Effective results on twisted Thue equations

Volker Ziegler

Paris Lodron Universität Salzburg

27th of January 2023
Online Number Theory Seminar

Thue equations

Effective
results on
twisted Thue equations

Ziegler

Let $F \in \mathbb{Z}[X, Y]$ be a homogeneous, irreducible polynomial of degree at least three and $m \in \mathbb{Z}$, with $m \neq 0$, then the Diophantine equation

$$
F(X, Y)=m
$$

is called a Thue equation.

Thue equations

Effective
results on
twisted Thue equations

Ziegler

Let $F \in \mathbb{Z}[X, Y]$ be a homogeneous, irreducible polynomial of degree at least three and $m \in \mathbb{Z}$, with $m \neq 0$, then the Diophantine equation

$$
F(X, Y)=m
$$

is called a Thue equation.
Alternatively, let $K=\mathbb{Q}(\alpha)$ be a number field with $[K: \mathbb{Q}] \geq 3$ and $m \in \mathbb{Z}$, with $m \neq 0$. Then we call the norm form equation

$$
N_{K / \mathbb{Q}}(X-\alpha Y)=m
$$

a Thue equation.

History

Effective
results on twisted Thue equations

Ziegler

A very view highlights in the theory of Thue equations:
■ Thue showed in 1918 that a Thue equation has only finitely many solutions.

History

Effective
results on twisted Thue equations

Ziegler

A very view highlights in the theory of Thue equations:
■ Thue showed in 1918 that a Thue equation has only finitely many solutions.
■ Baker proved in 1968 effective finiteness results for Thue equations.

History

Effective
results on
twisted Thue equations

Ziegler

A very view highlights in the theory of Thue equations:
■ Thue showed in 1918 that a Thue equation has only finitely many solutions.
■ Baker proved in 1968 effective finiteness results for Thue equations.

- Tzanakis and de Weger (1989) implemented practical algorithms to solve Thue equations.

History

Effective
results on twisted Thue equations

Ziegler

A very view highlights in the theory of Thue equations:
■ Thue showed in 1918 that a Thue equation has only finitely many solutions.
■ Baker proved in 1968 effective finiteness results for Thue equations.
■ Tzanakis and de Weger (1989) implemented practical algorithms to solve Thue equations.
■ Bugeaud and Győry (1996) gave explicit bounds for the solutions.

Parameterized Thue equations

Since we can solve single Thue equations, we want to solve families of Thue equations:

Parameterized Thue equations

Effective
results on twisted Thue equations

Ziegler

Since we can solve single Thue equations, we want to solve families of Thue equations:
Let $F \in \mathbb{Z}[X, Y ; t]$ be homogeneous in X and Y, irreducible and of degree at least three in X. Let $m \in \mathbb{Z}$ with $m \neq 0$. Then we want to find all solutions $(X, Y ; t) \in \mathbb{Z}^{3}$ to

$$
F(X, Y ; t)=m
$$

Parameterized Thue equations

Effective
results on twisted Thue equations

Ziegler

Since we can solve single Thue equations, we want to solve families of Thue equations:
Let $F \in \mathbb{Z}[X, Y ; t]$ be homogeneous in X and Y, irreducible and of degree at least three in X. Let $m \in \mathbb{Z}$ with $m \neq 0$. Then we want to find all solutions $(X, Y ; t) \in \mathbb{Z}^{3}$ to

$$
F(X, Y ; t)=m .
$$

E.g. Thomas proved in 1990 that no solution to

$$
X^{3}-(t-1) X^{2} Y-(t+2) X Y^{2}-Y^{3}= \pm 1
$$

with $|Y|>1$ exists, if t is large.

Parameterized Thue equations

Effective
results on twisted Thue equations

Ziegler

Since we can solve single Thue equations, we want to solve families of Thue equations:
Let $F \in \mathbb{Z}[X, Y ; t]$ be homogeneous in X and Y, irreducible and of degree at least three in X. Let $m \in \mathbb{Z}$ with $m \neq 0$. Then we want to find all solutions $(X, Y ; t) \in \mathbb{Z}^{3}$ to

$$
F(X, Y ; t)=m
$$

E.g. Thomas proved in 1990 that no solution to

$$
X^{3}-(t-1) X^{2} Y-(t+2) X Y^{2}-Y^{3}= \pm 1
$$

with $|Y|>1$ exists, if t is large.
In particular Mignotte (1993) showed that $|t| \geq 4$ is sufficiently large.

Exponentially parameterized Thue equations

Effective
results on twisted Thue equations

Ziegler

Let $\left(G_{n}^{(0)}\right), \ldots,\left(G_{n}^{(d)}\right)$ be linear recurrence sequences defined over the integers. Then we consider the family of Thue equations

$$
G_{n}^{(0)} X^{d}+G_{n}^{(1)} X^{d-1} Y+\cdots+G_{n}^{(d)} Y^{d}=m
$$

We want to find all solutions $(X, Y ; n) \in \mathbb{Z}^{2} \times \mathbb{N}$.

