equences of matrices

Hyperbolic toral automorphism

Sequences of substitutions

Markov partitions

1/40

Seqences of Matrices and Substitutions

J. M. Thuswaldner (with P. Arnoux, V. Berthé, M. Minervino and W. Steiner)

Department of Mathematics and Statistics University of Leoben Austria

Debrecen, January 2025

< ロ > < (四 > < (回 >) < ((□ >)) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□

equences of matrices

Hyperbolic toral automorphism

Sequences of substitutions

Markov partitions

2/40

Classical continued fractions

• Continued fraction expansion of $x \in \mathbb{R}$

$$x = [a_0; a_1, a_2, a_3, \ldots] = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \cdots}}}.$$

Convergents

$$\frac{p_n}{q_n}=[a_0;a_1,a_2,a_3,\ldots,a_n].$$

Recurrence relations for the convergents

$$p_n = a_n p_{n-1} + p_{n-2}, \quad p_{-1} = 1, \quad p_{-2} = 0,$$

 $q_n = a_n q_{n-1} + q_{n-2}, \quad q_{-1} = 0, \quad q_{-2} = 1.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

equences of matrices

Hyperbolic toral automorphism

Sequences of substitutions

Markov partitions

2/40

Classical continued fractions

• Continued fraction expansion of $x \in \mathbb{R}$

$$x = [a_0; a_1, a_2, a_3, \ldots] = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \ddots}}}$$

Convergents

$$\frac{p_n}{q_n} = [a_0; a_1, a_2, a_3, \dots, a_n]$$

Recurrence relations for the convergents

$$p_n = a_n p_{n-1} + p_{n-2}, \quad p_{-1} = 1, \quad p_{-2} = 0, \\ q_n = a_n q_{n-1} + q_{n-2}, \quad q_{-1} = 0, \quad q_{-2} = 1.$$

◆□ > ◆□ > ◆臣 > ◆臣 > □ = − のへで

Hyperbolic toral automorphism

3/40

Sequences of matrices

• Let $[a_0; a_1, a_2, \ldots]$ be a continued fraction expansion with convergents

$$\frac{p_n}{q_n}=[a_0;a_1,a_2,a_3,\ldots,a_n].$$

• Then the recurrence relations for p_n and q_n imply

$$\begin{pmatrix} p_n & p_{n-1} \\ q_n & q_{n-1} \end{pmatrix} = \begin{pmatrix} a_0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_1 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} a_n & 1 \\ 1 & 0 \end{pmatrix} \qquad (n \ge 0)$$

 In this sense, the continued fraction algorithm produces a sequence of matrices.

Motivation	Sequences of matrices	Hyperbolic toral automorphism	Sequences of substitutions	Markov partitions
000000	0000000000	000000	000000000	00000

The Gauss map

For x ∈ (0, 1) the partial quotients a₁, a₂,... of this continued fraction algorithm can be produced by the Gauss map

$$G:(0,1)\mapsto [0,1),\ x\mapsto \frac{1}{x}-\Big\lfloor \frac{1}{x}\Big\rfloor.$$

Indeed, one can show that

Motivation	Sequences of matrices	Hyperbolic toral automorphism	Sequences of substitutions	Markov partitions
000000	0000000000	000000	000000000	00000

The Gauss map

For x ∈ (0, 1) the partial quotients a₁, a₂,... of this continued fraction algorithm can be produced by the Gauss map

$$G:(0,1)\mapsto [0,1),\ x\mapsto \frac{1}{x}-\Big\lfloor \frac{1}{x}\Big\rfloor.$$

Indeed, one can show that

Motivation

Sequences of substitutions

Markov partitions

Convergence of a continued fraction algorithm

 A continued fraction algorithm is considered to be "good" if the continued fraction expansion of x converges to x fastly in the sense that

$$\left|\frac{p_n}{q_n}-x\right| o 0 \qquad (n o \infty)$$

fastly.

- This is equivalent to the fact that the direction of the sequence of vectors (*p_n*, *q_n*) approaches the direction (*x*, 1) fastly.
- Looking at the matrices this is in turn equivalent to the fact that the Perron-Frobenius eigenvalue of

$$\begin{pmatrix} p_n & p_{n-1} \\ q_n & q_{n-1} \end{pmatrix} = \begin{pmatrix} a_0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_1 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} a_n & 1 \\ 1 & 0 \end{pmatrix}$$

converges fastly to (x, 1).

◆□ > ◆□ > ◆目 > ◆目 > ◆□ > ◆□ >

Motivation

Sequences of substitutions

Markov partitions

Convergence of a continued fraction algorithm

 A continued fraction algorithm is considered to be "good" if the continued fraction expansion of x converges to x fastly in the sense that

$$\left| rac{p_n}{q_n} - x
ight| o 0 \qquad (n o \infty)$$

fastly.

- This is equivalent to the fact that the direction of the sequence of vectors (*p_n*, *q_n*) approaches the direction (*x*, 1) fastly.
- Looking at the matrices this is in turn equivalent to the fact that the Perron-Frobenius eigenvalue of

$$\begin{pmatrix} p_n & p_{n-1} \\ q_n & q_{n-1} \end{pmatrix} = \begin{pmatrix} a_0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_1 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} a_n & 1 \\ 1 & 0 \end{pmatrix}$$

converges fastly to (x, 1).

Motivation

Sequences of substitutions

Markov partitions

Convergence of a continued fraction algorithm

 A continued fraction algorithm is considered to be "good" if the continued fraction expansion of x converges to x fastly in the sense that

$$\left| rac{p_n}{q_n} - x
ight| o 0 \qquad (n o \infty)$$

fastly.

- This is equivalent to the fact that the direction of the sequence of vectors (*p_n*, *q_n*) approaches the direction (*x*, 1) fastly.
- Looking at the matrices this is in turn equivalent to the fact that the Perron-Frobenius eigenvalue of

$$\begin{pmatrix} p_n & p_{n-1} \\ q_n & q_{n-1} \end{pmatrix} = \begin{pmatrix} a_0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_1 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} a_n & 1 \\ 1 & 0 \end{pmatrix}$$

converges fastly to (x, 1).

