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Classical continued fractions

Continued fraction expansion of x ∈ R

x = [a0; a1,a2,a3, . . .] = a0 +
1

a1 +
1

a2 +
1

a3 +
. . .

.

Convergents

pn

qn
= [a0; a1,a2,a3, . . . ,an].

Recurrence relations for the convergents

pn = anpn−1 + pn−2, p−1 = 1, p−2 = 0,
qn = anqn−1 + qn−2, q−1 = 0, q−2 = 1.
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Sequences of matrices

Let [a0; a1,a2, . . .] be a continued fraction expansion with
convergents

pn

qn
= [a0; a1,a2,a3, . . . ,an].

Then the recurrence relations for pn and qn imply(
pn pn−1
qn qn−1

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(

an 1
1 0

)
(n ≥ 0)

In this sense, the continued fraction algorithm produces a
sequence of matrices.
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The Gauss map

For x ∈ (0,1) the partial quotients a1,a2, . . . of this
continued fraction algorithm can be produced by the
Gauss map

G : (0,1) 7→ [0,1), x 7→ 1
x
−
⌊1

x

⌋
.

Indeed, one can show that

an =
⌊ 1

Gn−1(x)

⌋
.
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Figure: The Gauss map 4/40
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Convergence of a continued fraction algorithm

A continued fraction algorithm is considered to be “good” if
the continued fraction expansion of x converges to x fastly
in the sense that∣∣∣∣pn

qn
− x

∣∣∣∣→ 0 (n→∞)

fastly.
This is equivalent to the fact that the direction of the
sequence of vectors (pn,qn) approaches the direction
(x ,1) fastly.
Looking at the matrices this is in turn equivalent to the fact
that the Perron-Frobenius eigenvalue of(

pn pn−1
qn qn−1

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(

an 1
1 0

)
converges fastly to (x ,1).
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Approximation of the golden ratio

(p0 ,q0 )

(p1,q1 )
(p2,q2 )

(p3,q3 )

(p4,q4 )

(x,1)

1 2 3 4 5

1

2

3

Figure: The approximation of x = 1+
√

5
2 by its convergent vectors

⋂
n∈N

(
pn pn−1
qn qn−1

)
R2
+ −→ R+

(
1+
√

5
2
1

)
fastly!
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An additive version of this algorithm

There is a “slower” version of this algorithm.
it is defined by the map

f (x) =

{
1−x

x , if x > 1
2 ,

x
1−x , if x ≤ 1

2 .

It produces sequences of matrices taken from the set

MAdditive =

{(
1 1
0 1

)
,

(
1 0
1 1

)}

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure: The Farey map.
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Multidimensional continued fraction algorithms

This can be generalized to multidimensional continued
fraction algorithms
Multidimensional continued fraction algorithms are used to
approximate a vector (1, x1, . . . , xd ) by convergents of the
form (

1,
pn1

qn
, . . . ,

pnd

qn

)
∼ (qn,pn1, . . . ,pnd ).

Prominent examples are the algorithms of Brun, Selmer,
Jacobi-Perron, and Arnoux-Rauzy.
These algorithms also “produce” sequences of integer
matrices (often with determinant ±1).
We want to know under which circumstances they provide
“good” approximations.
To this end we study sequences of integer matrices.
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Notations

Let
GL(d ,Z) = {M ∈ Zd×d : det M = ±1}.

A matrix M ∈ Zd×d with det M = ±1 is called unimodular.
Let

M = {M ∈ Nd×d : det M = ±1}.

M = (Mn)n∈Z is a sequence of nonnegative matrices in
GL(d ,Z).
For products of consecutive matrices we put

M[m,n) = MmMm+1 · · ·Mn−1 for m,n ∈ Z with m ≤ n,

where M[m,m) denotes the d×d identity matrix.
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Generalized eigenvectors

Let M = (Mn)n∈Z be given.
M is primitive (in the future) if for each m there is n > m
such that M[m,n) is a positive matrix
M is recurrent if each block Mm, . . . ,Mn−1 (m < n) occurs
infinitely often.

Lemma (Furstenberg:1960)

If a sequence M = (Mn)n∈Z of nonnegative matrices in GL(d ,Z)
is primitive and recurrent, then there exists a positive vectors u
and v such that⋂

n∈N
M[0,n)Rd

+ = R+u (gen. right eigenvector),⋂
n∈N

tM[−n,0)Rd
+ = R+v (gen. left eigenvector).
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Notions of convergence...