Exponentially parameterized Thue equations

Effective
results on
twisted Thue equations

Ziegler

Let $\left(G_{n}^{(0)}\right), \ldots,\left(G_{n}^{(d)}\right)$ be linear recurrence sequences defined over the integers. Then we consider the family of Thue equations

$$
G_{n}^{(0)} X^{d}+G_{n}^{(1)} X^{d-1} Y+\cdots+G_{n}^{(d)} Y^{d}=m
$$

We want to find all solutions $(X, Y ; n) \in \mathbb{Z}^{2} \times \mathbb{N}$.
E.g. Hilgart (2021) proved that if $\left(A_{n}\right)$ and $\left(B_{n}\right)$ satisfy some mild technical conditions, then the exponentially parameterized Thue equation

$$
\left(X-A_{n} Y\right)\left(X-B_{n} Y\right) X-Y^{3}= \pm 1
$$

has only solutions with $|Y| \leq 1$ provided that n is large.

Twisted Thue equations

Effective
results on twisted Thue equations

Ziegler

Another form of parameterized Thue equations is to twist them. Let $K=\mathbb{Q}(\alpha)$ and $t \geq 1$ an integer, then we call

$$
N_{K / \mathbb{Q}}\left(X-\alpha^{t} Y\right)=m
$$

a twisted Thue equation (in one parameter).

Twisted Thue equations

Effective
results on
twisted Thue equations

Ziegler

Another form of parameterized Thue equations is to twist them. Let $K=\mathbb{Q}(\alpha)$ and $t \geq 1$ an integer, then we call

$$
N_{K / \mathbb{Q}}\left(X-\alpha^{t} Y\right)=m
$$

a twisted Thue equation (in one parameter). More generally let K / \mathbb{Q} be a number field $\gamma_{1}, \ldots, \gamma_{s} \in \mathbb{Z}_{K}$. Then we call

$$
N_{K / \mathbb{Q}}\left(X-\gamma_{1}^{t_{1}} \cdots \gamma_{s}^{t_{s}} Y\right)=m
$$

a twisted Thue equation in s parameters.

Twisted Thue equations

Effective
results on
twisted Thue equations

Ziegler

Another form of parameterized Thue equations is to twist them. Let $K=\mathbb{Q}(\alpha)$ and $t \geq 1$ an integer, then we call

$$
N_{K / \mathbb{Q}}\left(X-\alpha^{t} Y\right)=m
$$

a twisted Thue equation (in one parameter).
More generally let K / \mathbb{Q} be a number field $\gamma_{1}, \ldots, \gamma_{s} \in \mathbb{Z}_{K}$. Then we call

$$
N_{K / \mathbb{Q}}\left(X-\gamma_{1}^{t_{1}} \cdots \gamma_{s}^{t_{s}} Y\right)=m
$$

a twisted Thue equation in s parameters.
For technical reasons we consider only those solutions $\left(X, Y ; t_{1}, \ldots, t_{s}\right)$ such that $K=\mathbb{Q}\left(\gamma_{1}^{t_{1}} \cdots \gamma_{s}^{t_{s}}\right)$.

Some further results on twisted Thue equations

Effective
results on twisted Thue equations

Ziegler

Twisted Thue equations have been studied mainly by Levesque and Waldschmidt.

Some further results on twisted Thue equations

Effective
results on twisted Thue equations

Ziegler

Twisted Thue equations have been studied mainly by Levesque and Waldschmidt.
They proved
■ Finiteness of solutions (2013). The result is not effective.

Some further results on twisted Thue equations

Effective
results on twisted Thue equations

Ziegler

Twisted Thue equations have been studied mainly by Levesque and Waldschmidt.
They proved
■ Finiteness of solutions (2013). The result is not effective.

■ Effective finiteness results for solutions in the case that the γ_{i} are units and under some size restrictions (2013).

Some further results on twisted Thue equations

Effective
results on twisted Thue equations

Ziegler

Twisted Thue equations have been studied mainly by Levesque and Waldschmidt.
They proved
■ Finiteness of solutions (2013). The result is not effective.

■ Effective finiteness results for solutions in the case that the γ_{i} are units and under some size restrictions (2013).
■ Effective finiteness results for solutions in the one parameter case (2017).

Main result

Effective
results on twisted Thue equations

Ziegler

Theorem (Hilgart, Z.)

Let K be a number field of degree $d \geq 3$ and $s \leq d-2$. Let $\gamma_{1}, \ldots, \gamma_{s} \in K^{*}$ be multiplicatively independent algebraic integers such that for each choice of $d-1$ embeddings $\tilde{\sigma}_{1}, \ldots, \tilde{\sigma}_{d-1} \in \operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C})$, we have

$$
\operatorname{rank}\left(\begin{array}{ccc}
\log \left|\frac{\tilde{\sigma}_{1}\left(\gamma_{1}\right)}{\tilde{\sigma}_{d-1}\left(\gamma_{1}\right)}\right| & \cdots & \log \left|\frac{\tilde{\sigma}_{1}\left(\gamma_{s}\right)}{\tilde{\sigma}_{d-1}\left(\gamma_{s}\right)}\right| \tag{*}\\
\vdots & \ddots & \vdots \\
\log \left|\frac{\tilde{\sigma}_{d-2}\left(\gamma_{1}\right)}{\tilde{\sigma}_{d-1}\left(\gamma_{1}\right)}\right| & \cdots & \log \left|\frac{\tilde{\sigma}_{d-2}\left(\gamma_{s}\right)}{\tilde{\sigma}_{d-1}\left(\gamma_{s}\right)}\right|
\end{array}\right)=s
$$

