

*Number of solutions to a special type
of unit equations in two unknowns II*

Takafumi Miyazaki (Gunma University)

Joint work with István Pink (University of Debrecen)

NUMBER THEORY SEMINAR November 25, 2022

Plan of Talk

- 1 Main equation
- 2 Motivation - review of Part I
- 3 Conjecture of Scott & Styer
- 4 Results
- 5 Idea for proofs
- (6 Future work)

1

purely Exponential Diophantine Equation

$$a^x + b^y = c^z$$

a, b, c **fixed** positive integers > 1
relatively prime

x, y, z unknown positive integers

- $3^x + 4^y = 5^z$
- unknown = 1 allowed

Basic facts

- $\# \{(x, y, z)\}$ is absolutely finite.

←-- Subspace theorem

- $x, y, z < \mathcal{C}_{\text{eff}}(a, b, c)$.

←-- p -adic analogue to Baker's method

In recent years, there has been important progress
on number of solutions.

Proposition [Bennett,'01] *atmost2pillai*

For any $a, b, c \in \mathbb{N}$; $a, b > 1$, $\gcd(a, b) = 1$,
there are at most 2 sol.s to

$$a^x - b^y = c \quad x, y \geq 1.$$

- best possible
- special case of Pillai's eq.

Motivation of Part I**3-variable version** of *atmost2pillai*

Proposition [M. & Pink, '20] atmost2

For any $a, b, c \in \mathbb{N}_{>1}$; $\gcd(a, b, c) = 1$,

there are at most 2 sol.s to

$$a^x + b^y = c^z \quad x, y, z \geq 1,$$

except for $\{a, b\} = \{3, 5\}$, $c = 2$.

- $3 + 5 = 8 \quad 27 + 5 = 32 \quad 3 + 125 = 128$
- $\exists^\infty (a, b, c)$ allowing the eq. to have 2 sol.s

Conjecture [Bennett,'01] *atmost1pillai*

For any $a, b, c \in \mathbb{N}$; $a, b > 1$, $\gcd(a, b) = 1$,
there is at most 1 sol. to

$$a^x - b^y = c \quad x, y \geq 1,$$

except for the cases:

$$2^3 - 3 = 2^5 - 3^3 = 5 \quad 2^4 - 3 = 2^8 - 3^5 = 13$$

$$2^3 - 5 = 2^7 - 5^3 = 3 \quad 3 - 2 = 3^2 - 2^3 = 1$$

$$13 - 3 = 13^3 - 3^7 = 10 \quad 91 - 2 = 91^2 - 2^{13} = 89$$

The number of exceptional (a, b, c) is proven to be
finite by Subspace theorem & *abc*-conjecture.

Bennett confirmed *atmost1pillai* (his conjecture) for each of the cases:

- $c \geq b^{2a^2 \log a}$
- $c \leq b^y/6000$ or $c \leq 100$
- $b \equiv \pm 1 \pmod{a}$ with a prime
 - (\rightsquigarrow proving *atmost1pillai* for a : Fermat primes)

Q **Can we prove a 3-variable version of some of the above results?**

Conjecture [Scott & Styer,'16] *atmost1*

There is at most 1 sol. to

$$a^x + b^y = c^z,$$

except when (a, b, c) belongs to

$$\begin{aligned} & \{ (5, 3, 2), (13, 3, 2), (5, 2, 3), (7, 2, 3), (3, 2, 11), \\ & (10, 3, 13), (3, 2, 35), (89, 2, 91), (5, 2, 133), \\ & (3, 2, 259), (13, 3, 2200), (91, 2, 8283), \\ & (2^k - 1, 2, 2^k + 1); k \geq 2 \ (\neq 3) \}. \end{aligned}$$

- $a, b, c \neq$ perfect powers, $a > b$
- 3-variable version of *atmost1pillai*

Previous works ('56~)

Sierpiński, Jeśmanowicz, Dem'janenko, Ko, ···

R.Scott ('93~)

- seq.s from factorization over $\mathbb{Q}(\sqrt{-a^x b^y})$
- works with R.Styer
- ★ $c = 2 \Rightarrow \text{atmost1}$

N.Terai, M.Le, P.Yuan, etc. ('94~)

- $\exists r \geq 2 ; a^2 + b^2 = c^r \quad \text{Terai's conj.}$
- elementary + Baker + ternary eq. + ···

A well-known theorem:

Proposition [Scott,'93]

There is at most 1 sol. to

$$a^x + b^y = 2^z,$$

except for $\{a, b\} = \{3, 5\}, \{13, 3\}$.