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Hyperbolic toral automorphism

Approximation of the golden ratio

Figure: The approximation of $x = \frac{1+\sqrt{5}}{2}$ by its convergent vectors

$$\bigcap_{n\in\mathbb{N}} \begin{pmatrix} p_n & p_{n-1} \\ q_n & q_{n-1} \end{pmatrix} \mathbb{R}^2_+ \longrightarrow \mathbb{R}_+ \begin{pmatrix} \frac{1+\sqrt{5}}{2} \\ 1 \end{pmatrix} \text{ fastly!}$$

equences of matrices

Hyperbolic toral automorphism

Sequences of substitutions

Markov partitions

An additive version of this algorithm

- There is a "slower" version of this algorithm.
- it is defined by the map

$$f(x) = \begin{cases} \frac{1-x}{x}, & \text{if } x > \frac{1}{2}, \\ \frac{x}{1-x}, & \text{if } x \le \frac{1}{2}. \end{cases}$$

It produces sequences of matrices taken from the set

$$\mathcal{M}_{\text{Additive}} = \left\{ \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \right\}$$

equences of matrices

Hyperbolic toral automorphism

Sequences of substitutions

Markov partitions

An additive version of this algorithm

- There is a "slower" version of this algorithm.
- it is defined by the map

$$f(x) = \begin{cases} \frac{1-x}{x}, & \text{if } x > \frac{1}{2}, \\ \frac{x}{1-x}, & \text{if } x \le \frac{1}{2}. \end{cases}$$

It produces sequences of matrices taken from the set

$$\mathcal{M}_{Additive} = \left\{ \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \right\}$$

Motivation

Sequences of substitutions

Markov partitions

Multidimensional continued fraction algorithms

- This can be generalized to multidimensional continued fraction algorithms
- Multidimensional continued fraction algorithms are used to approximate a vector (1, x₁,..., x_d) by convergents of the form

$$\left(1, \frac{p_{n1}}{q_n}, \ldots, \frac{p_{nd}}{q_n}\right) \sim (q_n, p_{n1}, \ldots, p_{nd}).$$

- Prominent examples are the algorithms of Brun, Selmer, Jacobi-Perron, and Arnoux-Rauzy.
- These algorithms also "produce" sequences of integer matrices (often with determinant ±1).
- We want to know under which circumstances they provide "good" approximations.
- To this end we study sequences of integer matrices.

Motivation

Sequences of substitutions

Markov partitions

Multidimensional continued fraction algorithms

- This can be generalized to multidimensional continued fraction algorithms
- Multidimensional continued fraction algorithms are used to approximate a vector (1, x₁,..., x_d) by convergents of the form

$$\left(1, \frac{p_{n1}}{q_n}, \ldots, \frac{p_{nd}}{q_n}\right) \sim (q_n, p_{n1}, \ldots, p_{nd}).$$

- Prominent examples are the algorithms of Brun, Selmer, Jacobi-Perron, and Arnoux-Rauzy.
- These algorithms also "produce" sequences of integer matrices (often with determinant ±1).
- We want to know under which circumstances they provide "good" approximations.
- To this end we study sequences of integer matrices.

Motivation	Sequences of matrices	Hyperbolic toral automorphism	Sequences of substitutions	Markov partitions
0000000	0000000000	000000	000000000	00000

Notations

Let

$$\operatorname{GL}(d,\mathbb{Z}) = \{ M \in \mathbb{Z}^{d \times d} : \det M = \pm 1 \}.$$

A matrix *M* ∈ Z^{d×d} with det *M* = ±1 is called unimodular.
Let

$$\mathcal{M} = \{ M \in \mathbb{N}^{d \times d} : \det M = \pm 1 \}.$$

- M = (M_n)_{n∈ℤ} is a sequence of nonnegative matrices in GL(d, ℤ).
- For products of consecutive matrices we put

 $M_{[m,n)} = M_m M_{m+1} \cdots M_{n-1}$ for $m, n \in \mathbb{Z}$ with $m \le n$,

where $M_{[m,m]}$ denotes the $d \times d$ identity matrix.

Motivation	Sequences of matrices	Hyperbolic toral automorphism	Sequences of substitutions	Markov partitions

Notations

Let

$$\operatorname{GL}(d,\mathbb{Z}) = \{ M \in \mathbb{Z}^{d \times d} : \det M = \pm 1 \}.$$

• A matrix $M \in \mathbb{Z}^{d \times d}$ with det $M = \pm 1$ is called unimodular.

Let

$$\mathcal{M} = \{ M \in \mathbb{N}^{d \times d} : \det M = \pm 1 \}.$$

- M = (M_n)_{n∈ℤ} is a sequence of nonnegative matrices in GL(d, ℤ).
- For products of consecutive matrices we put

 $M_{[m,n)} = M_m M_{m+1} \cdots M_{n-1}$ for $m, n \in \mathbb{Z}$ with $m \le n$,

・ロト・西ト・ヨト・ヨー うへで

where $M_{[m,m]}$ denotes the $d \times d$ identity matrix.

Motivation	Sequences of matrices	Hyperbolic toral automorphism	Sequences of substitutions	Markov partitions

Notations

Let

$$\operatorname{GL}(d,\mathbb{Z}) = \{ M \in \mathbb{Z}^{d \times d} : \det M = \pm 1 \}.$$

• A matrix $M \in \mathbb{Z}^{d \times d}$ with det $M = \pm 1$ is called unimodular.

Let

$$\mathcal{M} = \{ M \in \mathbb{N}^{d \times d} : \det M = \pm 1 \}.$$

- $\mathbf{M} = (M_n)_{n \in \mathbb{Z}}$ is a sequence of nonnegative matrices in $\mathrm{GL}(d, \mathbb{Z})$.
- For products of consecutive matrices we put

 $M_{[m,n)} = M_m M_{m+1} \cdots M_{n-1}$ for $m, n \in \mathbb{Z}$ with $m \le n$,

where $M_{[m,m]}$ denotes the $d \times d$ identity matrix.

Sequences of matrices

Hyperbolic toral automorphism

Sequences of substitutions

Markov partitions

Generalized eigenvectors

- Let $\mathbf{M} = (M_n)_{n \in \mathbb{Z}}$ be given.
- M is primitive (in the future) if for each *m* there is n > m such that M_{[m,n)} is a positive matrix
- **M** is recurrent if each block M_m, \ldots, M_{n-1} (m < n) occurs infinitely often.

