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purely Exponential Diophantine Equation
at + bY = c*

a,b,c fixed positive integers > 1
relatively prime
x,Yy,z unknown positive integers

- lunknown = 1| allowed




Basic facts

- #{(x,y,z)} is absolutely finite.
«-- Subspace theorem

cx,y, 2 < Cesr(a, b, c).

«-- p-adic analogue to Baker's method

In recent years, there has been important progress

on number of solutions.




- Proposition [Bennett,’01] atmost2pillai —
For any a,b,c € N; a,b > 1,9cd(a,b) = 1,
there are at most 2 sol.s to

at*—bYy=c x,y>1.

- best possible

- special case of Pillai's eq.

Motivation of Part I

3-variable version of atmost2pillai



- Proposition [M. & Pink,’20] atmost2 ——
For any a,b,c € N»1 ; gcd(a,b,c) = 1,

there are at most 2 sol.s to

at+bYy =c* x,y,z>1,

except for {a,b} = {3,5},c = 2.

N J

+3+5=8 27+5=32 34+ 125=128

. 3% (g b, ¢) allowing the eq. to have 2 sol.s



For any a,b,ce N;a,b> 1,9cd(a,b) = 1,
there is at most 1 sol. to
at —bYy=c zxz,y>1,

except for the cases:

23 _3=25_33=5 24_3=28_3%>=13
23 _5=27_-53=3 3-2=32_23=1
13—-3=133-3"=10 91 -2=0912-213 =89

N

— Conjecture [Bennett,’01] atmostipillai —

J

The number of exceptional (a,b,c) is proven to be

finite| by Subspace theorem & abc-conjecture.




Bennett confirmed atmostlpillai (his conjecture)
for each of the cases:

ce> b2a2 log a

¢ < bY/6000 or ¢ < 100

e b=+4+1 mod a with a prime

(~ proving atmostlpillai for a:Fermat primes)

Q| Can we prove a 3-variable version

of some of the above results?



- Conjecture [Scott & Styer,’16] atmostl —
There is at most 1 sol. to
at 4+ bY = c?,

except when (a,b,c) belongs to

{ (5,3,2),(13,3,2),(5,2,3),(7,2,3),(3,2,11),
(10,3,13),(3,2,35),(89,2,91), (5,2,133),
(3,2,259),(13,3,2200), (91, 2,8283),

(28 -1,2,2"+ 1)k >2 (#3) }.

- a,b,c #=perfect powers, a>b

- 3-variable version of atmostlpillaz



Previous works ('56~)
Sierpinski, JeSmanoiwcz, Dem’janenko, Ko,- - -

R.Scott ('93~)

 seq.s from factorization over Q(+/—a*b¥)
- works with R.Styer

c = 2 = atmostl

N.Terai, M.Le, P.Yuan, etc. ('94~)

+ I >2; 024+ b2 =¢" Terai's conj.

* elementary+Baker—+ternary eq. + - -



A well-known theorem:

- Proposition [Scott,’93]
T here is at most 1 sol. to

a’t + bY = 27,
except for {a,b} = {3,5},{13,3}.
NS

13 +3=16 13 + 243 =256

- purely algebraic manner in Q(v/—a®*b¥)



Fundamental result:

- Theorem 1

+1 mod c

a

= atmostl

R b=-

-1 mod c

- 3-variable version of one of Bennett's results
- "&" can be replaced by "OR".

* computation time:

2 weeks, by

ASUS computer with a 8-core 11th generation Intel-Core-7
11800H 4.6 GHz processor and with 16 GB of RAM




Corollary 1
[ ce {2,3,6} = atmostl

TpfA= A==x1 modpl for p € {2,3}

3 another proof of Scott’s result for ¢ =2

For a set S of primes, we define the S-part of a positive

integer A as follows:

A[S] = H p'/p(A).
peS

non-explicit but effective generalization:



T heorem 2

Let S be a set of odd prime factors of c.

Assume a,b=+1 mod Mg & cg>+/c, where
D Mg= M p, cs=max(c[s],c[2]); or
p
(D) Mg=4Tl p, cg=c[S{2}].
p

If a*+4+bY=c* has 2 sol.s, then a,b,c < 1, or

log C
cs/Ve<C & a’b<eXp((|och)/log\/E —1)’

where C IS some positive absolute const.

being effectively computable.



Restrictions with C under assuming 2 sol.s

S = {odd primes of c¢}
(I)or(II) Mg |e cgr c;

c/v/cKL1l a,bk1l = effective Thl
S = {odd primes of ¢} {3}

L Mg e {1,3} cg = max(c[2],¢[3]) > ve;
max(c[2],c[3]) /ve €1 a,b<k.1

= following:



~ Corollary 2
For any fixed c satisfying

max( c[2],¢[3]) > v/,
atmostl is true, except for only finitely
many pairs of a and b.

N

- Corollary 3

c=p"-k = atmostl
where p€{2,3}, kK £ 0 (modp), n>ne(k).

N

- no(k): const. depending only on k

- atmostl is true for infinitely many values of c.



