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Definition of P(k)

Let k and l be positive integers with gcd(k , l) = 1. We denote by
p(k, l) the least prime p ≡ l (mod k).

We define P(k) for the maximal value of p(k, l), for all l .

A prime p is called a Recaman prime, if the first p primes form a
complete residue system (mod p).
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Upper bounds of P(k)

In 1934, Chowla proved that if the Generalized Riemann
Hypothesis holds, then P(k)� k2+ε, for every ε > 0.

Moreover, he made the following conjecture

Conjecture (Chowla, 1934)

P(k)� k1+ε, for every ε > 0.
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Lower bounds of P(k)

Definition
Let n ≥ 1 be an integer. The Jacobsthal function j(n) is defined as
the smallest integer such that any sequence of j(n) consecutive
integers contains an element which is coprime to n.

Theorem (Pomerance, 1980)

Suppose k ,m are integers, with 0 < m ≤ k/(1 + j(k)) and
gcd(m, k) = 1. Then

P(k) > (j(m)− 1)k .
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Lower bounds of P(k)

Theorem (Pomerance, 1980)

For all k, we have

P(k)� (eγ + o(1))ϕ(k) log k ,

where γ = 0.577... is the Euler’s constant.

In fact, he proved that

P(k) > (1− 4ε)eγϕ(k) log k,

with ε > 0 being arbitrary small and ϕ(k) is the usual Euler
ϕ-function or totient
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Pomerance’s closing remarks

Question (Racaman, 1978)

Show that there are only finitely many primes p for which the first
p primes form a complete residue system modulo p.

Pomerance generalized this question with

Question (Pomerance, 1980)

Show that there are only finitely many positive integers k such
that the first ϕ(k) primes which do not divide k form a complete
residue system modulo k.
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Definition of a P-integer

Definition
An integer k is a P-integer if the first ϕ(k) primes coprime to k
form a complete residue system modulo k .

With his above second theorem, Pomerance had proved the
finiteness of the set of P-integers. Moreover, he stated the
following conjecture.

Conjecture (Pomerance, 1980)

If k is a P-integer, then k ≤ 30.

One can easily check that the integers 2, 4, 6, 12, 18, 30 are
P -integers.
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Progress toward the proof of Pomerance’s conjecture

1. No prime is a P-integer except 2. [Hajdu-Saradha, 2011]

2. Let k = 2αk1 > 1 with k1 = 1 or `(k1) > 0.88 log k . Then k
is a P-integer if and only if k ∈ {2, 4, 6, 12, 18, 30}, where
`(k) denotes the least prime divisor of k with `(1) = 1.
[Saradha, 2011]

3. All odd primorials are not P-integers. [Saradha, 2011]
A primorial is a number of the form Nh = p1 · · · ph, i.e., the
product of the first h primes.

4. If k is a P-integer with k > 30, then 1011 < k < 103500.
[Hajdu-Saradha-Tijdeman, 2012]

5. Suppose Riemann Hypothesis holds, then the only P-integers
are k ≤ 30.
[Hajdu-Saradha-Tijdeman, 2012]
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Our main result

Theorem (Yang-T.)

If k is a P-integer, then k ∈ {2, 4, 6, 12, 18, 30}.



Definitions of π(x) and ω(k)

Definitions

1. Let x > 0 be a number, π(x) denotes the number of primes
not exceeding x .

2. Let k be an integer, ω(k) the number of distinct prime
divisors of k.
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Some important facts

1. From the main result of Hajdu-Saradha-Tijdeman (2012), we
suppose that k is a P-integer with 1011 < k < 103500.

2. Furthermore, due to results from due to Hajdu - Saradha, we
may also assume that neither k nor k

2 is prime.

3. Let T = ϕ(k) + ω(k), then there are exactly ϕ(k) primes
belonging to the set {p1, · · · , pT}, which are coprime to k
and form a reduced residue system modulo k. The remaining
ω(k) primes in this set divide k .
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Key Lemma

Lemma
If an integer k satisfies

L∑
j=0

(
2π

((
j +

1

2

)
k

)
− π(jk)− π ((j + 1)k)

)
− 1030 > 0,

then k is not a P-integer.



Definition of the Chebyshev function

Definition
The Chebyshev function θ(x) is defined by .

θ(x) =
∑
p≤x

log p.