Lemma (Furstenberg:1960)

If a sequence $\mathbf{M} = (M_n)_{n \in \mathbb{Z}}$ of nonnegative matrices in $\operatorname{GL}(d, \mathbb{Z})$ is primitive and recurrent, then there exists a positive vectors \mathbf{u} and \mathbf{v} such that

$$\bigcap_{n \in \mathbb{N}} M_{[0,n)} \mathbb{R}^d_+ = \mathbb{R}_+ \mathbf{u} \quad (\text{gen. right eigenvector}),$$
$$\bigcap_{n \in \mathbb{N}} {}^t M_{[-n,0]} \mathbb{R}^d_+ = \mathbb{R}_+ \mathbf{v} \quad (\text{gen. left eigenvector}).$$

Sequences of matrices

Hyperbolic toral automorphism

Sequences of substitutions

Markov partitions

10/40

Generalized eigenvectors

- Let $\mathbf{M} = (M_n)_{n \in \mathbb{Z}}$ be given.
- M is primitive (in the future) if for each *m* there is n > m such that M_{[m,n)} is a positive matrix
- **M** is recurrent if each block M_m, \ldots, M_{n-1} (m < n) occurs infinitely often.

Lemma (Furstenberg:1960)

If a sequence $\mathbf{M} = (M_n)_{n \in \mathbb{Z}}$ of nonnegative matrices in $\operatorname{GL}(d, \mathbb{Z})$ is primitive and recurrent, then there exists a positive vectors \mathbf{u} and \mathbf{v} such that

$$\bigcap_{n \in \mathbb{N}} M_{[0,n)} \mathbb{R}^{d}_{+} = \mathbb{R}_{+} \mathbf{u} \quad (\text{gen. right eigenvector}),$$
$$\bigcap_{n \in \mathbb{N}} {}^{t} M_{[-n,0)} \mathbb{R}^{d}_{+} = \mathbb{R}_{+} \mathbf{v} \quad (\text{gen. left eigenvector}).$$

Sequences of matrices

Hyperbolic toral automorphism

Sequences of substitutions

Markov partitions

1/40

Notions of convergence...

Definition (Weak, strong, and exponential convergence)

 Let M = (M_n)_{n∈ℤ} be a sequence of matrices in GL(d, ℤ) and let u ∈ ℝ^d \ {0}. M is weakly convergent to u if

$$\lim_{n \to +\infty} \mathrm{d}\left(\frac{M_{[0,n)}\mathbf{e}_i}{\|M_{[0,n)}\mathbf{e}_i\|}, \frac{\mathbf{u}}{\|\mathbf{u}\|}\right) = 0 \quad \text{for all } i \in \{1, \dots, d\}$$

• M is strongly convergent to u if

$$\lim_{n \to +\infty} \mathrm{d}(M_{[0,n)} \mathbf{e}_i, \mathbb{R} \mathbf{u}) = 0 \quad \text{for all } i \in \{1, \dots, d\}.$$

 M is exponentially convergent to u if there exist C, α > 0 such that

 $d(M_{[0,n)}\mathbf{e}_i, \mathbb{R}\mathbf{u}) \leq C e^{-\alpha n}$ for all $n \in \mathbb{N}, i \in \{1, \dots, d\}$.

Sequences of matrices

Hyperbolic toral automorphism

Sequences of substitutions

Markov partitions

12/40

... illustrated by a picture

Figure: Weak vs. strong convergence

- Weak convergence takes place on the unit circle.
- Weak convergence means that there is a generalized right eigenvector **u**.
- Strong convergence takes place at the points $M_{[0,n)}\mathbf{e}_i$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

The Pisot condition

For a matrix $M \in GL(d, \mathbb{Z})$, $d \ge 2$, the singular values $\delta_1(M), \ldots, \delta_d(M)$ are the eigenvalues of the matrix $({}^tMM)^{1/2}$ assume that $\delta_1(M) \ge \delta_2(M) \ge \cdots \ge \delta_d(M)$.

Definition (Local Pisot condition

We say that a sequence $\mathbf{M} = (M_n)_{n \in \mathbb{Z}}$ of nonnegative matrices in $GL(d, \mathbb{Z})$ satisfies the local Pisot condition if

$$\limsup_{n\to\infty}\frac{1}{n}\log\delta_2(M_{[0,n]})<0.$$

 [3/40

Markov partitions

13/40

The Pisot condition

For a matrix $M \in GL(d, \mathbb{Z})$, $d \ge 2$, the singular values $\delta_1(M), \ldots, \delta_d(M)$ are the eigenvalues of the matrix $({}^tMM)^{1/2}$ assume that $\delta_1(M) \ge \delta_2(M) \ge \cdots \ge \delta_d(M)$.

Definition (Local Pisot condition)

We say that a sequence $\mathbf{M} = (M_n)_{n \in \mathbb{Z}}$ of nonnegative matrices in $GL(d, \mathbb{Z})$ satisfies the local Pisot condition if

$$\limsup_{n\to\infty}\frac{1}{n}\log\delta_2(M_{[0,n]})<0.$$

Sequences of substitutions

Markov partitions

14/40

Algebraic irreducibility and its consequence

Definition (Algebraic irreducibility)

A sequence $\mathbf{M} = (M_n)_{n \in \mathbb{Z}} \in \mathcal{M}_d^{\mathbb{Z}}$ is called algebraically irreducible if for each $m \in \mathbb{Z}$, there is $n_0 \in \mathbb{N}$ such that the characteristic polynomial of $M_{[m,n]}$ is irreducible for each $n \ge n_0$.

Proposition

If a primitive sequence $\mathbf{M} = (M_n)_{n \in \mathbb{Z}} \in \mathcal{M}_d^{\mathbb{Z}}$ satisfies the local Pisot condition and the growth condition $\lim_{n\to\infty} \frac{1}{n} \log \|M_n\| = 0$, then **M** is algebraically irreducible and the coordinates of any generalized right eigenvector **u** are rationally independent.

Sequences of matrices

Hyperbolic toral automorphism

Sequences of substitutions

Markov partitions

15/40

A criterion for exponential convergence

Theorem

- The proof is hard and uses a local version of the Oseledets theorem (Ruelle, 1979, Arnold, 1998).
- The local Pisot condition (and primitivity) can be checked for classes of examples.
- This theorem also has a metric counterpart.

