widetilde{d}} \times \overline{\widetilde{y}}^{4}$.
If so, then $\widetilde{d}\widetilde{y}^{4} - \overline{\widetilde{d}}\,\overline{\widetilde{y}}^{4} = 2N_{\epsilon}\sqrt{N_{\alpha}}$.

Representation Lemma

Lemma (Prop 3.1, ref. 7)

Let $a, b, d \in \mathbb{Z}$ with $a \neq 0$, b, d > 0 and d is not a square, put $\alpha = a + b^2 \sqrt{d}$. Suppose that N_{α} is not a square, $x \neq 0$ and y > 0 are rational integers with

$$\begin{aligned} x + y^2 \sqrt{d} &= \alpha \epsilon^2, \\ \text{where } \epsilon &= \left(t + u \sqrt{d}\right) / 2 \in \mathcal{O}_{\mathbb{Q}(\sqrt{d})} \text{ is a unit with norm } N_{\epsilon}. \\ \text{(a) We can write} \end{aligned}$$

$$\pm f^{2}\left(x + N_{\epsilon}\sqrt{N_{lpha}}
ight) = \left(a + \sqrt{N_{lpha}}
ight)\left(r + s\sqrt{\operatorname{sf}\left(N_{lpha}
ight)}
ight)^{4}$$
 and $fy = b\left(r^{2} - \operatorname{sf}\left(N_{lpha}
ight)s^{2}
ight)$,

for $f, r, s \in \mathbb{Z}$, $f \neq 0$, $f \mid (4b^2 \operatorname{sf}(|N_{\alpha}|))$, $f \leq 4b^2 \sqrt{\operatorname{sf}(|N_{\alpha}|)}$. (b) If $|N_{\alpha}|$ is a square, then $f \mid b^2$.

(c) If $|N_{\alpha}| = 2^{\ell} p^{m}$ where p is an odd prime, then we have $f|(4b^{2})$ when $N_{\alpha} \equiv 1 \mod 4$ and $f|(2b^{2})$ otherwise.

Proof: $(x + N_{\varepsilon}\sqrt{N_{\alpha}}) / (a + \sqrt{N_{\alpha}})$ is a square in $\mathbb{Q}(\sqrt{N_{\alpha}})$. Write multiple of square root as a square, work with valuations.

Lemma (Lemma 3.5, ref. 7)

Let the y_k 's be defined as above. Suppose that $N_\alpha < 0$. Let K be the largest negative integer such that $y_K > b^2 = y_0$. (a) For all k, $2y_k$ is a positive integer. (b) The sequences $(y_k)_{k\geq 0}$ and $(y_{K+1}, y_K, y_{K-1}, y_{K-2}, ...)$ are increasing sequences of positive numbers. (c) We have

$$y_{k} \geq \begin{cases} \left(\left| N_{\alpha} \right| u^{2} / \left(4b^{2} \right) \right) \left(2du^{2} / 5 \right)^{k-1} & \text{for } k > 0, \\ \left(\left| N_{\alpha} \right| u^{2} / \left(4b^{2} \right) \right) \left(2du^{2} / 5 \right)^{\max(0, K-k)} & \text{for } k < 0. \end{cases}$$

Proof: induction.

• For $k \geq 3$ or $k \leq K - 2$,

$$y_k \geq \frac{|N_\alpha| \, d^2 u^6}{25 b^2}.$$

Lemma (Lemma 3.3, ref. 11)

Let the y_k 's be defined as before with $N_{\alpha} < 0$. (a) Suppose that $-N_{\alpha}$ is a square. If y_i and y_j are distinct squares with $i, j \neq 0$ and $y_j > y_i \ge \max\left\{4\sqrt{|N_{\alpha}|/d}, b^2 |N_{\alpha}|/d\right\}$, then $y_j > 57.32 \left(\frac{d}{b^2 |N_{\alpha}|}\right)^2 y_i^3$.

(b) Suppose $-N_{\alpha}$ is not a square. If y_{k_1} , y_{k_2} and y_{k_3} are three distinct squares with none of k_1 , k_2 or k_3 between K + 1 and 0, inclusive, and

$$\begin{split} y_{k_3} > y_{k_2} > y_{k_1} &\geq \max\left\{ 4\sqrt{|N_{\alpha}|/d}, \left(16b^2 |N_{\alpha}|^2/d\right)^2/60 \right\},\\ then \ there \ exist \ distinct \ i,j \in \{k_1,k_2,k_3\} \ such \ that\\ y_j > 1.43 \frac{d}{b^2 |N_{\alpha}|^2} y_j^{5/2}. \end{split}$$

E.g., a = 140, b = 1, d = 48024901, t = 13860, u = 2, $N_{\alpha} = -3 \cdot 23 \cdot 41 \cdot 71 \cdot 239$, $y_{-1} = 9701^2$, $y_1 = 9899^2$.