Definition (Weak, strong, and exponential convergence)

Let M = (Mn)n∈Z be a sequence of matrices in GL(d ,Z)
and let u ∈ Rd \ {0}. M is weakly convergent to u if

lim
n→+∞

d
(

M[0,n)ei

‖M[0,n)ei‖
,

u
‖u‖

)
= 0 for all i ∈ {1, . . . ,d}.

M is strongly convergent to u if

lim
n→+∞

d(M[0,n)ei ,Ru) = 0 for all i ∈ {1, . . . ,d}.

M is exponentially convergent to u if there exist C, α > 0
such that

d(M[0,n)ei ,Ru) ≤ Ce−αn for all n ∈ N, i ∈ {1, . . . ,d}.
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... illustrated by a picture

M[0,n) e1

M[0,n) e2
u

Figure: Weak vs. strong convergence

Weak convergence takes place on the unit circle.
Weak convergence means that there is a generalized right
eigenvector u.
Strong convergence takes place at the points M[0,n)ei .
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The Pisot condition

For a matrix M ∈ GL(d ,Z), d ≥ 2, the singular values
δ1(M), . . . , δd (M) are the eigenvalues of the matrix (tMM)1/2

assume that δ1(M) ≥ δ2(M) ≥ · · · ≥ δd (M).

Definition (Local Pisot condition)

We say that a sequence M = (Mn)n∈Z of nonnegative matrices
in GL(d ,Z) satisfies the local Pisot condition if

lim sup
n→∞

1
n

log δ2(M[0,n)) < 0.
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Algebraic irreducibility and its consequence

Definition (Algebraic irreducibility)

A sequence M = (Mn)n∈Z ∈MZ
d is called algebraically

irreducible if for each m ∈ Z, there is n0 ∈ N such that the
characteristic polynomial of M[m,n) is irreducible for each n ≥ n0.

Proposition

If a primitive sequence M = (Mn)n∈Z ∈MZ
d satisfies the local

Pisot condition and the growth condition limn→∞
1
n log‖Mn‖ = 0,

then M is algebraically irreducible and the coordinates of any
generalized right eigenvector u are rationally independent.
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A criterion for exponential convergence

Theorem

For d ≥ 2, let M = (Mn)n∈Z ∈MZ
d be a primitive sequence of

nonnegative unimodular integer matrices satisfying the local
Pisot condition and the growth condition limn→∞

1
n log‖Mn‖ = 0.

Then M is algebraically irreducible and admits a generalized
right eigenvector with rationally independent coordinates to
which it converges exponentially.

The proof is hard and uses a local version of the Oseledets
theorem (Ruelle, 1979, Arnold, 1998).
The local Pisot condition (and primitivity) can be checked
for classes of examples.
This theorem also has a metric counterpart.
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An example: The Arnoux-Rauzy algorithm, I

The Arnoux–Rauzy algorithm (1991) is defined by

[1 : α : β] 7→ sort[1− α− β : α : β] (1 > α > β > 0)

on the set {[1 : α : β] ∈ P2 : (α, β) ∈ ∆}.

The Rauzy Gasket ∆ (taken from Arnoux and Starosta 2013)
16/40
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An example: The Arnoux-Rauzy algorithm, II

The Arnoux-Rauzy algorithm produces sequences of
matrices taken from the set

MAR =


1 1 1

0 1 0
0 0 1

 ,

1 0 0
1 1 1
0 0 1

 ,

1 0 0
0 1 0
1 1 1

 .

Choose M = (Mn)n∈Z ∈MZ
AR with

{Mn, . . . ,Mn+h−1} =MAR

for some h ∈ N and all n ∈ Z: Strong partial quotients
bounded by h.
This is a natural generalization of the additive continued
fraction algorithm.
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An example: The Arnoux-Rauzy algorithm, III

Delecroix, Hejda, and Steiner (2013): There exists a
constant C > 0, such that for each n ∈ N, there exists a
hyperplane w(n)⊥ such that

‖M[0,n)|w(n)⊥‖ ≤ C
(2h − 3

2h − 1

)n/h
.