- $13 + 3 = 16 \quad 13 + 243 = 256$
- purely algebraic manner in $\mathbb{Q}(\sqrt{-a^x b^y})$

Fundamental result:

Theorem 1

$$a \equiv \pm 1 \pmod{c} \quad \& \quad b \equiv \pm 1 \pmod{c}$$

\Rightarrow *atmost1*

- 3-variable version of one of Bennett's results
- “ $\&$ ” can be replaced by “OR”.
- computation time: 2 weeks, by
ASUS computer with a 8-core 11th generation Intel-Core-7
11800H 4.6 GHz processor and with 16 GB of RAM

Corollary 1

$c \in \{2, 3, 6\} \Rightarrow \text{atmost1}$

- $\lceil p \nmid \mathcal{A} \Rightarrow \mathcal{A} \equiv \pm 1 \pmod{p} \rceil$ for $p \in \{2, 3\}$
- **another proof of Scott's result for $c = 2$**

For a set S of primes, we define the S -part of a positive integer \mathcal{A} as follows:

$$\mathcal{A}[S] := \prod_{p \in S} p^{\nu_p(\mathcal{A})}.$$

non-explicit but effective generalization:

Theorem 2

Let S be a set of odd prime factors of c .

Assume $a, b \equiv \pm 1 \pmod{M_S}$ & $c_S > \sqrt{c}$, where

(I) $M_S = \prod_{p \in S} p$, $c_S = \max(c[S], c[2])$; or

(II) $M_S = 4 \prod_{p \in S} p$, $c_S = c[S \cup \{2\}]$.

If $a^x + b^y = c^z$ has 2 sol.s, then $a, b, c \ll 1$, or

$$c_S/\sqrt{c} < C \quad \& \quad a, b < \exp\left(\frac{\log C}{(\log c_S)/\log \sqrt{c} - 1}\right),$$

where C is some positive absolute const. being effectively computable.

Restrictions with \mathcal{C} under assuming 2 sol.s

- $S = \{\text{odd primes of } c\}$

$$\stackrel{(\text{I}) \text{ or } (\text{II})}{\Rightarrow} M_S \mid c \quad c_S \approx c;$$

$$c/\sqrt{c} \ll 1 \quad a, b \ll 1 \quad \Rightarrow \quad \text{effective Th1}$$

- $S = \{\text{odd primes of } c\} \cap \{3\}$

$$\stackrel{(\text{I})}{\Rightarrow} M_S \in \{1, 3\} \quad c_S = \max(c[2], c[3]) > \sqrt{c};$$

$$\max(c[2], c[3]) / \sqrt{c} \ll 1 \quad a, b \ll_c 1$$

\Rightarrow following:

Corollary 2

For any fixed c satisfying

$$\max(c[2], c[3]) > \sqrt{c},$$

atmost1 is true, except for only finitely many pairs of a and b .

Corollary 3

$$c = p^n \cdot k \Rightarrow \text{atmost1}$$

where $p \in \{2, 3\}$, $k \not\equiv 0 \pmod{p}$, $n \geq n_0(k)$.

- $n_0(k)$: const. depending only on k
- *atmost1* is true for infinitely many values of c .

Main idea with 2 sol.s (c prime)

$$a^x + b^y = c^z \quad a^X + b^Y = c^Z \quad z \leq Z$$

$$\rightsquigarrow c^z \mid \text{GCD}(\ a^{e(a)} \pm 1, \ b^{e(b)} \pm 1 \) \cdot \Delta$$

$$e(h) := e_c(h) \text{ least s.t. } h^{e(h)} \equiv \pm 1 \ (c)$$

$$\Delta := |x \cdot Y - X \cdot y| \neq 0$$

(This played a central role to prove *atmost2*.)

$$E := e(a) = e(b) \text{ w.l.o.g.}$$

$E = 1 \Rightarrow a, b : \text{close}^* \text{ to } 1 \text{ } c\text{-adically}$