- For b = 1 and $-N_{\alpha}$ square: assume two distinct squares, $y_{\ell} > y_k > 1$, satisfying $k, \ell \neq 0$.
- apply gap principle once.
- For any b and any $N_{\alpha} < 0$: assume five distinct squares, $y_{k_5} > y_{k_4} > y_{k_3} > y_{k_2} > y_{k_1}$ satisfying $k_1 \ge 3$ or $k_1 \le K - 2$.
- allows us to apply gap principle twice: m_1 , m_2 and m_3 .

•
$$\omega_{m_1} = (x_{m_1} + N_{\varepsilon^{m_1}}\sqrt{N_{\alpha}}) / (x_{m_1} - N_{\varepsilon^{m_1}}\sqrt{N_{\alpha}}) \text{ and } \zeta_4 \text{ satisfies}$$

 $\left| \omega_{m_1}^{1/4} - \zeta_4 \frac{x - y\sqrt{\operatorname{sf}(N_{\alpha})}}{x + y\sqrt{\operatorname{sf}(N_{\alpha})}} \right| = \min_{0 \le j \le 3} \left| \omega_{m_1}^{1/4} - e^{2j\pi i/4} \frac{x - y\sqrt{\operatorname{sf}(N_{\alpha})}}{x + y\sqrt{\operatorname{sf}(N_{\alpha})}} \right|$
where
 $q = x + y\sqrt{\operatorname{sf}(N_{\alpha})} = (r_{m_1} - s_{m_1}\sqrt{\operatorname{sf}(N_{\alpha})}) (r_{m_3} + s_{m_3}\sqrt{\operatorname{sf}(N_{\alpha})})$
with r_{m_1} , s_{m_1} and r_{m_3} , s_{m_3} as in the Representation Lemma.

• Put $p = \overline{q}$ and apply "bucketing" from Folklore Lemma.

Step 1: $r_0 = 1$ and $\zeta_4 p/q \neq p_{r_0}/q_{r_0}$

Folklore Lemma with $|q| = \sqrt{f_{m_1}f_{m_3}} \left(y_{m_1}y_{m_3}
ight)^{1/4}/b$ and c=0.75,

$$\frac{0.99b}{k_0 Q^{r_0} \sqrt{f_{m_1} f_{m_3}} \left(y_{m_1} y_{m_3}\right)^{1/4}} < 3.96 \left| \omega_{m_1}^{1/4} - \zeta_4 \frac{x - y \sqrt{\mathsf{sf}\left(N_\alpha\right)}}{x + y \sqrt{\mathsf{sf}\left(N_\alpha\right)}} \right| < \frac{2\sqrt{|N_\alpha|}}{\sqrt{d} y_{m_3}}$$

Since $|q_{r_0}| < k_0 Q^{r_0}$ with $Q < 10.74 \sqrt{d} y_{m_1}$ and $k_0 < 0.89$,

$$\left(\frac{3.24N_{\alpha}t_{m_1}t_{m_3}}{b^2}\right)^2 10.74^{4r_0}d^{2r_0-2}y_{m_1}^{4r_0+1} > y_{m_3}^3.$$

For $r_0 = 1$, with $f_{m_1} f_{m_3} \le 16 b^4 |N_{\alpha}|$, $y_{m_3} < 331 N_{\alpha}^{4/3} b^{4/3} y_{m_1}^{5/3}$.

Applying the Gap Principle Lemma (b) twice, we have

$$y_{m_3} > \left(\frac{1.43d}{b^2 |N_{\alpha}|^2}\right) y_{m_2}^{5/2} > \left(\frac{1.43d}{b^2 |N_{\alpha}|^2}\right)^{7/2} y_{m_1}^{25/4}.$$

Not possible if

$$y_{m_1} > \frac{2.7b^{20/11} |N_{\alpha}|^{20/11}}{d^{42/55}}.$$

Step 1 (cont.): $r_0 = 1$ and $\zeta_4 p/q \neq p_{r_0}/q_{r_0}$

Suppose

$$y_{m_1} < \frac{2.7b^{20/11} |N_{\alpha}|^{20/11}}{d^{42/55}}.$$

• Since $m_1 \geq 3$ or $m_1 \leq K-2$, from our lower bound lemma,

$$y_{m_1}\geq \frac{|N_{\alpha}|\,d^2u^6}{25b^2}.$$

These bounds contradict each other when

$$d > \frac{4.6 \left| N_{\alpha} \right|^{45/152} b^{105/76}}{u^{165/76}}.$$

• Hence $r_0 = 1$ and $\zeta_4 p/q \neq p_1/q_1$ is not possible for such d or y_{m_1} under our assumptions.