Hence the hyperplane w(n)⊥ is contracted by M[0,n) in an
exponential way, i.e.,

lim sup
n→∞

1
n

log ‖tM[0,n)|w(n)⊥‖ < 0.

Thus by the definition of singular values we have

lim sup
n→∞

1
n

log δ2(M[0,n)) ≤ lim sup
n→∞

1
n

log ‖tM[0,n)|w(n)⊥‖ < 0.

Thus the Pisot condition holds. 18/40
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An example: The Arnoux-Rauzy algorithm, IV

Thus we have the following result, see Berthé, Steiner, and T.
(2019):

Theorem (Exponentially convergent Arnoux-Rauzy sequences)

If M ∈MAR is a sequence of Arnoux-Rauzy matrices with
bounded strong partial quotients then

M is algebraically irreducible.
M admits a generalized right eigenvector u with rationally
independent coordinates.
M is exponentially convergent to u

There is also a metric theory that allows to prove that almost all
(in a certain sense) sequences inMAR are exponentially
convergent, see again Berthé, Steiner, and T. (2019).

19/40
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Markov Partition: Example, I

Consider the Matrix

M =

(
2 1
1 1

)
.

det M = 1. Thus we can view M as an automorphism
on T2.
The eigenvalues of M are ϕ2, ϕ−2, where ϕ is the golden
ratio.
The eigenvectors are given by.(

ϕ
1

)
and

(
−1/ϕ

1

)

Goal: Give a symbolic representation of M : T→ T.

20/40



Motivation Sequences of matrices Hyperbolic toral automorphism Sequences of substitutions Markov partitions

Markov Partition: Example, I

Consider the Matrix

M =

(
2 1
1 1

)
.

det M = 1. Thus we can view M as an automorphism
on T2.
The eigenvalues of M are ϕ2, ϕ−2, where ϕ is the golden
ratio.
The eigenvectors are given by.(

ϕ
1

)
and

(
−1/ϕ

1

)

Goal: Give a symbolic representation of M : T→ T.

20/40



Motivation Sequences of matrices Hyperbolic toral automorphism Sequences of substitutions Markov partitions

Markov Partition: Example, I

Consider the Matrix

M =

(
2 1
1 1

)
.

det M = 1. Thus we can view M as an automorphism
on T2.
The eigenvalues of M are ϕ2, ϕ−2, where ϕ is the golden
ratio.
The eigenvectors are given by.(

ϕ
1

)
and

(
−1/ϕ

1

)

Goal: Give a symbolic representation of M : T→ T.

20/40



Motivation Sequences of matrices Hyperbolic toral automorphism Sequences of substitutions Markov partitions

Markov Partition: Example, II

R1

R2

R1

R2

Figure: Using the eingendirections we build an L-shaped fundamental
domain of T2. The boxes R1 and R2 are mapped nicely to parallel
boxes.
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Markov Partition: Example, III

R1

R2

R1

R2

Figure: We can restack the two rectangles to the torus.

Consider x ∈ T and its orbit (Mnx)n∈Z.
This corresponds “almost” 1:1 to a sequence (Rik )k∈Z.
M acts as a shift on such a sequence. “Symbolic coding”
For the general theory see Adler, 1998.
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Markov partitions in higher dimensions

Consider the matrix

M =

1 1 1
1 0 0
0 1 0

 .

It has determinant det M = 1, so it can be interpreted as
toral automorphism.
Its eigenvalues satisfy λ1 > 1 > |λ2| = |λ3|, so it is
hyperbolic.

Figure: A Rauzy box and its subtile form a Markov partition for M.
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Restacking

Figure: An illustration of the restacking process for the Tribonacci
substitution σ : 1 7→ 12,2 7→ 13,3 7→ 1.
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Markov partitions in higher dimensions

We cannot do this by cuboids in R3 by Bowen 1978.
The Rauzy box is defined in terms of substitutions
Question: Can we define Markov partitions for sequences
of matrices by using substitutions as well?
It turns out that this works.
In dimension 2 this was done by Arnoux and Fisher, 2001
and 2006 (“scenery flow”). This case is related to the
classical continued fraction algorithm.
In dimension 2 the Markov partitions are again rectangles
(although they vary over the sequence of matrices).
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Substitutions

A substitution σ on the alphabet A is an endomorphism of
the free monoid A∗.
With σ, we associate its incidence matrix

Mσ = (|σ(b)|a)a,b∈A ∈ Nd×d .