Sketch of Proof of Theorem 1

$$\nu_c(a^X + b^Y) = Z$$

$\lessdot \cdots$ by c -adic analogue to Baker

$$\Rightarrow \boxed{x, y, X, Y \ll_E 1} \quad \asymp E \ll_c 1$$

$$\rightsquigarrow c^z \ll_E (\sqrt{c}^z)^E$$

Assume $E = 1$

$$\Rightarrow z < 100 \quad c < 3 \cdot 10^5 \quad (Z < 80000)$$

Check $\{a^x + b^y = c^z \& a^X + b^Y = c^Z\}$

$$\rightsquigarrow (a, b, c) = (5, 3, 2), (13, 3, 2), (5, 2, 3), (7, 2, 3) \quad \square$$

More detail for $c = 2$

Assume $2 \mid c$

$$a \equiv 1 \quad b \equiv -1 \quad (4)$$

$$a^x + b^y = c^z \quad a^X + b^Y = c^Z \quad z \leq Z$$

x, y, X, Y odd

$$\Rightarrow a^x \equiv -b^y \quad a^X \equiv -b^Y \quad \text{mod } c^z$$

$$\rightsquigarrow a^\Delta \equiv 1 \quad (, b^\Delta \equiv 1)$$

Since $c^z \mid a^\Delta - 1$ & $2 \mid c$,

$$\begin{aligned}\nu_2(c) \cdot z &\leq \nu_2(a^\Delta - 1) \\ &= \nu_2(a - 1) + \nu_2(\Delta)\end{aligned}$$

\rightsquigarrow

$$\nu_2(c) \cdot z \leq \min\{\nu_2(a - 1), \nu_2(b + 1)\} + \nu_2(\Delta)$$

Below, assume $c = 2$.

$$\therefore 2^z \mid \gcd(a - 1, b + 1) \cdot \Delta$$

Upper bound for Δ

$$\Delta = |xY - Xy|$$

$$< xY \quad (\text{if } xY > Xy)$$

$$< \frac{\log 2}{\log a} z \cdot \frac{\log 2}{\log b} Z \quad \because a^x < 2^z \quad b^Y < 2^Z$$

$$\ll z \cdot \frac{Z}{\log a \log b}$$

1st application of Baker (sketch)

$$a^X + b^Y = 2^Z$$

$$Z = \nu_2(a^X - (-b)^Y)$$

$$\ll \frac{\text{LCM}(e_c(a), e_c(b))}{\log^2 2} \log a \log b \log^2 \mathcal{B}$$

$$\mathcal{B} = \max\{X, Y\}/\mathcal{H}$$

$$\ll \frac{E}{\log^2 2} \log a \log b \log^2 \left(\frac{Z}{\log a \log b} \right)$$

$$\therefore Z \ll \log a \log b$$

$$\Delta \ll z \cdot \frac{Z}{\log a \log b} \ll z \quad \text{much smaller than } 2^z$$

$$C := \frac{2^z}{\gcd(2^z, \Delta)} \approx 2^z$$

$$C \mid \gcd(a-1, b+1)$$

2nd application of Baker (sketch)

$$\nu_C(2^Z) = \nu_C(a^X - (-b)^Y)$$

$$\frac{Z}{z} \ll \frac{\text{LCM}(e_C(a), e_C(b))}{\log^2 C} \log a \log b \log^2 \mathcal{B}$$

$$\mathcal{B} = \max\{X, Y\}/\mathcal{H} \cdot \log C$$

$$\ll \frac{1}{z^2} \log a \log b \log^2 \left(\frac{Z}{\log a \log b} \cdot z \right)$$

$$\therefore z \cdot Z \ll \log a \log b$$

$$z \cdot Z \ll \log(2^z)^{\frac{1}{x}} \cdot \log(2^z)^{\frac{1}{y}} \ll \frac{z^2}{xy}$$

$$x, y \ll 1 \quad Z \ll z \quad X, Y \ll 1$$

$$\Delta \ll 1 \quad C \approx 2^z$$

Note that $C \leq a - 1, b + 1$. **trivial**

$$\therefore 2^z \ll (2^z)^{\frac{1}{\max\{x,y\}}}$$

$$\underline{x > 1 \text{ or } y > 1}$$

$$(2/\sqrt{2})^z \ll 1 \quad z \ll 1 \quad Z \ll 1 \quad \dots \text{(1hour)} \dots //$$

$$\frac{x=1 \;\; \& \;\; y=1}{}$$

$$a+b=2^z$$

$$a=AC+1 \quad b=BC-1 \quad A+B=2^z/C$$

$$(AC+1)^X+(BC-1)^Y=2^Z$$

$$\mod C^2$$

$$\rightsquigarrow C \mid AX+BY \quad (\text{if } Z \geq 2z)$$

$$\Rightarrow C \ll A+B$$

$$(2/\sqrt{2})^z \ll 1 \quad \dots (50 \text{min}) \dots \quad // \quad \square$$