Step 2: $r_0 = 1$ and $\zeta_4 p/q = p_{r_0}/q_{r_0}$

• For any $r_0 \ge 1$, using hypergeometric functions directly,

$$\left|\omega_{m_{1}}^{1/4} - \zeta_{4} \frac{x - y\sqrt{\mathsf{sf}(N_{\alpha})}}{x + y\sqrt{\mathsf{sf}(N_{\alpha})}}\right| > \frac{0.291}{4^{r_{0}} \cdot r_{0}^{1/2}} \left(\frac{|N_{\alpha}|}{d}\right)^{r_{0}+1/2} \left(\frac{1}{y_{m_{1}}}\right)^{2r_{0}+1}$$

- This and upper bound yield $1.73r_0^{1/2} \left(4\frac{d}{|N_{\alpha}|}\right)^{\prime_0} y_{m_1}^{2r_0+1} > y_{m_3}.$
- For $r_0 = 1$ and applying the gap principle twice, we obtain

$$6.92 \frac{d}{|N_{\alpha}|} y_{m_{1}}^{3} > y_{m_{3}} > \left(\frac{1.43d}{b^{2} |N_{\alpha}|^{2}}\right) y_{m_{2}}^{5/2} > \left(\frac{1.43d}{b^{2} |N_{\alpha}|^{2}}\right)^{7/2} y_{m_{1}}^{25/4}.$$

- Not possible if $y_{m_1} > \frac{1.24 |N_{\alpha}|^{24/13} b^{28/13}}{d^{10/13}}.$
- Applying lower bound lemma to y_{m1}, this is not possible if

$$d > \frac{3.45 \, |N_{\alpha}|^{11/36} \, b^{3/2}}{u^{13/6}}$$

Step 3: $r_0 > 1$ and $\zeta_4 p/q \neq p_{r_0}/q_{r_0}$

• Gap principle not good enough. Use def'n of r_0 in Folklore Lemma:

$$\sqrt{f_{m_1}f_{m_3}} \left(y_{m_1}y_{m_3}\right)^{1/4}/b = |q| > 0.86cE^{r_0-1}/\ell_0.$$

• With $E>0.366\sqrt{d}\;y_{m_1}/\left|N_{lpha}
ight|$ and $\ell_0<0.46\sqrt{\left|N_{lpha}
ight|}/\left|x_{m_1}
ight|$, implies

$$y_{m_{3}} > \left(3.7\sqrt{\frac{|N_{\alpha}|}{f_{m_{1}}f_{m_{3}}}}\right)^{4} \left(\frac{0.366}{|N_{\alpha}|}\right)^{4r_{0}} d^{2r_{0}}y_{m_{1}}^{4r_{0}-1}$$

Recall from Step 1:

$$\left(\frac{3.24N_{\alpha}f_{m_{1}}f_{m_{3}}}{b^{2}}\right)^{2}10.74^{4r_{0}}d^{2r_{0}-2}y_{m_{1}}^{4r_{0}+1} > y_{m_{3}}^{3}.$$
• Yields
$$\frac{14.8 \cdot 67.1^{1/(2r_{0}-1)} |N_{\alpha}|^{3/2+5/(2(2r_{0}-1))} b^{7/(2r_{0}-1)}}{d^{1/2+1/(2r_{0}-1)}} > y_{m_{1}}.$$
Since $r_{0} \ge 2$, simplifies to
$$\frac{61b^{7/31} |N_{\alpha}|^{7/3}}{d^{1/2}} > y_{m_{1}}.$$
• Applying lower bound lemma to $y_{m_{1}}$ and $r_{0} \ge 2$, not possible if
$$d > \frac{15|N_{\alpha}|^{8/17} b^{20/17}}{u^{36/17}}.$$

Step 4: $r_0 > 1$ and $\zeta_4 p/q = p_{r_0}/q_{r_0}$

• From Step 3 (i.e., via definition of r₀ in Folklore Lemma):

$$y_{m_{3}} > \left(3.7\sqrt{\frac{|N_{\alpha}|}{f_{m_{1}}f_{m_{3}}}}\right)^{4} \left(\frac{0.366}{|N_{\alpha}|}\right)^{4r_{0}} d^{2r_{0}}y_{m_{1}}^{4r_{0}-1}$$

From Step 2:

$$1.73r_0^{1/2} \left(4\frac{d}{|N_{\alpha}|}\right)^{r_0} y_{m_1}^{2r_0+1} > y_{m_3}$$

Yields

$$16.33 \frac{b^{2/(r_0-1)} |N_{\alpha}|^{3/2+3/(2(r_0-1))} \cdot 422^{1/(2(r_0-1))}}{d^{1/2+1/(2(r_0-1))}} > y_{m_1}.$$

Since $r_0 \geq 2$, simplifies to $\frac{238b^2 |N_{\alpha}|^3}{d^{1/2}} > y_{m_1}$.