Main idea with 2 sol.s (¢ prime)

A+ =c% a*+b = 2<Z

~s CF ‘ GCD(a®® £ 1, b0 £ 1) A
e(h) ;= ec(h) least s.t. h¢ =41 (¢)
A=|rY—-—X" -yl #0

(This played a central role to prove atmost2.)

F:= e(a) =e(b) w.lo.g.

EF=1 = a,b:close* to 1 c-adically



Sketch of Proof of Theorem 1

ve(a* +bY) =Z

—

:anaX)Y <<E 1

- & <y (Ve)E
Assume I =1
= 2z< 100 ¢< 3-10° (Z < 80000)
Check {a* 4+ bY = c* & a* 4+ b = ¢

by c-adic analogue to Baker

X E L1

~ (a,b,c) =(5,3,2),(13,3,2),(5,2,3),(7,2,3)




More detail for c =2

Assume 2 | ¢
a=1 b=-1 (4)
A+ =c% aX+b = 2<Z
x,y,X,Y odd

= g% =—-b of=-b" modc?

- a?r=1 (A =1)



Since ¢? |a® —1 & 2]|¢,
va(c) - z < wa(a® — 1)

=vo(a—1) +v2(A)

>

v2(c) - 2 < minjva(a — 1), va(b+ 1)} + v2(A)

Below, assume ¢ = 2.

2% | gcd(a—1,b64+1) - A



Upper bound for A
A = |zY — Xy

<zY (if 2Y > Xy)

log 2 l0og 2
< S z - J A4 caT < 2% pY <« 24
l0g a l0g b
/
<L z

.Iogalogb



1st application of Baker (sketch)
CLX + bY — 2Z
Z =vo(a® — (=b)¥)

LCM(ec(a), ec(db))

< loga logb l0g2B
|0922 g J g
B=max{X,Y}/H
E /
< loga logb 1o 2( )
l0g2 2 9@ 109 J log a logb

o 4 L loga loghb



Z

: < z much smaller than 27
l0oga 10g b

JANR<

22
C = ~
gcd(2%, A)

<

C | gcd(a—1,b+ 1)



2nd application of Baker (sketch)
vo(24) = ve(a® — (=b)Y)

g < LCM(ec(a), ec(b))

loga logb 1092
2 l0g2 C 9@ 109 J

B=max{X,Y}/H -logC

1 5 /
< — loga logb log ( z)
22 l0og a l0g b

“z- /L K loga logb



52

Y
r, Y<Kl ZKz XY K1

1 1
z- Z < log(2%)= - log(2%)v <

ALKl (w27

Note that C <a—-—1,b+ 1. trivial

1
S 2% & (2F)maxiz.y}

x>1 or y>1

(2/V2)?<1 z<1l Z<1 ..(ihour)...

//



r=1 & y=1

a-+ b= 2%
a=AC+1 b=BC—-1 A+ B=2%/C
(AC + 1)* 4+ (BC —1)Y =24

mod C?

~ C | AX + BY (if Z > 2z)
= C<KA+ B

(2/v/2)? < 1 ...(50min)... s/




Another application of Theorem 1:

T heorem 3
[ c: Fermat prime* = atmostl

3 b 17 257 65537

* computation time: 9 hours

+Thl 4+ #(Z/cZ)* power of 2 4+ ¢ prime
. 22" 41 £ prime for n=25,--,32



Sketch of Proof
a® +b¥ =c*F ar +bY =4
E:ec(a):ec(b) A— ‘CE Y — X y|

“Thl 4+ p(c) power of 2 + ¢ prime”

yields a nice restriction on the parities of x,y, X, Y.

E|lp(c) E|A (vaf@=1a2=41(c))

+E>1by | Thl
-2 | E by |p(c) power of 2
L2 A




x =2 X mod2 or y=2Y mod?2

by Scott’s parity result for ¢ prime

= x,y . even OR X,Y : even

'
assume

. terms of w, Z, where mm = ¢

X/2 pY/2

~
E=EFE(c,Z) < logc;
/ <K z by Baker (complex, 2-logs)

Further, min{z, 7} <. 1
by m-adic analogue to Baker

(F. Luca’'s idea for Terai's conj.)

+ and more ~~ {a,b} = {c— 2,2}




Status of atmostl for each small ¢

C 2 3 b 6 7 10 11 12
status v Vv Vv v 7 7 7 JF

13 14 15 17 18 19 20 21 22
? 0?7 7?7 v ov*r 7?7 7 7 7

23 24 26 28 29 30 31 33 34
? JE¥E ? 0?2 2?2 7 2 7 2

35 37 38 39 40 41 42 43 44
? 7?7 7?7 7?7 Jr 7?7 7 7 7

v. solved completely

v'* solved except for only finitely many (a,b)
being effectively determined



Future work (Part III in progress)

- more investigations to case £ > 1
- proving atmostl for ¢ € {other values}
* proving atmostlpillai for a € {other values}

- application of abc-conjecture
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Thank you for your attention!