Then the Thue equation

$$
\begin{equation*}
\left|N_{K / \mathbb{Q}}\left(X-\gamma_{1}^{t_{1}} \cdots \gamma_{s}^{t_{s}} Y\right)\right|=1 \tag{1}
\end{equation*}
$$

has only finitely many integer solutions $\left(X, Y,\left(t_{1}, \ldots, t_{s}\right)\right) \in \mathbb{Z}^{2} \times \mathbb{N}^{s}$, where $X Y \neq 0$ and $\mathbb{Q}\left(\gamma_{1}^{t_{1}} \cdots \gamma_{s}^{t_{s}}\right)=K$.

Rank condition and Schanuel's conjecture

Effective
results on twisted Thue equations

Ziegler

Conjecture (Schanuel's conjecture)

Given any n complex numbers z_{1}, \ldots, z_{n} that are linearly independent over the rational numbers \mathbb{Q}, the field extension $\mathbb{Q}\left(z_{1}, \ldots, z_{n}, e^{z_{1}}, \ldots, e^{z_{n}}\right)$ has transcendence degree at least n over \mathbb{Q}.

If Schanuel's conjecture holds, then the multiplicative independence of $\gamma_{1}, \ldots, \gamma_{s} \in K^{*}$ implies the rank condition (*).

How to solve Thue equations - Part I

Effective
results on twisted Thue equations

Ziegler

Let $F(X, Y)=1$ be a Thue equation and assume that

$$
F(X, Y)=\left(X-\alpha_{1} Y\right) \cdots\left(X-\alpha_{d} Y\right)
$$

How to solve Thue equations - Part I

Effective
results on twisted Thue equations

Ziegler

Let $F(X, Y)=1$ be a Thue equation and assume that

$$
F(X, Y)=\left(X-\alpha_{1} Y\right) \cdots\left(X-\alpha_{d} Y\right)
$$

Let $(X, Y) \in \mathbb{Z}^{2}$ be a solution then set $\beta_{i}=X-\alpha_{i} Y$. Let us choose the index j such that $\left|\beta_{j}\right|$ is minimal then we have

$$
\left|\beta_{j}\right| \ll \frac{1}{|Y|^{d-1} \prod_{i \neq j}\left|\alpha_{j}-\alpha_{i}\right|}
$$

How to solve Thue equations - Part I

Effective
results on twisted Thue equations

Ziegler

Let $F(X, Y)=1$ be a Thue equation and assume that

$$
F(X, Y)=\left(X-\alpha_{1} Y\right) \cdots\left(X-\alpha_{d} Y\right)
$$

Let $(X, Y) \in \mathbb{Z}^{2}$ be a solution then set $\beta_{i}=X-\alpha_{i} Y$. Let us choose the index j such that $\left|\beta_{j}\right|$ is minimal then we have

$$
\left|\beta_{j}\right| \ll \frac{1}{|Y|^{d-1} \prod_{i \neq j}\left|\alpha_{j}-\alpha_{i}\right|}
$$

Siegel's identity for distinct indices k, l, j is

$$
\beta_{j}\left(\alpha_{k}-\alpha_{l}\right)+\beta_{k}\left(\alpha_{l}-\alpha_{j}\right)+\beta_{l}\left(\alpha_{j}-\alpha_{k}\right)=0 .
$$

How to solve Thue equations - Part I

Effective
results on twisted Thue equations

Ziegler

$$
\underbrace{\frac{\beta_{j}}{\beta_{k}} \cdot \frac{\alpha_{k}-\alpha_{l}}{\alpha_{j}-\alpha_{l}}}_{=: L}+\underbrace{\frac{\beta_{l}}{\beta_{k}} \cdot \frac{\alpha_{j}-\alpha_{k}}{\alpha_{j}-\alpha_{l}}}_{=: L^{\prime}}=1
$$

and get

$$
\log \left|L^{\prime}\right| \ll|Y|^{-d}
$$

Since β_{l} and β_{k} are units we can write them as a product of fundamental units $\eta_{1}, \ldots, \eta_{t}$ in the normal closure of $K=\mathbb{Q}\left(\alpha_{1}\right)$ and obtain an inequality of the form

$$
\left|b_{1} \log \right| \eta_{1}\left|+\cdots+b_{t} \log \right| \eta_{t}|+\log | \frac{\alpha_{j}-\alpha_{k}}{\alpha_{j}-\alpha_{l}}| | \ll|Y|^{-d}
$$

An application of Baker-type bounds we obtain

$$
\log \log |Y| \gg \log h\left(\beta_{j}\right) \gg \log \max \left\{\left|b_{i}\right|\right\} \gg \log |Y|,
$$

which yields a contradiction for large $|Y|$.