• Applying lower bound lemma to y_{m_1} and $r_0 \ge 2$, not possible if

$$d > \frac{15b^{4/3} |N_{\alpha}|^{2/3}}{u^2}.$$

Consolidation

- Get contradiction from assumption of 10 distinct squares (five y_k 's with $k \ge 3$ or $k \le K - 2$ and remaining y_{K-1} , y_K , y_0 , y_1 , y_2) and that y_{m_1} or d is sufficiently large.
- Gap principle lemma requires, $y_{m_1} \ge 4 |N_{\alpha}| / \sqrt{d}$ and $y_{m_1} \ge (64/15)b^4 |N_{\alpha}|^4 / d^2$.
- Combined with steps (1)–(4),

$$y_{m_{1}} \ge y_{k_{1}} > \max \left\{ \begin{array}{l} \frac{2.7b^{20/11} |N_{\alpha}|^{20/11}}{d^{42/55}}, \frac{1.3 |N_{\alpha}|^{24/13} b^{28/13}}{d^{10/13}}, \\ \frac{61b^{7/3} |N_{\alpha}|^{7/3}}{d^{1/2}}, \frac{238b^{2} |N_{\alpha}|^{3}}{d^{1/2}} \end{array} \right\}$$

Hence

$$y_{k_1} > \frac{16b^4 \left| N_\alpha \right|^4}{\sqrt{d}}$$

Similarly,

$$d \geq rac{15 \left| N_{lpha}
ight|^{3/4} b^{3/2}}{u^{3/2}},$$

• small b: computation. $N_{\alpha} < 0$ implies finitely many a for each d.

- Treatment of small squares among the y_k's.
 This would provide unconditional results like our conjectures.
- Better treatment of r₀ = 1 steps in our proof. Try to apply gap principle just once. Can the simple expressions for r₀ = 1 hypergeometric fcns help? This would yield improved results.
- Generalisation to sequences generated by ε with $|N_{\varepsilon}| \neq 1$. Possible since in Representation Lemma only depend on rad (N_{ε}) .
- What about sequences with $N_{\alpha} > 0$?

Closing

[1] S. Akhtari, The Diophantine equation $aX^4 - bY^2 = 1$, J. Reine Angew. Math. 630 (2009), 33–57.

[2] Y. Bugeaud, M. Mignotte, S. Siksek, Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers, Ann. Math. 163 (2006), 969–1018.

[3] J.-H. Evertse, On the Representation of Integers by Binary Cubic Forms of Positive Discriminant, Invent. Math. 73 (1983), 117–138.

[4] B. He, A. Togbé, P. G. Walsh, On the Diophantine equation $x^2 - (2^{2m} + 1) y^4 = -2^{2m}$, Publ. Math. Debrecen, 73 (2008), 417–420.

[5] M. Stoll, P. G. Walsh, P. Yuan, On the Diophantine equation $X^2 - (2^{2m} + 1)Y^4 = -2^{2m}$, Acta Arith. 139 (2009), 57–63.

[6] P. M. Voutier, Improved constants for effective irrationality measures from hypergeometric functions, Combinatorics and Number Theory 11 (2022), 161–180, https://doi.org/10.2140/moscow.2022.11.161.

[7] P. M. Voutier, Bounds on the number of squares in recurrence sequences,
 J. Number Theory 265 (2024), 291–343, https://arxiv.org/abs/2401.01293.

[8] P. M. Voutier, Sharp bounds on the number of squares in recurrence sequences and solutions of $X^2 - (a^2 + b) Y^4 = -b$, (accepted), https://arxiv.org/abs/1807.04116.

[9] P. M. Voutier, Bounds on the number of squares in recurrence sequences: $y_0 = b^2$ (I), (submitted), https://arxiv.org/abs/2502.14875.

[10] P. M. Voutier, Bounds on the number of squares in recurrence sequences: $y_0 = b^2$ (II).

[11] P. M. Voutier, Bounds on the number of squares in recurrence sequences: $y_0 = b^2$ (III), (submitted), https://arxiv.org/abs/2504.07040.

[12] G. Everest, A. van der Poorten, I. Shparlinski, and T. Ward, *Recurrence sequences*, volume 104 of *Mathematical Surveys and Monographs*, American Mathematical Society, Providence, RI, (2003).

Thank you to Professor Győry and his colleagues for the invitation. Thank you to all for attending.