First lemma

Lemma (Dusart, 2010)

For any x ∈ R, we have

π(x) >
x

log x
+

x

log2 x
+

2x

log3 x
, for x ≥ 88783,

and

π(x) <
x

log x
+

x

log2 x
+

2.334x

log3 x
, for x ≥ 2953652287.
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Second lemma

Lemma (Dusart, 2010)

For any x ∈ R, we have

|θ(x)− x | < ηi
x

logi x
, for x ≥ xi

with i = 2, η2 = 0.01, x2 = 7713133853 and
i = 3, η3 = 0.78, x3 = 158822621.
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Third lemma

Lemma (Hajdu-Saradha-Tijdeman, 2012)

If k is a P-integer, and let t be an integer such that
tk < pT < (t + 1)k, then

L < L0 := [log(k log k)], (1)

where

L =

{
t − 1, if pT ∈ (tk , (t + 1

2)k),

t, if pT ∈ ((k + 1
2)k , (t + 1)k).
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Definition of fj(k).

Let integer k > 1011. We put

fj(k) = (2j+1)k

log((j+ 1
2
)k)

(
1− ηi

logi ((j+ 1
2
)k)

)
− jk

log(jk)

(
1 + ηi

logi (jk)

)
− (j+1)k

log((j+1)k)

(
1 + ηi

logi ((j+1)k)

)
,



Definition of g(k).

and

g(k) =
k

log(12k)

(
1 +

1

log(12k)
+

2

log2(12k)

)
− k

log k

(
1 +

1

log k
+

2.334

log2 k

)
.



Fourth lemma

Lemma
Then, we have

L∑
j=0

(
2π

((
j +

1

2

)
k

)
− π(jk)− π ((j + 1)k)

)

> SL(k) := g(k) +
L∑

j=1

(
fj(k)− ηi k

logi+2((n + 1
2)k)

)
,

where ηi =

{
0.01, if i = 2,

0.78, if i = 3.



A sketch of the proof of the conjecture.

When 1011 < k ≤ 1035, we take i = 2 in Lemma 1. We have

SL(k) =
L∑

j=1

( (2j + 1)k

log((j + 1
2)k)

(
1− 0.01

log2((j + 1
2)k)

)

− jk

log(jk)

(
1 +

0.01

log2(jk)

)
− (j + 1)k

log((j + 1)k)

(
1 +

0.01

log2((j + 1)k)

)
− 0.01k

log4(jk)

)
+g(k).



If 1011 < k ≤ 1021, then by Lemma 3, we get

L ≤ L0 = blog(1021 log 1021)c = 52.

Let

u(k , j) = fj(k)− 0.01k

log4(jk)
.

We prove that u(k , j) ia a stricly decreasing function of j and then
that k is not a P-integer.
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Similarly, if 1021 < k ≤ 1028, we obtain L0 = 68 and
SL(k) ≥ S68(1021) > 3.483 · 1016.

If 1028 < k ≤ 1033, we get L0 = 80 and
SL(k) ≥ S80(1028) > 9.769 · 1021.

If 1033 < k ≤ 1035, one has L0 = 84 and
SL(k) ≥ S84(1033) > 1.697 · 1028.

Hence, when 1021 < k ≤ 1035, we deduce that k is not a P-integer.
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When 1035 < k < 103500, we take i = 3 in Lemma 4.

Put

v(k, j) = fj(k)− 0.78k

log5(jk)
.

We prove that v(k , j) is a strictly decreasing function and that

SL(k) ≥ SL0(k) > TL0 .

Finally, we wrote a simple program in Maple, break down the
interval 1035 < k < 103500 in 25 subintervals and computed TL0 .
We realized that the values of TL0 are very high and the conclusion
comes from Lemma 1.
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Table of the results (Part 1)

k ∈ (sr , sr+1] L0 TL0

(1035, 1038] 91 1.222 · 1030

(1038, 1042] 101 2.209 · 1032

(1042, 1047] 112 1.476 · 1036

(1047, 1053] 126 4.840 · 1040

(1053, 1059] 140 4.466 · 1047

(1059, 1067] 159 5.411 · 1052

(1067, 1076] 180 1.481 · 1061

(1076, 1088] 207 4.827 · 1068



Table of the results (Part 2)

k ∈ (sr , sr+1] L0 TL0

(1088, 10102] 240 3.850 · 1081

(10102, 10119] 279 4.659 · 1095

(10119, 10140] 328 2.617 · 10112

(10140, 10167] 390 3.487 · 10132

(10167, 10201] 468 6.112 · 10159

(10201, 10244] 568 3.339 · 10193

(10244, 10299] 695 2.941 · 10236

(10299, 10371] 861 1.557 · 10290



Table of the results (Part 3)

k ∈ (sr , sr+1] L0 TL0

(10371, 10463] 1073 3.362 · 10363

(10463, 10586] 1356 1.135 · 10455

(10586, 10750] 1734 8.016 · 10577

(10750, 10974] 2250 5.905 · 10740

(10974, 101280] 2955 8.022 · 10964

(101280, 101695] 3911 3.481 · 101271

(101695, 102280] 5258 1.043 · 101686

(102280, 103000] 6916 7.392 · 102271

(103000, 103500] 8068 1.709 · 102992



B-prime, B-integer (Balasubramanian)