Another application of Theorem 1:

Theorem 3

$c : \text{Fermat prime}^* \Rightarrow \text{atmost1}$

- 3 5 17 257 65537
- computation time: 9 hours
- Th 1 + $\#(\mathbb{Z}/c\mathbb{Z})^\times$ power of 2 + c prime
- $2^{2^n} + 1 \neq \text{prime}$ for $n = 5, \dots, 32$

Sketch of Proof

$$a^x + b^y = c^z \quad a^X + b^Y = c^Z$$

$$E = e_c(a) = e_c(b) \quad \Delta = |x \cdot Y - X \cdot y|$$

“Th 1 + $\varphi(c)$ power of 2 + c prime”

yields a nice restriction on the **parities** of x, y, X, Y .

$$E \mid \varphi(c) \quad E \mid \Delta \quad (\because a^{\varphi(c)} \equiv 1, a^\Delta \equiv \pm 1 (c))$$

- $E > 1$ by Th 1
- $2 \mid E$ by $\varphi(c)$ power of 2

$$\therefore 2 \mid \Delta$$

• $x \not\equiv X \pmod{2}$ or $y \not\equiv Y \pmod{2}$

by **Scott's parity result** for c prime

$\Rightarrow x, y : \text{even OR } \underbrace{X, Y : \text{even}}_{\text{assume}}$

$\rightsquigarrow a^{X/2}, b^{Y/2} : \text{terms of } \pi, Z, \text{ where } \pi\bar{\pi} = c ;$

$E = E(c, Z) \ll \log c ;$

$Z \ll z \text{ by Baker (complex, 2-logs)}$

Further, $\min\{z, Z\} \ll_c 1$

by π -adic analogue to Baker

(F. Luca's idea for Terai's conj.)

+ and more $\rightsquigarrow \{a, b\} = \{c - 2, 2\} \square$

6

Status of *atmost1* for each small c

c	2	3	5	6	7	10	11	12
status	✓	✓	✓	✓	?	?	?	✓*
13	14	15	17	18	19	20	21	22
?	?	?	✓	✓*	?	?	?	?
23	24	26	28	29	30	31	33	34
?	✓*	?	?	?	?	?	?	?
35	37	38	39	40	41	42	43	44
?	?	?	?	✓*	?	?	?	?

✓ solved completely

✓* solved except for only finitely many (a, b)
being effectively determined

Future work (Part III in progress)

- more investigations to case $E > 1$
- proving *atmost1* for $c \in \{\text{other values}\}$
- proving *atmost1pillai* for $a \in \{\text{other values}\}$
- application of *abc*-conjecture

References

M.A. Bennett, *On some exponential equations of S. S. Pillai*, Canad. J. Math. **53** (2001), 897–922.

Y. Bugeaud, *Linear forms in two m -adic logarithms and applications to Diophantine problems*, Compositio Math. **132** (2002), 137–158.

Y. Bugeaud and M. Laurent, *Minoration effective de la distance p -adique entre puissances de nombres algébriques*, J. Number Theory **61** (1996), 311–342.

F. Luca, *On the system of Diophantine equations $a^2 + b^2 = (m^2 + 1)^r$ and $a^x + b^y = (m^2 + 1)^z$* , Acta Arith. **153** (2012), 373–392.

T. Miyazaki and I. Pink, *Number of solutions to a special type of unit equations in two variables*, preprint 2020, arXiv:2006.15952.

T. Miyazaki and I. Pink, *Number of solutions to a special type of unit equations in two variables II*, preprint 2022, arXiv:2205.11217.

R. Scott, *On the equations $p^x - b^y = c$ and $a^x + b^y = c^z$* , J. Number Theory **44** (1993), 153–165.

R. Scott and R. Styer, *Number of solutions to $a^x + b^y = c^z$* , Publ. Math. Debrecen **88** (2016), 131–138.

Thank you for your attention!