Sequences of matrices

Hyperbolic toral automorphism

Sequences of substitutions

Markov partitions

15/40

A criterion for exponential convergence

Theorem

- The proof is hard and uses a local version of the Oseledets theorem (Ruelle, 1979, Arnold, 1998).
- The local Pisot condition (and primitivity) can be checked for classes of examples.
- This theorem also has a metric counterpart.

Sequences of matrices

Hyperbolic toral automorphism

Sequences of substitutions

Markov partitions

15/40

A criterion for exponential convergence

Theorem

- The proof is hard and uses a local version of the Oseledets theorem (Ruelle, 1979, Arnold, 1998).
- The local Pisot condition (and primitivity) can be checked for classes of examples.
- This theorem also has a metric counterpart.

Sequences of matrices

Hyperbolic toral automorphism

Sequences of substitutions

Markov partitions

15/40

A criterion for exponential convergence

Theorem

- The proof is hard and uses a local version of the Oseledets theorem (Ruelle, 1979, Arnold, 1998).
- The local Pisot condition (and primitivity) can be checked for classes of examples.
- This theorem also has a metric counterpart.

Hyperbolic toral automorphism

Sequences of substitutions

Markov partitions

An example: The Arnoux-Rauzy algorithm, I

The Arnoux-Rauzy algorithm (1991) is defined by

$$[\mathbf{1}:\alpha:\beta]\mapsto \operatorname{sort}[\mathbf{1}-\alpha-\beta:\alpha:\beta] \qquad (\mathbf{1}>\alpha>\beta>\mathbf{0})$$

on the set $\{ [1 : \alpha : \beta] \in \mathbb{P}^2 : (\alpha, \beta) \in \Delta \}.$

The Rauzy Gasket Δ (taken from Arnoux and Starosta 2013)

◆ロト ◆母 ト ◆ 臣 ト ◆ 臣 ト ● のへで

Hyperbolic toral automorphism

Sequences of substitutions

Markov partitions

An example: The Arnoux-Rauzy algorithm, I

The Arnoux-Rauzy algorithm (1991) is defined by

$$[\mathbf{1}:\alpha:\beta]\mapsto \operatorname{sort}[\mathbf{1}-\alpha-\beta:\alpha:\beta] \qquad (\mathbf{1}>\alpha>\beta>\mathbf{0})$$

on the set $\{ [1 : \alpha : \beta] \in \mathbb{P}^2 : (\alpha, \beta) \in \Delta \}.$

The Rauzy Gasket Δ (taken from Arnoux and Starosta 2013)

◆ロ → ◆母 → ◆臣 → ◆臣 → ○ ● ● のへで

Hyperbolic toral automorphism

Sequences of substitutions

Markov partitions

17/40

An example: The Arnoux-Rauzy algorithm, II

 The Arnoux-Rauzy algorithm produces sequences of matrices taken from the set

$$\mathcal{M}_{AR} = \left\{ \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \right\}.$$

• Choose $\mathbf{M} = (M_n)_{n \in \mathbb{Z}} \in \mathcal{M}_{AR}^{\mathbb{Z}}$ with

$$\{M_n,\ldots,M_{n+h-1}\}=\mathcal{M}_{AR}$$

for some $h \in \mathbb{N}$ and all $n \in \mathbb{Z}$: Strong partial quotients bounded by h.

• This is a natural generalization of the additive continued fraction algorithm.

Hyperbolic toral automorphism

Sequences of substitutions

Markov partitions

17/40

An example: The Arnoux-Rauzy algorithm, II

 The Arnoux-Rauzy algorithm produces sequences of matrices taken from the set

$$\mathcal{M}_{AR} = \left\{ \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \right\}.$$

• Choose
$$\mathbf{M} = (M_n)_{n \in \mathbb{Z}} \in \mathcal{M}_{\mathrm{AR}}^{\mathbb{Z}}$$
 with

$$\{M_n,\ldots,M_{n+h-1}\}=\mathcal{M}_{AR}$$

for some $h \in \mathbb{N}$ and all $n \in \mathbb{Z}$: Strong partial quotients bounded by h.

• This is a natural generalization of the additive continued fraction algorithm.

Hyperbolic toral automorphism

Sequences of substitutions

Markov partitions

18/40

An example: The Arnoux-Rauzy algorithm, III

Delecroix, Hejda, and Steiner (2013): There exists a constant C > 0, such that for each n ∈ N, there exists a hyperplane w(n)[⊥] such that

$$\|\mathbf{M}_{[0,n)}|_{\mathbf{w}(n)^{\perp}}\| \leq C \left(\frac{2^{h}-3}{2^{h}-1}\right)^{n/h}$$

Hence the hyperplane w(n)[⊥] is contracted by M_{[0,n)} in an exponential way, *i.e.*,

$$\limsup_{n\to\infty}\frac{1}{n}\log\|{}^t\!M_{[0,n)}|_{\mathbf{w}(n)^{\perp}}\|<0.$$

- Thus by the definition of singular values we have $\limsup_{n \to \infty} \frac{1}{n} \log \delta_2(M_{[0,n]}) \leq \limsup_{n \to \infty} \frac{1}{n} \log \|{}^t M_{[0,n]}|_{\mathbf{w}(n)^{\perp}}\| < 0.$
- Thus the Pisot condition holds. (, , , , , , , , , ,) = oac

Hyperbolic toral automorphism

Sequences of substitutions

Markov partitions

18/40

An example: The Arnoux-Rauzy algorithm, III

Delecroix, Hejda, and Steiner (2013): There exists a constant C > 0, such that for each n ∈ N, there exists a hyperplane w(n)[⊥] such that

$$\|\mathbf{M}_{[0,n)}|_{\mathbf{w}(n)^{\perp}}\| \leq C \left(\frac{2^{h}-3}{2^{h}-1}\right)^{n/h}$$

Hence the hyperplane w(n)[⊥] is contracted by M_{[0,n)} in an exponential way, *i.e.*,

$$\limsup_{n\to\infty}\frac{1}{n}\log\|{}^t\!M_{[0,n)}|_{\mathbf{w}(n)^{\perp}}\|<0.$$

- Thus by the definition of singular values we have $\limsup_{n \to \infty} \frac{1}{n} \log \delta_2(M_{[0,n)}) \leq \limsup_{n \to \infty} \frac{1}{n} \log \|{}^t M_{[0,n)}|_{\mathbf{w}(n)^{\perp}}\| < 0.$
- Thus the Pisot condition holds. (, , , , , , , , , ,) = oac

