University of Debrecen
Algebra and Number Theory Seminar
On the Fekete polynomials of principal Dirichlet chonacters (joint with S. Chidabaram
J. Minac N.D. Tân)

1. Motivations
$x:(\mathbb{Z} \mid D)^{*} \rightarrow \mathbb{C}^{*}$ Dirichlet daracte

$$
\begin{aligned}
& x: \mathbb{Z} \rightarrow \mathbb{C}^{*} \\
& x(a)= \begin{cases}x(a \bmod D) \text { if } \operatorname{ged}(a, D)=1 \\
0 & \text { if } \operatorname{ged}(a, D)>1\end{cases} \\
& x(a b)=x(a) x(b) \\
& x(a)=x(b) \text { if } a \equiv b(D)
\end{aligned}
$$

The L-function of x

$$
L(x, s)=\sum_{n=1}^{\infty} \frac{x(n)}{n^{s}}
$$

- $L(x, s)$ converges absolutely $\mathcal{Y} R_{e}(s)>1$
- $L(x, s) \left\lvert\, \begin{aligned} & \text { meromorphic cont } t_{0} \mathbb{C}^{*} \\ & \text { holomorphic of } x \text { is not principal }\end{aligned}\right.$
- Special values of $L(x, s)$ contains important $s=0,-1,-2, \ldots$ info

Prop

$$
\Gamma(s) L(s, x)=\int_{0}^{1} \frac{(\sim \log (t))^{s-1}}{t} \frac{F_{x}(t)}{1-t^{D}} d t
$$

Gamier factor
When

$$
F_{x}(t)=\sum_{a=1}^{D} x(a) t^{a}
$$

- For example $s=1$

$$
\begin{aligned}
& L(1, x)=\int_{0}^{1} \frac{F_{x}(t)}{t\left(1-t^{D}\right)} d t \\
& x=x_{4} \\
& x_{4}(0)=\left\{\begin{array}{ccc}
0 & \text { if a even } \\
1 & \text { if } a \equiv 1(4) \\
\sim 1 & \text { if } a \equiv 3(4)
\end{array}\right. \\
& 0 \quad x_{0} \quad F_{x_{4}}(t)=t-t^{3} \\
& L\left(1, x_{4}\right)=\int_{0}^{1} \frac{t-t^{3}}{t\left(1-t^{4}\right)} d t=\int_{0}^{2} \frac{1}{1+t^{2}} d t \\
& L\left(n, x_{4}\right)=\ldots
\end{aligned}
$$

$$
\Gamma(s) L(x, s)=\int_{0}^{1} \frac{(\sim \log (t))^{d-1}}{t} \frac{f_{x}(t)^{d}}{1-t_{1}} d t
$$

- X is real. If $F_{x}(t)$ has no zeros an $(0,1)$

$$
\begin{aligned}
& L(x, s) \text { has no } \left\lvert\, \begin{array}{l}
\text { real zeros on }(0,1) \\
\text { Siegel zeros }
\end{array}\right. \\
& x=x_{p} \\
& \qquad x_{p}(a)=\left(\frac{a}{p}\right)=\left\{\begin{array}{lll}
0 & \text { if ila } \\
1 & \text { if a is a square } \\
-1 & \text { not }
\end{array}\right.
\end{aligned}
$$

Faker conjectinad that $F_{x_{p}}(t)$ has wo zeros on $(0,1)$

- George Poly found a counter example is 1919, $p=67$

4. - Distributions of zeres (Conry, Pronen, Graurille, Soundararajan)

- Mather reasuk, extrenal propaties. (Borwean Yazdawi)

Oun warks fouss on the arithnetic sick

$$
x=x_{p} \quad \text { (jount with Minw. Tan) }
$$

$\rightarrow x=x_{\Delta}$ quaduatice, Minace - Tän

\rightarrow ubbe, quatic (in progress)

$$
\mathbb{Z}\left[w_{s}\right] \quad \mathbb{Z}[i]
$$

$$
\left(\frac{a}{\pi}\right)_{3}
$$

Principal Dirichlet characters

$$
\begin{aligned}
& x_{n}(a)=\left\{\begin{array}{ccc}
1 & \text { of } & \operatorname{ged}(x, n)=1 \\
0 & \text { che }
\end{array}\right. \\
& x:(z / n)^{x} \rightarrow \mathbb{C}^{*} \\
& F_{n}(x)=F_{x_{n}}(x)=\sum_{\substack{a=1 \\
\operatorname{ged}(a, n)=1}}^{n} x^{a}
\end{aligned}
$$

Example $n=3$

$$
\begin{aligned}
& F_{3}(x)=x+x^{2}=x(1+x) \\
& n=5 \\
& F_{5}(x)=x+x^{2}+x^{3}+x^{4} \\
&=x\left(1+x+x^{2}+x^{3}\right) \\
&=x \frac{1-x^{4}}{1-x}
\end{aligned}
$$

n : prime

$$
x^{m}-1=\prod_{d / m} \Phi_{d}(x)=x \prod_{\substack{d / p-1 \\ d \neq 1}} \Phi_{d}(x)
$$

$n=15$

$$
\begin{aligned}
& F_{15}(x)=x \Phi_{2}(x) \Phi_{4}(x) \Phi_{8}(x) f_{15}(x) \\
& f_{15}(x)=x^{6}-x^{4}+x^{3}-x^{2}+1
\end{aligned}
$$

Numerically

$$
F_{n}(x)=\left(\begin{array}{ll}
\pi & \left.\Phi_{d}{ }^{r_{d}}\right)^{\swarrow} \cdot f_{n}(x) \\
\uparrow_{i n m e}
\end{array}\right.
$$ Information

\uparrow irreducible maximal Gators group
Question - What d can appear?