The theorem of Bugeaud and Gyóry

Effective
results on twisted Thue equations

Ziegler

Theorem (Bugeaud, Györy 1996)

Let $B \geq \max (|m|, e), f$ be an irreducible polynomial with root α and $K=\mathbb{Q}(\alpha)$. Let R be the regulator of K and r be the unit rank. Let H be an upper bound to the absolute values of the coefficients of f and $n=\operatorname{deg} f \geq 3$. Let $F(X, Y)=Y^{n} f\left(\frac{X}{Y}\right)$, then all solutions $(X, Y) \in \mathbb{Z}^{2}$ of the Thue equation $F(X, Y)=m$ satisfy

$$
\log \max (|X|,|Y|) \leq c \cdot R \cdot \max (\log R, 1)(R+\log (H B)),
$$

where $c=3^{r+27}(r+1)^{7 r+19} n^{2 n+6 r+14}$.

Some notations

Effective
results on twisted Thue equations

Ziegler

We want to solve

$$
N_{K / \mathbb{Q}}\left(X-\gamma_{1}^{t_{1}} \cdots \gamma_{s}^{t_{s}} Y\right)= \pm 1 .
$$

Some notations

Effective
results on twisted Thue equations

Ziegler

We want to solve

$$
N_{K / \mathbb{Q}}\left(X-\gamma_{1}^{t_{1}} \cdots \gamma_{s}^{t_{s}} Y\right)= \pm 1
$$

Let us write:

$$
t:=\max _{i \in\{1, \ldots, s\}}\left|t_{i}\right|
$$

Some notations

Effective
results on twisted Thue equations

Ziegler

We want to solve

$$
N_{K / \mathbb{Q}}\left(X-\gamma_{1}^{t_{1}} \cdots \gamma_{s}^{t_{s}} Y\right)= \pm 1 .
$$

Let us write:

$$
\begin{gathered}
t:=\max _{i \in\{1, \ldots, s\}}\left|t_{i}\right| \\
\beta_{i}:=\tilde{\sigma}_{i}\left(X-\gamma_{1}^{t_{1}} \cdots \gamma_{s}^{t_{s}} Y\right)
\end{gathered}
$$

Some notations

Effective
results on twisted Thue equations

Ziegler

We want to solve

$$
N_{K / \mathbb{Q}}\left(X-\gamma_{1}^{t_{1}} \cdots \gamma_{s}^{t_{s}} Y\right)= \pm 1
$$

Let us write:

$$
\begin{gathered}
t:=\max _{i \in\{1, \ldots, s\}}\left|t_{i}\right| \\
\beta_{i}:=\tilde{\sigma}_{i}\left(X-\gamma_{1}^{t_{1}} \cdots \gamma_{s}^{t_{s}} Y\right) \\
\sigma_{i}=\tilde{\sigma}_{i}\left(\gamma_{1}^{t_{1}} \cdots \gamma_{s}^{t_{s}}\right)
\end{gathered}
$$

Some notations

Effective
results on twisted Thue equations

Ziegler

We want to solve

$$
N_{K / \mathbb{Q}}\left(X-\gamma_{1}^{t_{1}} \cdots \gamma_{s}^{t_{s}} Y\right)= \pm 1
$$

Let us write:

$$
\begin{gathered}
t:=\max _{i \in\{1, \ldots, s\}}\left|t_{i}\right| \\
\beta_{i}:=\tilde{\sigma}_{i}\left(X-\gamma_{1}^{t_{1}} \cdots \gamma_{s}^{t_{s}} Y\right) \\
\sigma_{i}=\tilde{\sigma}_{i}\left(\gamma_{1}^{t_{1}} \cdots \gamma_{s}^{t_{s}}\right)
\end{gathered}
$$

After reshuffling the indices, we can further assume that $\left|\sigma_{1}\right| \geq \cdots \geq\left|\sigma_{d}\right|$.

A gap principal for S-units

Effective
results on twisted Thue equations

Ziegler

To avoid the first problem we use a gap-principal for S-units which was proved in similar forms by Tijdeman (1973) and Stewart (2018).

Lemma (HZ 2022)

Let K be a number field of degree $d \geq s$ and $\gamma_{1}, \ldots, \gamma_{s} \in K^{*}$ multiplicatively independent. Let $\gamma=\gamma\left(t_{1}, \ldots, t_{s}\right)=\gamma_{1}^{t_{1}} \cdots \gamma_{s}^{t_{s}}$ for non-zero integers t_{1}, \ldots, t_{s}. Then for any two conjugates $\gamma^{(1)}, \gamma^{(2)}$ of γ with $M=\left|\gamma^{(1)}\right|>\left|\gamma^{(2)}\right|=m$ there exists an effectively computable constant c independent of t_{1}, \ldots, t_{s} such that

$$
M-m>\frac{M}{h(M)^{c}} .
$$

Application of the gap principal

Effective
results on twisted Thue equations

Ziegler

We apply this lemma to the product in the inequality

$$
\left|\beta_{j}\right| \ll \frac{1}{|Y|^{d-1} \prod_{\substack{i \in\{1 \ldots, d\} \\ i \neq j}}\left|\sigma_{j}-\sigma_{i}\right|}
$$