Hyperbolic toral automorphism

Sequences of substitutions

Markov partitions

18/40

An example: The Arnoux-Rauzy algorithm, III

Delecroix, Hejda, and Steiner (2013): There exists a constant C > 0, such that for each n ∈ N, there exists a hyperplane w(n)[⊥] such that

$$\|\mathbf{M}_{[0,n)}|_{\mathbf{w}(n)^{\perp}}\| \leq C \left(\frac{2^{h}-3}{2^{h}-1}\right)^{n/h}$$

Hence the hyperplane w(n)[⊥] is contracted by M_{[0,n)} in an exponential way, *i.e.*,

$$\limsup_{n\to\infty}\frac{1}{n}\log\|{}^t\!M_{[0,n)}|_{\mathbf{w}(n)^{\perp}}\|<0.$$

• Thus by the definition of singular values we have $\limsup_{n \to \infty} \frac{1}{n} \log \delta_2(M_{[0,n)}) \leq \limsup_{n \to \infty} \frac{1}{n} \log \|{}^t\!M_{[0,n)}|_{\mathbf{w}(n)^{\perp}}\| < 0.$

Hyperbolic toral automorphism

Sequences of substitutions

Markov partitions

An example: The Arnoux-Rauzy algorithm, III

Delecroix, Hejda, and Steiner (2013): There exists a constant C > 0, such that for each n ∈ N, there exists a hyperplane w(n)[⊥] such that

$$\|\mathbf{M}_{[0,n)}|_{\mathbf{w}(n)^{\perp}}\| \leq C \left(\frac{2^{h}-3}{2^{h}-1}\right)^{n/h}$$

Hence the hyperplane w(n)[⊥] is contracted by M_{[0,n)} in an exponential way, *i.e.*,

$$\limsup_{n\to\infty}\frac{1}{n}\log\|{}^t\!M_{[0,n)}|_{\mathbf{w}(n)^{\perp}}\|<0.$$

- Thus by the definition of singular values we have $\limsup_{n \to \infty} \frac{1}{n} \log \delta_2(M_{[0,n)}) \leq \limsup_{n \to \infty} \frac{1}{n} \log \|{}^t\!M_{[0,n)}|_{\mathbf{w}(n)^{\perp}}\| < 0.$
- Thus the Pisot condition holds.

Sequences of substitutions

Markov partitions

An example: The Arnoux-Rauzy algorithm, IV

Thus we have the following result, see Berthé, Steiner, and T. (2019):

Theorem (Exponentially convergent Arnoux-Rauzy sequences)

If $M \in \mathcal{M}_{AR}$ is a sequence of Arnoux-Rauzy matrices with bounded strong partial quotients then

- M is algebraically irreducible.
- M admits a generalized right eigenvector **u** with rationally independent coordinates.
- M is exponentially convergent to u

There is also a metric theory that allows to prove that almost all (in a certain sense) sequences in \mathcal{M}_{AR} are exponentially convergent, see again Berthé, Steiner, and T. (2019).

Sequences of substitutions

Markov partitions

19/40

An example: The Arnoux-Rauzy algorithm, IV

Thus we have the following result, see Berthé, Steiner, and T. (2019):

Theorem (Exponentially convergent Arnoux-Rauzy sequences)

If $M \in \mathcal{M}_{AR}$ is a sequence of Arnoux-Rauzy matrices with bounded strong partial quotients then

- M is algebraically irreducible.
- M admits a generalized right eigenvector **u** with rationally independent coordinates.
- M is exponentially convergent to u

There is also a metric theory that allows to prove that almost all (in a certain sense) sequences in \mathcal{M}_{AR} are exponentially convergent, see again Berthé, Steiner, and T. (2019).

MotivationSequences of matrice00000000000000000

Hyperbolic toral automorphism • 00000 Sequences of substitutions

Markov partitions

Markov Partition: Example, I

• Consider the Matrix

$$M = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

det *M* = 1. Thus we can view *M* as an automorphism on T².

1

- The eigenvalues of *M* are φ^2, φ^{-2} , where φ is the golden ratio.
- The eigenvectors are given by.

$$\begin{pmatrix} \varphi \\ 1 \end{pmatrix}$$
 and $\begin{pmatrix} -1/\varphi \\ 1 \end{pmatrix}$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

• Goal: Give a symbolic representation of $M : \mathbb{T} \to \mathbb{T}$.

MotivationSequences of matrice00000000000000000

Hyperbolic toral automorphism

Sequences of substitutions

Markov partitions

Markov Partition: Example, I

• Consider the Matrix

$$M = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

det *M* = 1. Thus we can view *M* as an automorphism on T².

1

- The eigenvalues of *M* are φ^2, φ^{-2} , where φ is the golden ratio.
- The eigenvectors are given by.

$$\begin{pmatrix} \varphi \\ 1 \end{pmatrix}$$
 and $\begin{pmatrix} -1/\varphi \\ 1 \end{pmatrix}$

• Goal: Give a symbolic representation of $M : \mathbb{T} \to \mathbb{T}$.

MotivationSequences of matrice00000000000000000

Hyperbolic toral automorphism

Sequences of substitutions

Markov partitions

Markov Partition: Example, I

• Consider the Matrix

$$M = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

det *M* = 1. Thus we can view *M* as an automorphism on T².

1

- The eigenvalues of *M* are φ^2, φ^{-2} , where φ is the golden ratio.
- The eigenvectors are given by.

$$egin{pmatrix} arphi \ 1 \end{pmatrix}$$
 and $egin{pmatrix} -1/arphi \ 1 \end{pmatrix}$

• Goal: Give a symbolic representation of $M : \mathbb{T} \to \mathbb{T}$.

◆ロ > ◆母 > ◆臣 > ◆臣 > ─ 臣 ─ のへで

equences of matrices

Hyperbolic toral automorphism

Sequences of substitutions

Markov partitions

21/40

Markov Partition: Example, II

Figure: Using the eingendirections we build an *L*-shaped fundamental domain of \mathbb{T}^2 . The boxes R_1 and R_2 are mapped nicely to parallel boxes.

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

equences of matrices

Hyperbolic toral automorphism

Sequences of substitutions

Markov partitions

Markov Partition: Example, III

Figure: We can restack the two rectangles to the torus.