This matrix is the abelianized version of σ in the following
sense. Let

l : A∗ → Nd , w 7→ t (|w |1, . . . , |w |d )

be the abelianization map, then l(σ(w)) = Mσl(w) holds for
all w ∈ A∗.
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Example: Tribonacci substitution, I

Let A = {1,2,3} be the alphabet.
Define the tribonacci substitution σ by

σ(1) = 12, σ(2) = 13, σ(3) = 1.

For instance, we have σ(1231) = 1213112.
Its incidence matrix is given by

Mσ =

1 1 1
1 0 0
0 1 0

 .

We have3
2
1

 = l(1213112) = l(σ(1231)) = Mσl(1231) = Mσ

2
1
1

 =

3
2
1

 .
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Example: Tribonacci substitution, II

Figure: Projecting a geometric realization of σ yields a Rauzy fractal.

The “broken line” stays at bounded distance from a
vector u.
This is related to a property of σ called balance.
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Example: Tribonacci substitution, III

Figure: The Rauzy box again.

It is no coincidence that the Rauzy fractal and the Markov
partition of Mσ look the same.
More precisely, the Rauzy fractal and its subtiles form the
bases of the atoms of the Markov partition of Mσ.
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Sequences of substitutions

Let σ = (σn)n∈Z be a sequence of substitutions.
We write

σ[m,n) = σmσm+1 · · ·σn−1 for m,n ∈ Z with m ≤ n;

The incidence matrix of σ[m,n) satisfies

Mσ[m,n) = MσmMσm+1 · · ·Mσn−1 .

Many properties of σ depend only on its sequence of
incidence matrices

Mσ = (Mσn )n∈Z.
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S-adic shifts

Let σ = (σn)n∈Z be a sequence of substitutions.
Language of σ:

L(n)
σ = {w ∈ A∗ : w is a factor of σ[n,m)(a) for some a ∈ A, m > n} (n ∈ Z).

Let σ ∈ SZ with S ⊂ Sd , d ≥ 2.

X (n)
σ = {w ∈ AZ : each factor of w is an element of L(n)σ }.

The symbolic dynamical system (X (n)
σ ,Σ) is called the

(two-sided) S-adic shift of level n associated with σ.

We let Xσ := X (0)
σ , and call (Xσ,Σ) the S-adic shift

associated with σ.
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Balance

Many properties like primitivity, recurrence, algebraic
irreducibility of σ are inherited from their sequence of
incidence matrix.
Balance makes sense only for substitutions.
Let C ∈ N. A set of words L ⊂ A∗ is called C-balanced if

|v |a−|w |a ≤ C for all v ,w ∈ L with |v | = |w | and for all a ∈ A.

An element of AZ is called C-balanced if the set of its
factors is C-balanced.
A shift (X ,Σ) is called C-balanced if the set of all factors of
its elements is C-balanced.
If one of these objects is C-balanced for some
unspecified C, then we just say that it is balanced.
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The Pisot condition implies a lot of things

Here is an analog for our theorem on sequences of matrices.

Theorem

Let σ ∈ SZ, with d ≥ 2, and be a primitive sequence of
substitutions with sequence of incidence matrices
Mσ = (Mσn )n∈Z. Assume that σ satisfies the local Pisot
condition and the growth condition limn→∞ .

1
n log ‖Mσn‖ = 0,

The coordinates of its generalized eigenvector u are
rationally independent and σ converges exponentially and,
hence, strongly to u.
The language Lσ is balanced.

Balance is important to define Rauzy fractals!
Again, there is a metric version of this.
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Spectral results, I

We recall some definitions.
We say that a directive sequence σ has purely discrete
spectrum if the system (Xσ,Σ) is uniquely ergodic (i.e., it
has a unique shift invariant measure µ), minimal, and has
purely discrete measure-theoretic spectrum (i.e., the
measurable eigenfunctions of the Koopman operator
UT : L2(Xσ,Σ, µ)→ L2(Xσ,Σ, µ), f 7→ f ◦ Σ, span
L2(Xσ,Σ, µ)).
A complex number λ is a continuous eigenvalue of (X ,T ) if
there exists a non-zero continuous function f : X → C such
that f ◦ T = λf .