Definitions

1. An integer k is called a B-prime if there exist k
consecutive primes forming a complete residue system
(mod k).

2. An integer k is called a B-integer, if there exist ϕ(k)
consecutive primes forming a reduced residue system
(mod k).

3. A prime k is a shifted Pα-prime if there exist k primes not
exceeding αk log k forming a complete residue system.

4. An integer k is called a shifted Pα-integer if there exist ϕ(k)
primes not exceeding αk log k forming a reduced residue
system (mod k).
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Some examples

Examples

1. The Recaman prime 2 is also a B-prime as 2, 3 are two
consecutive primes forming a complete residue system
(mod 2).

2. One can easily check that the P-integers 2, 4, 6, 12, 18, 30 are
also B-integers.



Some examples

Examples

1. The Recaman prime 2 is also a B-prime as 2, 3 are two
consecutive primes forming a complete residue system
(mod 2).

2. One can easily check that the P-integers 2, 4, 6, 12, 18, 30 are
also B-integers.



Lower bounds of P(k)

Theorem (Hajdu-Saradha, 2016)

Let k be a prime with the property that there exist k primes not
exceeding max(pπ(k)+k−1, 1.1954k log k) which form a complete
residue system. Then k ∈ {2, 3, 7, 11}.

In fact, they proved that

max(pπ(k)+k−1, 1.1954k log k) =

{
pπ(k)+k−1, if k < 6691068

1.1954k log k, otherwise.
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First consequence
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The only B-primes are given by 2, 3, 7.

In fact, they found the following consecutive primes forming a
complete residue system (mod 2), (mod 3), (mod 7)
respectively:

{2, 3}, {3, 5, 7}, {7, 11, 13, 17, 19, 23, 29}.
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Second consequence

Theorem (Hajdu-Saradha, 2016)

There is no shifted Pα-prime with α = 1.1954.

One can see that, as π(1.1954k log k) < k , then 2, 3, 7 are not
shifted Pα-primes with α = 1.1954. This is a consequence of
Pomerance second result.
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The B-integer conjecture

Conjecture (Hajdu-Saradha, 2016)

Every integer k ≥ 2 is a B-integer.



P?-integer

An integer k is a P-integer if the block p1, p2, . . . , pϕ(k)+ω(k) of the
first ϕ(k) + ω(k) primes, lying in the closed interval
[p1, pϕ(k)+ω(k)] has precisely one element in each reduced residue
class modulo k , with the exception of ω(k) primes (which lie in
distinct, non-invertible residue classes).

Remember that ϕ(k) denotes Euler’s totient function and ω(k) the
number of distinct prime divisors of k .
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P?-integer

Definition
Let α, β, γ, ι > 0 denote integers, and G = (G , ·) an arithmetical
semi-group with norm | · |, in the sense of Knopfmacher, which
takes only values in the positive integers. Consider for k ∈ G the
equivalence relation

a ∼ b :⇔ |a| = |b| mod |k |

on G and let M denote the primes in G with norm in the interval
[α, β]. Then, k ∈ G is a P(α, β, γ, ι)-integer or P?-integer if M
has in each equivalence class corresponding to an invertible residue
class modulo |k| at least γ elements, and the remaining ι primes
distribute in some arbitrary equivalence classes such that

|M| = γϕ(k) + ι.



Axiom A

G satisfies Axiom A with δ > 0, if for some 0 ≤ η < δ the counting
function

NG (x) := #{g ∈ G : |g | ≤ x}

has the expansion xδ + O(xη) as x →∞.



Finiteness of existence of P?-integers

Theorem (Elsholtz-Technau-Tichy, 2017)

Let K := |k|. Let G be as in the above definition and let G satisfy
Axiom A with some δ > 0. Assume that the numbers α = 1,
β � K loga K and ι� logb K are given for some fixed a, b > 0 in
the case 0 < δ ≤ 1 and in the case δ > 1 the value of β may
additionally differ from multiples of K by at most K 1−ε, for some
absolute constant ε > 0. Then, there are only finitely many such
P?-integers.



Remark
If G = N, one sees that the prime counting function is

πG (x) := #{p ∈ G : p prime, |p| ≤ x},

for x > 0.



Extension of Pomerance’s result

Theorem (Elsholtz-Technau-Tichy, 2017)

Let λ ∈ N ∪ {0} and d1, d2, d3 denote strictly positive real
numbers. There are only finitely many P(α, β, γ, ι)-integers in N
such that the growth restrictions

α = λk + O(k1−d1), ι = O(k1−d2), and β = O(k logd3) k)

are satisfied.



Thank you so much!!!
Merci beaucoup!!!
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