Application of the gap principal

Effective
results on twisted Thue equations

Ziegler

We apply this lemma to the product in the inequality

$$
\left|\beta_{j}\right| \ll \frac{1}{|Y|^{d-1} \prod_{\substack{i \in\{1, \ldots, d\} \\ i \neq j}}\left|\sigma_{j}-\sigma_{i}\right|}
$$

and get (after some computations):

$$
L:=\frac{\beta_{j}}{\beta_{k}} \cdot \frac{\sigma_{k}-\sigma_{l}}{\sigma_{j}-\sigma_{l}} \ll \frac{\log \left|\sigma_{1}\right|^{(d-1) c}}{|Y|^{d}\left|\sigma_{1}\right|^{\frac{1}{d-1}}} \cdot \frac{\left|\sigma_{k}-\sigma_{l}\right|}{\left|\sigma_{j}-\sigma_{k}\right|\left|\sigma_{j}-\sigma_{l}\right|}
$$

Two cases

Effective
results on twisted Thue equations

Ziegler

We distinguish now between two cases:
Case 1 There exist at least two distinct indices $i \in\{1, \ldots, d\} \backslash\{j\}$ such that $|\log | \frac{\sigma_{i}}{\sigma_{j}}|\mid \geq \kappa \log t$, where κ is a (fixed but) sufficiently large constant independent of the solution $\left(X, Y,\left(t_{1}, \ldots, t_{s}\right)\right)$.

Two cases

Effective
results on
twisted Thue equations

Ziegler

We distinguish now between two cases:
Case 1 There exist at least two distinct indices $i \in\{1, \ldots, d\} \backslash\{j\}$ such that $|\log | \frac{\sigma_{i}}{\sigma_{j}}|\mid \geq \kappa \log t$, where κ is a (fixed but) sufficiently large constant independent of the solution $\left(X, Y,\left(t_{1}, \ldots, t_{s}\right)\right)$.
Case 2 For all but one index $i \in\{1, \ldots, d\} \backslash\{j\}$, we have $\log \left|\frac{\sigma_{i}}{\sigma_{j}}\right| \leq \kappa \log t$.

Case 1 - Siegel's identity

Effective

results on twisted Thue equations

We consider several different cases for j. E.g. let us assume that $j=1$ (all other cases can be treated similarly):

Case 1 - Siegel's identity

Effective
results on twisted Thue equations

Ziegler

We consider several different cases for j. E.g. let us assume that $j=1$ (all other cases can be treated similarly):
If we choose any k, I that fulfill the inequalities

$$
\begin{gathered}
\left.|\log | \frac{\sigma_{k}}{\sigma_{j}}|\mid \geq \kappa \log t \text { and }| \log \left|\frac{\sigma_{l}}{\sigma_{j}}\right| \right\rvert\, \geq \kappa \log t \text {. Then we have } \\
\left|\sigma_{k}-\sigma_{l}\right| \leq 2 \max \left(\left|\sigma_{k}\right|,\left|\sigma_{l}\right|\right) \ll\left|\sigma_{1}\right|,
\end{gathered}
$$

Case 1 - Siegel's identity

Effective
results on twisted Thue equations

Ziegler

We consider several different cases for j. E.g. let us assume that $j=1$ (all other cases can be treated similarly):
If we choose any k, I that fulfill the inequalities

$$
\begin{gathered}
\left.|\log | \frac{\sigma_{k}}{\sigma_{j}}|\mid \geq \kappa \log t \text { and }| \log \left|\frac{\sigma_{l}}{\sigma_{j}}\right| \right\rvert\, \geq \kappa \log t \text {. Then we have } \\
\left|\sigma_{k}-\sigma_{l}\right| \leq 2 \max \left(\left|\sigma_{k}\right|,\left|\sigma_{l}\right|\right) \ll\left|\sigma_{1}\right|,
\end{gathered}
$$

$$
\left|\sigma_{1}-\sigma_{k}\right|=\left|\sigma_{1}\right|\left|1-\frac{\sigma_{k}}{\sigma_{1}}\right| \gg\left|\sigma_{1}\right|
$$

Case 1 - Siegel's identity

Effective
results on twisted Thue equations

Ziegler

We consider several different cases for j. E.g. let us assume that $j=1$ (all other cases can be treated similarly):
If we choose any k, I that fulfill the inequalities

$$
\begin{gathered}
\left.|\log | \frac{\sigma_{k}}{\sigma_{j}}|\mid \geq \kappa \log t \text { and }| \log \left|\frac{\sigma_{l}}{\sigma_{j}}\right| \right\rvert\, \geq \kappa \log t \text {. Then we have } \\
\left|\sigma_{k}-\sigma_{l}\right| \leq 2 \max \left(\left|\sigma_{k}\right|,\left|\sigma_{l}\right|\right) \ll\left|\sigma_{1}\right|,
\end{gathered}
$$

$$
\left|\sigma_{1}-\sigma_{k}\right|=\left|\sigma_{1}\right|\left|1-\frac{\sigma_{k}}{\sigma_{1}}\right| \gg\left|\sigma_{1}\right|
$$

$$
\left|\sigma_{1}-\sigma_{l}\right|=\left|\sigma_{1}\right|\left|1-\frac{\sigma_{l}}{\sigma_{1}}\right| \gg\left|\sigma_{1}\right|
$$