- Consider $x \in \mathbb{T}$ and its orbit $(M^n x)_{n \in \mathbb{Z}}$.
- This corresponds "almost" 1:1 to a sequence $(R_{i_k})_{k \in \mathbb{Z}}$.
- M acts as a shift on such a sequence. "Symbolic coding"
- For the general theory see Adler, 1998.

Motivation Sequent

quences of matrices

Hyperbolic toral automorphism

Sequences of substitutions

Markov partitions

Markov Partition: Example, III

Figure: We can restack the two rectangles to the torus.

- Consider $x \in \mathbb{T}$ and its orbit $(M^n x)_{n \in \mathbb{Z}}$.
- This corresponds "almost" 1:1 to a sequence $(R_{i_k})_{k \in \mathbb{Z}}$.
- M acts as a shift on such a sequence. "Symbolic coding"
- For the general theory see Adler, 1998.

Markov partitions in higher dimensions

Consider the matrix

$$M = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

- It has determinant det M = 1, so it can be interpreted as
- ۲

◆□ > ◆□ > ◆臣 > ◆臣 > DQC

23/40

Markov partitions in higher dimensions

Consider the matrix

$$M = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

- It has determinant det M = 1, so it can be interpreted as toral automorphism.
- Its eigenvalues satisfy $\lambda_1 > 1 > |\lambda_2| = |\lambda_3|$, so it is hyperbolic.

Figure: A Rauzy box and its subtile form a Markov partition for M.

equences of matrices

Hyperbolic toral automorphism

Sequences of substitutions

Markov partitions

Restacking

Figure: An illustration of the restacking process for the Tribonacci substitution $\sigma: 1 \mapsto 12, 2 \mapsto 13, 3 \mapsto 1$.

Sequences of substitutions

Markov partitions

25/40

Markov partitions in higher dimensions

- We cannot do this by cuboids in \mathbb{R}^3 by Bowen 1978.
- The Rauzy box is defined in terms of substitutions
- Question: Can we define Markov partitions for sequences of matrices by using substitutions as well?
- It turns out that this works.
- In dimension 2 this was done by Arnoux and Fisher, 2001 and 2006 ("scenery flow"). This case is related to the classical continued fraction algorithm.
- In dimension 2 the Markov partitions are again rectangles (although they vary over the sequence of matrices).

Motivation	Sequences of matrices	Hyperbolic toral automorphism	Sequences of substitutions	Markov partitions

Substitutions

- A substitution σ on the alphabet A is an endomorphism of the free monoid A*.
- With σ , we associate its incidence matrix

$$M_{\sigma} = (|\sigma(b)|_a)_{a,b\in\mathcal{A}} \in \mathbb{N}^{d\times d}.$$

This matrix is the abelianized version of *σ* in the following sense. Let

$$\mathbf{I}: \mathcal{A}^* \to \mathbb{N}^d, \quad \mathbf{W} \mapsto {}^t(|\mathbf{W}|_1, \dots, |\mathbf{W}|_d)$$

be the abelianization map, then $I(\sigma(w)) = M_{\sigma}I(w)$ holds for all $w \in A^*$.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー 釣べぐ

equences of matrices

Hyperbolic toral automorphism

Sequences of substitutions

Markov partitions

27/40

Example: Tribonacci substitution, I

- Let $\mathcal{A} = \{1, 2, 3\}$ be the alphabet.
- Define the tribonacci substitution σ by

$$\sigma(1) = 12, \quad \sigma(2) = 13, \quad \sigma(3) = 1.$$

- For instance, we have $\sigma(1231) = 1213112$.
- Its incidence matrix is given by

$$M_{\sigma} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

• We have

 $\begin{pmatrix} 3\\2\\1 \end{pmatrix} = I(1213112) = I(\sigma(1231)) = M_{\sigma}I(1231) = M_{\sigma}\begin{pmatrix} 2\\1\\1 \end{pmatrix} = \begin{pmatrix} 3\\2\\1 \end{pmatrix}.$

◆□ > ◆□ > ◆臣 > ◆臣 > ● 臣 = のへぐ

Motivation

quences of matrices

Hyperbolic toral automorphism

Sequences of substitutions

Markov partitions

27/40

Example: Tribonacci substitution, I

- Let $\mathcal{A} = \{1, 2, 3\}$ be the alphabet.
- Define the tribonacci substitution σ by

$$\sigma(1) = 12, \quad \sigma(2) = 13, \quad \sigma(3) = 1.$$

- For instance, we have $\sigma(1231) = 1213112$.
- Its incidence matrix is given by

$$M_{\sigma} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

• We have

 $\begin{pmatrix} 3\\2\\1 \end{pmatrix} = \mathbf{I}(1213112) = \mathbf{I}(\sigma(1231)) = M_{\sigma}\mathbf{I}(1231) = M_{\sigma}\begin{pmatrix} 2\\1\\1 \end{pmatrix} = \begin{pmatrix} 3\\2\\1 \end{pmatrix}.$

▲ロト ▲囲 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● � � �

equences of matrices

Hyperbolic toral automorphism

Sequences of substitutions

Markov partitions

28/40

Example: Tribonacci substitution, II

Figure: Projecting a geometric realization of σ yields a Rauzy fractal.

- The "broken line" stays at bounded distance from a vector **u**.
- This is related to a property of σ called balance.

equences of matrices

Hyperbolic toral automorphism 000000

Sequences of substitutions

Markov partitions

Example: Tribonacci substitution, III

Figure: The Rauzy box again.

- It is no coincidence that the Rauzy fractal and the Markov partition of M_{σ} look the same.
- More precisely, the Rauzy fractal and its subtiles form the bases of the atoms of the Markov partition of M_{σ} .

equences of matrices

Hyperbolic toral automorphism

Sequences of substitutions

Markov partitions

Sequences of substitutions

• Let $\sigma = (\sigma_n)_{n \in \mathbb{Z}}$ be a sequence of substitutions.