- What is rd?

Remark $\quad n_{0}=\operatorname{rend}(n)$

$$
\begin{aligned}
& \operatorname{gcd}(a, n)=1 \Leftrightarrow \operatorname{gcd}\left(a, n_{0}\right)=1 \\
& L\left(x_{n}, s\right)=L\left(x_{t_{0}}, s\right) \\
& \frac{F_{n}(x)}{1-x^{n}}=\frac{F_{n_{0}}(x)}{1-x^{n_{0}}} \\
& \left\{\begin{array}{c}
\text { non-cye of } \\
F_{n}
\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}
\text { non }- \text { g ge factor } \\
\text { of } F_{n_{0}}
\end{array}\right\}
\end{aligned}
$$

We can assume that $n=n_{0}$, i.e n is a squen-free member.
Prop let p k a prime number, $p+n$

$$
F_{n p}(x)=\frac{1-x^{n p}}{1-x^{n}} F_{n}(x)-F_{n}\left(x^{p}\right)
$$

Proc.

$$
\begin{aligned}
\frac{F_{n p}(x)}{1-x^{n p}} & =\sum_{g d(a, n p)=1} x^{a}=\sum_{\operatorname{gcd}((, n) n)=1} x^{a}-\sum_{g c d(a, n) x)} x^{4} \\
& =\frac{F_{n}(x)}{1-x^{n}}-\frac{F_{n}\left(x^{p}\right)}{1-x^{n p}}
\end{aligned}
$$

$$
F_{n p}(x)=\frac{1-x^{n p}}{1-x^{n}} F_{n}(x)-F_{n}\left(x^{p}\right)
$$

Cor If $d t n, \quad p \equiv 1(d)$
S_{d} : puination d-root

$$
\begin{aligned}
& \cdot \frac{1-\rho_{d}^{\prime p}}{1-\rho_{d}^{n}}=\frac{1-\rho_{d}^{n}}{1-\rho_{d}^{n}}=1 \\
& \cdot \rho_{d}=\rho_{d}^{p} \\
& \operatorname{Fup}_{\operatorname{up}}\left(\rho_{d}\right)=0
\end{aligned}
$$

So Φ_{d} is a factor of $F_{r p}(x)$

$$
\begin{aligned}
& F_{15}(x)=x \Phi_{2} \Phi_{4} \Phi_{8} f_{15} \\
& 15=3 \times S
\end{aligned}
$$

Inductively

$$
\frac{F_{n}(x)}{1-x^{n}}=\sum_{m \cdot \ln } \mu(m) \underbrace{\frac{x^{m}}{1-x^{m}}}
$$

Rimk - If dla, Ramamjansurs

$$
F_{n}\left(\rho_{d}\right)=\frac{\mu(d) \varphi(\omega)}{\varphi(d)} \neq 0
$$

If d/a than Φ_{d} is never a fuctor of F_{n}

- Assuma that $d+n$
pig odd prove

$$
\begin{aligned}
& F_{p q}(x)=\frac{x}{1-x}-\frac{x^{p}}{1-x^{p}}-\frac{x^{q}}{1-x^{q}}+\frac{x^{p q}}{1-x^{1 q}} \\
& \text { - } p \equiv 1(d), F_{p q}\left(\rho_{d}\right)=0 \\
& \text { Pd } 3 d^{p a}=1 \\
& \rho_{d}=\rho_{\alpha}^{1} \\
& s_{a}^{p} s_{a}^{q}=1 \\
& \rho_{d}^{q}=\rho_{d}^{p q}=\left(\rho_{d}^{q}\right)^{p} \quad \text { Wait } \\
& \text { If } a b=-1 \\
& \frac{a}{1-a}+\frac{b}{1-6}=-1 \\
& \text { d| pdq } \\
& \text { ل } \\
& \Phi_{\alpha} \text { is a factor } \\
& n=15=3 \times 5 \\
& 8|3+5, \quad 8| 3.5+1
\end{aligned}
$$

This Tat N / n
T be a partition of divisors of N ants pains $\left\{a_{i}, b_{i}\right\}$.
Let $D=\operatorname{ged}\left\{\mu\left(a_{i}\right) a_{i}+\mu\left(b_{i}\right) b_{i}\right\}$.
If $d I D$ and $d+n$ then Φ_{d} is a factor of F_{n}
Example

$$
\left.\begin{array}{l}
d \mid 1+p_{2} p_{3} \\
d \mid \\
d \mid p_{1} p_{3}-p_{2} \\
d \mid p_{1} p_{2}-p_{3} \\
d+n
\end{array}\right\} \quad \Phi_{d} \text { is a factor of } F_{n}
$$

Rink This does NoT catch all Φ_{d}. d and n have lots of common fader.