Case 1 - Siegel's identity

Effective
results on twisted Thue equations

Ziegler

We consider several different cases for j. E.g. let us assume that $j=1$ (all other cases can be treated similarly): If we choose any k, $/$ that fulfill the inequalities

$$
\begin{gathered}
\left.|\log | \frac{\sigma_{k}}{\sigma_{j}}|\mid \geq \kappa \log t \text { and }| \log \left|\frac{\sigma_{l}}{\sigma_{j}}\right| \right\rvert\, \geq \kappa \log t \text {. Then we have } \\
\left|\sigma_{k}-\sigma_{l}\right| \leq 2 \max \left(\left|\sigma_{k}\right|,\left|\sigma_{l}\right|\right) \ll\left|\sigma_{1}\right|,
\end{gathered}
$$

$$
\left|\sigma_{1}-\sigma_{k}\right|=\left|\sigma_{1}\right|\left|1-\frac{\sigma_{k}}{\sigma_{1}}\right| \gg\left|\sigma_{1}\right|
$$

$$
\left|\sigma_{1}-\sigma_{l}\right|=\left|\sigma_{1}\right|\left|1-\frac{\sigma_{l}}{\sigma_{1}}\right| \gg\left|\sigma_{1}\right|
$$

This, yields for some positive, effectively computable constant c_{1}

$$
L \ll \frac{\log \left|\sigma_{1}\right|^{(d-1) c}}{|Y|^{d}\left|\sigma_{1}\right|^{1+\frac{1}{d-1}}} \ll e^{-c_{1} t}
$$

Case 1 - Construction of a linear form I

Effective
results on twisted Thue equations

Ziegler

We now return to Siegel's identity $L+L^{\prime}=1$ and get

$$
\left|\log L^{\prime}\right|=|\log | \frac{\beta_{I}}{\beta_{k}}|+\log | \frac{\sigma_{j}-\sigma_{k}}{\sigma_{j}-\sigma_{l}}| |=|\log | 1-L \| \ll e^{-c_{1} t} .
$$

Case 1 - Construction of a linear form I

Effective
results on twisted Thue equations

Ziegler

We now return to Siegel's identity $L+L^{\prime}=1$ and get

$$
\left|\log L^{\prime}\right|=|\log | \frac{\beta_{I}}{\beta_{k}}|+\log | \frac{\sigma_{j}-\sigma_{k}}{\sigma_{j}-\sigma_{l}}| |=|\log | 1-L \| \ll e^{-c_{1} t} .
$$

Let us write $\sigma_{A}=\max \left(\left|\sigma_{j}\right|,\left|\sigma_{k}\right|\right), \sigma_{a}=\min \left(\left|\sigma_{j}\right|,\left|\sigma_{k}\right|\right)$ and $\sigma_{B}=\max \left(\left|\sigma_{j}\right|,\left|\sigma_{l}\right|\right), \sigma_{b}=\min \left(\left|\sigma_{j}\right|,\left|\sigma_{l}\right|\right)$. Then

$$
\log \left|\frac{\sigma_{j}-\sigma_{k}}{\sigma_{j}-\sigma_{l}}\right|=\log \frac{\sigma_{A}}{\sigma_{B}}+\log \left|\frac{1-\sigma_{a} / \sigma_{A}}{1-\sigma_{b} / \sigma_{B}}\right| .
$$

Case 1 - Construction of a linear form I

Effective
results on twisted Thue equations

Ziegler

We now return to Siegel's identity $L+L^{\prime}=1$ and get

$$
\left|\log L^{\prime}\right|=|\log | \frac{\beta_{I}}{\beta_{k}}|+\log | \frac{\sigma_{j}-\sigma_{k}}{\sigma_{j}-\sigma_{l}}| |=|\log | 1-L \| \ll e^{-c_{1} t} .
$$

Let us write $\sigma_{A}=\max \left(\left|\sigma_{j}\right|,\left|\sigma_{k}\right|\right), \sigma_{a}=\min \left(\left|\sigma_{j}\right|,\left|\sigma_{k}\right|\right)$ and $\sigma_{B}=\max \left(\left|\sigma_{j}\right|,\left|\sigma_{l}\right|\right), \sigma_{b}=\min \left(\left|\sigma_{j}\right|,\left|\sigma_{l}\right|\right)$. Then

$$
\log \left|\frac{\sigma_{j}-\sigma_{k}}{\sigma_{j}-\sigma_{l}}\right|=\log \frac{\sigma_{A}}{\sigma_{B}}+\log \left|\frac{1-\sigma_{a} / \sigma_{A}}{1-\sigma_{b} / \sigma_{B}}\right| .
$$

Since k, / satisfy $\frac{\sigma_{a}}{\sigma_{A}}, \frac{\sigma_{b}}{\sigma_{B}} \leq t^{-\kappa}$ we get

$$
\log \left|\frac{1-\sigma_{a} / \sigma_{A}}{1-\sigma_{b} / \sigma_{B}}\right|=O\left(t^{-\kappa}\right)
$$

hence

$$
\Lambda=|\log | \frac{\beta_{I}}{\beta_{k}}\left|+\log \frac{\sigma_{A}}{\sigma_{B}}\right| \ll t^{-\kappa} .
$$

Case 1 - Construction of a linear form II

Effective results on twisted Thue equations

Ziegler

Assume for now that $\Lambda \neq 0, r$ the unit rank of K, then we have

$$
\beta_{k}=\left(\eta_{1}^{(k)}\right)^{b_{1}} \cdots\left(\eta_{r}^{(k)}\right)^{b_{r}}
$$

in terms of the fundamental units $\eta_{1}, \ldots, \eta_{r}$ (and similar for β_{l}).