• We write

$$\sigma_{[m,n)} = \sigma_m \sigma_{m+1} \cdots \sigma_{n-1}$$
 for $m, n \in \mathbb{Z}$ with $m \leq n$;

• The incidence matrix of $\sigma_{[m,n)}$ satisfies

$$M_{\sigma_{[m,n]}} = M_{\sigma_m} M_{\sigma_{m+1}} \cdots M_{\sigma_{n-1}}.$$

Many properties of *σ* depend only on its sequence of incidence matrices

$$\mathbf{M}_{\boldsymbol{\sigma}}=(M_{\sigma_n})_{n\in\mathbb{Z}}.$$

<ロト < 団 > < 臣 > < 臣 > 三 三 のへで

Motivation	Sequences of matrices	Hyperbolic toral automorphism	Sequences of substitutions	Markov partitions

S-adic shifts

- Let $\sigma = (\sigma_n)_{n \in \mathbb{Z}}$ be a sequence of substitutions.
- Language of σ :

 $\mathcal{L}^{(n)}_{\sigma} = \{ w \in \mathcal{A}^* : w \text{ is a factor of } \sigma_{[n,m)}(a) \text{ for some } a \in \mathcal{A}, m > n \}$

• Let
$$\sigma \in S^{\mathbb{Z}}$$
 with $S \subset S_d$, $d \ge 2$.

 $X_{\sigma}^{(n)} = \{ w \in \mathcal{A}^{\mathbb{Z}} : \text{ each factor of } w \text{ is an element of } \mathcal{L}_{\sigma}^{(n)} \}.$

- The symbolic dynamical system (X⁽ⁿ⁾_σ, Σ) is called the (two-sided) S-adic shift of level n associated with σ.
- We let X_σ := X_σ⁽⁰⁾, and call (X_σ, Σ) the S-adic shift associated with σ.

Motivation	Sequences of matrices	Hyperbolic toral automorphism	Sequences of substitutions	Markov partitions

Balance

- Many properties like primitivity, recurrence, algebraic irreducibility of σ are inherited from their sequence of incidence matrix.
- Balance makes sense only for substitutions.
- Let $C \in \mathbb{N}$. A set of words $\mathcal{L} \subset \mathcal{A}^*$ is called *C*-balanced if

 $|v|_a - |w|_a \le C$ for all $v, w \in \mathcal{L}$ with |v| = |w| and for all $a \in \mathcal{A}$.

- An element of A^ℤ is called C-balanced if the set of its factors is C-balanced.
- A shift (X, Σ) is called C-balanced if the set of all factors of its elements is C-balanced.
- If one of these objects is *C*-balanced for some unspecified *C*, then we just say that it is balanced.

Sequences of substitutions

Markov partitions

33/40

The Pisot condition implies a lot of things

Here is an analog for our theorem on sequences of matrices.

Theorem

Let $\sigma \in S^{\mathbb{Z}}$, with $d \geq 2$, and be a primitive sequence of substitutions with sequence of incidence matrices $\mathbf{M}_{\sigma} = (M_{\sigma_n})_{n \in \mathbb{Z}}$. Assume that σ satisfies the local Pisot condition and the growth condition $\lim_{n\to\infty} \frac{1}{n} \log ||M_{\sigma_n}|| = 0$,

 The coordinates of its generalized eigenvector u are rationally independent and σ converges exponentially and, hence, strongly to u.

• The language \mathcal{L}_{σ} is balanced.

Balance is important to define Rauzy fractals! Again, there is a metric version of this.

Sequences of substitutions

Markov partitions

33/40

The Pisot condition implies a lot of things

Here is an analog for our theorem on sequences of matrices.

Theorem

Let $\sigma \in S^{\mathbb{Z}}$, with $d \geq 2$, and be a primitive sequence of substitutions with sequence of incidence matrices $\mathbf{M}_{\sigma} = (M_{\sigma_n})_{n \in \mathbb{Z}}$. Assume that σ satisfies the local Pisot condition and the growth condition $\lim_{n \to \infty} \frac{1}{n} \log ||M_{\sigma_n}|| = 0$,

- The coordinates of its generalized eigenvector u are rationally independent and σ converges exponentially and, hence, strongly to u.
- The language \mathcal{L}_{σ} is balanced.

Balance is important to define Rauzy fractals! Again, there is a metric version of this.

Sequences of substitutions

Markov partitions

33/40

The Pisot condition implies a lot of things

Here is an analog for our theorem on sequences of matrices.

Theorem

Let $\sigma \in S^{\mathbb{Z}}$, with $d \geq 2$, and be a primitive sequence of substitutions with sequence of incidence matrices $\mathbf{M}_{\sigma} = (M_{\sigma_n})_{n \in \mathbb{Z}}$. Assume that σ satisfies the local Pisot condition and the growth condition $\lim_{n \to \infty} \frac{1}{n} \log ||M_{\sigma_n}|| = 0$,

- The coordinates of its generalized eigenvector u are rationally independent and σ converges exponentially and, hence, strongly to u.
- The language \mathcal{L}_{σ} is balanced.

Balance is important to define Rauzy fractals! Again, there is a metric version of this. Hyperbolic toral automorphism Sequences of substitutions 000000000

Spectral results, I

We recall some definitions.

- We say that a directive sequence σ has purely discrete spectrum if the system (X_{σ}, Σ) is uniquely ergodic (*i.e.*, it has a unique shift invariant measure μ), minimal, and has purely discrete measure-theoretic spectrum (i.e., the measurable eigenfunctions of the Koopman operator $U_T: L^2(X_{\sigma}, \Sigma, \mu) \to L^2(X_{\sigma}, \Sigma, \mu), f \mapsto f \circ \Sigma$, span $L^2(X_{\sigma}, \Sigma, \mu)).$
- A complex number λ is a continuous eigenvalue of (X, T) if there exists a non-zero continuous function $f: X \to \mathbb{C}$ such

< = > < 률 > < = > < = > < = >

Hyperbolic toral automorphism Sequences of substitutions 000000000

Spectral results, I

We recall some definitions.

- We say that a directive sequence σ has purely discrete spectrum if the system (X_{σ}, Σ) is uniquely ergodic (*i.e.*, it has a unique shift invariant measure μ), minimal, and has purely discrete measure-theoretic spectrum (*i.e.*, the measurable eigenfunctions of the Koopman operator $U_T: L^2(X_{\sigma}, \Sigma, \mu) \to L^2(X_{\sigma}, \Sigma, \mu), f \mapsto f \circ \Sigma$, span $L^2(X_{\sigma}, \Sigma, \mu)).$
- A complex number λ is a continuous eigenvalue of (X, T) if there exists a non-zero continuous function $f: X \to \mathbb{C}$ such that $f \circ T = \lambda f$.