34/40



Motivation Sequences of matrices Hyperbolic toral automorphism Sequences of substitutions Markov partitions

Spectral results, I

We recall some definitions.
We say that a directive sequence σ has purely discrete
spectrum if the system (Xσ,Σ) is uniquely ergodic (i.e., it
has a unique shift invariant measure µ), minimal, and has
purely discrete measure-theoretic spectrum (i.e., the
measurable eigenfunctions of the Koopman operator
UT : L2(Xσ,Σ, µ)→ L2(Xσ,Σ, µ), f 7→ f ◦ Σ, span
L2(Xσ,Σ, µ)).
A complex number λ is a continuous eigenvalue of (X ,T ) if
there exists a non-zero continuous function f : X → C such
that f ◦ T = λf .

34/40



Motivation Sequences of matrices Hyperbolic toral automorphism Sequences of substitutions Markov partitions

Spectral results, II

Lemma (Gottschalck and Hedlund)

Let (X ,T , µ) be a minimal and uniquely ergodic subshift of AZ.
If X is balanced on letters, then exp(2πiµ([a])) is a continuous
eigenvalue of (X ,T , µ) for each a ∈ A.

Theorem

Let σ = (σn)n∈Z ∈ SZd , with d ≥ 2, be a primitive sequence of
unimodular substitutions with incidence matrices (Mσn )n∈Z
satisfying the Pisot condition and the growth condition
limn→∞

1
n log ‖Mσn‖ = 0. Then the uniquely ergodic S-adic shift

(Xσ,Σ, µ) is not weakly mixing. In particular, exp(2πiµ([a])) is a
topological eigenvalue for each letter a ∈ A. Moreover, the shift
admits a minimal rotation on Td−1 as a topological factor.
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S-adic Rauzy fractals

Definition (S-adic Rauzy fractal)

Let σ = (σn)n∈Z ∈ SZd , with d ≥ 2, be a primitive sequence of
unimodular substitutions over the alphabet A that admits
generalized right and left eigenvectors. For n ∈ Z, the Rauzy
fractal Rn (of level n) associated with σ is defined as

Rn = {πnl(p) : p � σ[n,m)(b) for infinitely many m ≥ n, b ∈ A},

and, for each a ∈ A, a subtile of Rn(w) is defined as

Rn(a) = {πnl(p) : p a � σ[n,m)(b) for infinitely many m ≥ n, b ∈ A}.

Note: For each level n we have a Rauzy fractal.
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S-adic Rauzy boxes

Definition (Rauzy box)

Let σ ∈ SZd , with d ≥ 2, be a primitive sequence of unimodular
substitutions over the alphabet A that admits generalized right
and left eigenvectors. For each n ∈ Z, the Rauzy box (of
level n) is

R̂n =
⋃

a∈A
R̂n(a),

with cylinders R̂n(a) that are defined as the Minkowski sums

R̂n(a) = π̃n 0ea −Rn(a) (n ∈ Z, a ∈ A). (1)
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S-adic restacking

Figure: The general case: When we restack the S-adic Rauzy fractal,
we get back the Rauzy fractal of the next level.

In the S-adic setting we get a nonstationary Markov
partition.
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A result for sequences of substitutions

Theorem

Let σ = (σn)n∈Z ∈ SZd , with d ≥ 2, be a sequence of
unimodular substitutions that satisfies the local Pisot
condition plus a “coincidence condition”.
Then the sequence (Pgen

n )n∈Z defined by subtiles of Rauzy
fractals forms a generating nonstationary Markov partition
for the underlying sequence of matrices (Mσn )n∈Z.
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A result for the Brun continued fraction algorithm

Corollary

For d ∈ {3,4}, let (XB,FB,AB, νB) be the ordered Brun
continued fraction algorithm. Let ϕB be the substitutive
realization of this algorithm that is defined by the ordered Brun
substitutions σB,k , k ∈ A. Then, for νB-almost all (x,y) ∈ X̂B,
the mapping family (T, fσ) associated with σB = ϕ(x,y) is
eventually Anosov and admits a generating nonstationary
Markov partition, whose atoms are explicitly given by Rauzy
boxes. This Markov partition provides a symbolic model for
(T, fσ) as a nonstationary edge shift.

Pisot condition Avila and Delecroix, 2019
Coincidence condition Berthé, Steiner, and T., 2019, 2023
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