Case 1 - Construction of a linear form II

Effective
results on twisted Thue equations

Ziegler

Assume for now that $\Lambda \neq 0, r$ the unit rank of K, then we have

$$
\beta_{k}=\left(\eta_{1}^{(k)}\right)^{b_{1}} \cdots\left(\eta_{r}^{(k)}\right)^{b_{r}}
$$

in terms of the fundamental units $\eta_{1}, \ldots, \eta_{r}$ (and similar for β_{l}). We can write $\sigma_{A}=\left(\gamma_{1}^{(A)}\right)^{t_{1}} \cdots\left(\gamma_{s}^{(A)}\right)^{t_{s}}$, same for σ_{B}. We can thus write

$$
\begin{aligned}
\Lambda & =\left|\sum_{i=1}^{r} b_{i}\left(\log \left|\eta_{i}^{(l)}\right|-\log \left|\eta_{i}^{(k)}\right|\right)+\sum_{i=1}^{s} t_{i}\left(\log \left|\gamma_{i}^{(A)}\right|-\log \left|\gamma_{i}^{(B)}\right|\right)\right| \\
& \ll t^{-\kappa} .
\end{aligned}
$$

Case 1 - a contradiction

Effective
results on twisted Thue equations

Note that by the theorem of Bugeaud and Györy we have $\log |X|, \log |Y| \ll t$.

Case 1 - a contradiction

Effective
results on twisted Thue equations

Ziegler

Note that by the theorem of Bugeaud and Győry we have $\log |X|, \log |Y| \ll t$.
Therefore we have

$$
\begin{aligned}
\left|\sum_{n=1}^{r} b_{n}\left(\log \left|\eta_{n}^{(i)}\right|\right)\right| & =|\log | \beta_{i}| | \\
& =\left|\log \left(X-\sigma_{i} Y\right)\right| \ll \log |Y|+\log \left|\sigma_{1}\right| \ll t
\end{aligned}
$$

Case 1 - a contradiction

Effective
results on twisted Thue equations

Ziegler

Note that by the theorem of Bugeaud and Győry we have $\log |X|, \log |Y| \ll t$.
Therefore we have

$$
\begin{aligned}
& \left|\sum_{n=1}^{r} b_{n}\left(\log \left|\eta_{n}^{(i)}\right|\right)\right|=|\log | \beta_{i}| | \\
& =\left|\log \left(X-\sigma_{i} Y\right)\right| \ll \log |Y|+\log \left|\sigma_{1}\right| \ll t .
\end{aligned}
$$

We get $\max \left\{\left|b_{i}\right|\right\} \ll t$. But applying lower bounds for linear forms in logarithms we obtain

$$
\kappa \log t \leq c_{2} \log t
$$

which yields a contradiction, if we choose κ large enough.

Case 2

Effective
results on twisted Thue equations

Ziegler

If Case 1 does not hold, then $\log \left|\sigma_{i} / \sigma_{j}\right| \ll \log t$ holds for all but one index, say $i=d-1$ after reordering. Also put $j=d$.

Case 2

Effective
results on twisted Thue equations

Ziegler

If Case 1 does not hold, then $\log \left|\sigma_{i} / \sigma_{j}\right| \ll \log t$ holds for all but one index, say $i=d-1$ after reordering. Also put $j=d$. If we rewrite $\log \left|\sigma_{i} / \sigma_{d}\right| \ll \log t$ for $i \in\{1, \ldots, d-2\}$, then

$$
\underbrace{\left(\begin{array}{ccc}
\log \left|\frac{\gamma_{1}^{(1)}}{\gamma_{1}^{(d)}}\right| & \cdots & \log \left|\frac{\gamma_{s}^{(1)}}{\gamma_{s}^{(d)}}\right| \\
\vdots & \ddots & \vdots \\
\log \left|\frac{\gamma_{1}^{(d-2)}}{\gamma_{1}^{(d)}}\right| & \cdots & \log \left|\frac{\gamma_{s}^{(d-2)}}{\gamma_{s}^{(d)}}\right|
\end{array}\right)}_{=\Gamma}\left(\begin{array}{c}
t_{1} \\
\vdots \\
t_{s}
\end{array}\right) \ll\left(\begin{array}{c}
\log t \\
\vdots \\
\log t
\end{array}\right)
$$

holds.

Case 2

Effective
results on
twisted Thue equations

Ziegler

If Case 1 does not hold, then $\log \left|\sigma_{i} / \sigma_{j}\right| \ll \log t$ holds for all but one index, say $i=d-1$ after reordering. Also put $j=d$. If we rewrite $\log \left|\sigma_{i} / \sigma_{d}\right| \ll \log t$ for $i \in\{1, \ldots, d-2\}$, then

$$
\underbrace{\left(\begin{array}{ccc}
\log \left|\frac{\gamma_{1}^{(1)}}{\gamma_{1}^{(d)}}\right| & \cdots & \log \left|\frac{\gamma_{s}^{(1)}}{\gamma_{s}^{(d)}}\right| \\
\vdots & \ddots & \vdots \\
\log \left|\frac{\gamma_{1}^{(d-2)}}{\gamma_{1}^{(d)}}\right| & \cdots & \log \left|\frac{\gamma_{s}^{(d-2)}}{\gamma_{s}^{(d)}}\right|
\end{array}\right)}_{=\Gamma}\left(\begin{array}{c}
t_{1} \\
\vdots \\
t_{s}
\end{array}\right) \ll\left(\begin{array}{c}
\log t \\
\vdots \\
\log t
\end{array}\right)
$$

holds.
This yields $t \ll \log t$, provided that Γ has full rank.