▲ロト ▲屈 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Sequences of substitutions

Markov partitions

Spectral results, II

Lemma (Gottschalck and Hedlund)

Let (X, T, μ) be a minimal and uniquely ergodic subshift of $\mathcal{A}^{\mathbb{Z}}$. If X is balanced on letters, then $\exp(2\pi i\mu([a]))$ is a continuous eigenvalue of (X, T, μ) for each $a \in \mathcal{A}$.

Theorem

Let $\sigma = (\sigma_n)_{n \in \mathbb{Z}} \in S_d^{\mathbb{Z}}$, with $d \ge 2$, be a primitive sequence of unimodular substitutions with incidence matrices $(M_{\sigma_n})_{n \in \mathbb{Z}}$ satisfying the Pisot condition and the growth condition $\lim_{n\to\infty} \frac{1}{n} \log ||M_{\sigma_n}|| = 0$. Then the uniquely ergodic *S*-adic shift $(X_{\sigma}, \Sigma, \mu)$ is not weakly mixing. In particular, $\exp(2\pi i\mu([a]))$ is a topological eigenvalue for each letter $a \in A$. Moreover, the shift admits a minimal rotation on \mathbb{T}^{d-1} as a topological factor.

Sequences of substitutions

Markov partitions

35/40

Spectral results, II

Lemma (Gottschalck and Hedlund)

Let (X, T, μ) be a minimal and uniquely ergodic subshift of $\mathcal{A}^{\mathbb{Z}}$. If X is balanced on letters, then $\exp(2\pi i\mu([a]))$ is a continuous eigenvalue of (X, T, μ) for each $a \in \mathcal{A}$.

Theorem

Let $\sigma = (\sigma_n)_{n \in \mathbb{Z}} \in S_d^{\mathbb{Z}}$, with $d \ge 2$, be a primitive sequence of unimodular substitutions with incidence matrices $(M_{\sigma_n})_{n \in \mathbb{Z}}$ satisfying the Pisot condition and the growth condition $\lim_{n\to\infty} \frac{1}{n} \log ||M_{\sigma_n}|| = 0$. Then the uniquely ergodic *S*-adic shift $(X_{\sigma}, \Sigma, \mu)$ is not weakly mixing. In particular, $\exp(2\pi i\mu([a]))$ is a topological eigenvalue for each letter $a \in A$. Moreover, the shift admits a minimal rotation on \mathbb{T}^{d-1} as a topological factor.

Sequences of substitutions

Markov partitions

36/40

S-adic Rauzy fractals

Definition (S-adic Rauzy fractal)

Let $\sigma = (\sigma_n)_{n \in \mathbb{Z}} \in S_d^{\mathbb{Z}}$, with $d \ge 2$, be a primitive sequence of unimodular substitutions over the alphabet \mathcal{A} that admits generalized right and left eigenvectors. For $n \in \mathbb{Z}$, the Rauzy fractal \mathcal{R}_n (of level *n*) associated with σ is defined as

 $\mathcal{R}_n = \overline{\{\pi_n \mathbf{I}(p) : p \preceq \sigma_{[n,m)}(b) \text{ for infinitely many } m \ge n, \ b \in \mathcal{A}\}},$

and, for each $a \in A$, a subtile of $\mathcal{R}_n(w)$ is defined as

 $\mathcal{R}_n(a) = \overline{\{\pi_n | (p) : p \, a \preceq \sigma_{[n,m)}(b) \text{ for infinitely many } m \ge n, \, b \in \mathcal{A}\}}.$

Note: For each level *n* we have a Rauzy fractal.

Sequences of substitutions

Markov partitions

37/40

S-adic Rauzy boxes

Definition (Rauzy box)

Let $\sigma \in S_d^{\mathbb{Z}}$, with $d \ge 2$, be a primitive sequence of unimodular substitutions over the alphabet \mathcal{A} that admits generalized right and left eigenvectors. For each $n \in \mathbb{Z}$, the Rauzy box (of level *n*) is

$$\widehat{\mathcal{R}}_n = \bigcup_{a \in \mathcal{A}} \widehat{\mathcal{R}}_n(a),$$

with cylinders $\widehat{\mathcal{R}}_n(a)$ that are defined as the Minkowski sums

$$\widehat{\mathcal{R}}_n(a) = \widetilde{\pi}_n \,\overline{\mathbf{0e}_a} - \mathcal{R}_n(a) \qquad (n \in \mathbb{Z}, \ a \in \mathcal{A}). \tag{1}$$

・ロト ・回 ト ・ヨト ・ヨー うへの

equences of matrices

Hyperbolic toral automorphism

Sequences of substitutions

Markov partitions

S-adic restacking

Figure: The general case: When we restack the *S*-adic Rauzy fractal, we get back the Rauzy fractal of the next level.

 In the S-adic setting we get a nonstationary Markov partition.

equences of matrices

Hyperbolic toral automorphism

Sequences of substitutions

Markov partitions

39/40

A result for sequences of substitutions

Theorem

- Let σ = (σ_n)_{n∈ℤ} ∈ S^ℤ_d, with d ≥ 2, be a sequence of unimodular substitutions that satisfies the local Pisot condition plus a "coincidence condition".
- Then the sequence (*P*^{gen}_n)_{n∈ℤ} defined by subtiles of Rauzy fractals forms a generating nonstationary Markov partition for the underlying sequence of matrices (*M*_{σn})_{n∈ℤ}.

Sequences of substitutions

Markov partitions

A result for the Brun continued fraction algorithm

Corollary

For $d \in \{3, 4\}$, let (X_B, F_B, A_B, ν_B) be the ordered Brun continued fraction algorithm. Let φ_B be the substitutive realization of this algorithm that is defined by the ordered Brun substitutions $\sigma_{B,k}$, $k \in A$. Then, for ν_B -almost all $(\mathbf{x}, \mathbf{y}) \in \widehat{X}_B$, the mapping family (\mathbb{T}, f_{σ}) associated with $\sigma_B = \varphi(\mathbf{x}, \mathbf{y})$ is eventually Anosov and admits a generating nonstationary Markov partition, whose atoms are explicitly given by Rauzy boxes. This Markov partition provides a symbolic model for (\mathbb{T}, f_{σ}) as a nonstationary edge shift.

- Pisot condition Avila and Delecroix, 2019
- Coincidence condition Berthé, Steiner, and T., 2019, 2023