Outlook - A conjecture of Levesque and Waldschmidt I

Ziegler

Consider the family of simplest cubic fields $K_{n}=\mathbb{Q}\left(\alpha_{n}\right)$, where the minimal polynomial of $\alpha=\alpha_{n}$ is

$$
X^{3}-(n-1) X^{2}-(n+2) X-1
$$

It is well known that $\epsilon=\alpha$ and $\delta=-\frac{1}{\alpha+1}$ are multiplicative independent units. Levesque and Waldschmidt conjecture that the twisted Thue equation

$$
N_{K_{n} / \mathbb{Q}}\left(X-\epsilon^{s} \delta^{t} Y\right)= \pm 1
$$

has at most finitely many solutions (X, Y, n, s, t) with $\max \{|X|,|Y|\} \geq 2$ and $(s, t) \neq(0,0)$.

Outlook - A conjecture of Levesque and Waldschmidt II

Effective
results on twisted Thue equations

Ziegler

Let us write $\sigma_{s, t}=\epsilon^{s} \delta^{t}$. Then it seems that our method is applicable to the conjecture of Levesque and Waldschmidt as long as not all conjugates of $\sigma_{s, t}$ are close together.

Outlook - A conjecture of Levesque and Waldschmidt II

Effective
results on twisted Thue equations

Ziegler

Let us write $\sigma_{s, t}=\epsilon^{s} \delta^{t}$. Then it seems that our method is applicable to the conjecture of Levesque and Waldschmidt as long as not all conjugates of $\sigma_{s, t}$ are close together.
This occurs if $2 s \simeq t$ or $s \simeq 2 t$ or $-s \simeq t$.

Outlook - A conjecture of Levesque and Waldschmidt II

Effective
results on twisted Thue equations

Ziegler

Let us write $\sigma_{s, t}=\epsilon^{s} \delta^{t}$. Then it seems that our method is applicable to the conjecture of Levesque and Waldschmidt as long as not all conjugates of $\sigma_{s, t}$ are close together.
This occurs if $2 s \simeq t$ or $s \simeq 2 t$ or $-s \simeq t$.

Problem

Find all solutions (X, Y, n, T, S) with $\max \{|X|,|Y|\} \geq 2$ and $|S| \ll \log |T|$ to the parameterized, twisted Thue equations

$$
N_{K_{n} / \mathbb{Q}}\left(X-\left(\epsilon^{2} \delta\right)^{T} \epsilon^{S} Y\right)= \pm 1
$$

Outlook - A conjecture of Levesque and Waldschmidt II

Effective
results on twisted Thue equations

Ziegler

Let us write $\sigma_{s, t}=\epsilon^{s} \delta^{t}$. Then it seems that our method is applicable to the conjecture of Levesque and Waldschmidt as long as not all conjugates of $\sigma_{s, t}$ are close together.
This occurs if $2 s \simeq t$ or $s \simeq 2 t$ or $-s \simeq t$.

Problem

Find all solutions (X, Y, n, T, S) with $\max \{|X|,|Y|\} \geq 2$ and $|S| \ll \log |T|$ to the parameterized, twisted Thue equations

$$
N_{K_{n} / \mathbb{Q}}\left(X-\left(\epsilon^{2} \delta\right)^{T} \epsilon^{S} Y\right)= \pm 1
$$

$$
N_{K_{n} / \mathbb{Q}}\left(X-\left(\epsilon \delta^{2}\right)^{T} \epsilon^{S} Y\right)= \pm 1
$$

Outlook - A conjecture of Levesque and Waldschmidt II

Effective
results on twisted Thue equations

Ziegler

Let us write $\sigma_{s, t}=\epsilon^{s} \delta^{t}$. Then it seems that our method is applicable to the conjecture of Levesque and Waldschmidt as long as not all conjugates of $\sigma_{s, t}$ are close together.
This occurs if $2 s \simeq t$ or $s \simeq 2 t$ or $-s \simeq t$.

Problem

Find all solutions (X, Y, n, T, S) with $\max \{|X|,|Y|\} \geq 2$ and $|S| \ll \log |T|$ to the parameterized, twisted Thue equations

$$
N_{K_{n} / \mathbb{Q}}\left(X-\left(\epsilon^{2} \delta\right)^{T} \epsilon^{S} Y\right)= \pm 1
$$

$$
N_{K_{n} / \mathbb{Q}}\left(X-\left(\epsilon \delta^{2}\right)^{T} \epsilon^{S} Y\right)= \pm 1
$$

$$
N_{K_{n} / \mathbb{Q}}\left(X-\left(\epsilon \delta^{-1}\right)^{T} \epsilon^{S} Y\right)= \pm 1
$$

Thank you

Thank you for your attention!

