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1
purely Exponential Diophantine Equationpurely Exponential Diophantine Equationpurely Exponential Diophantine Equation

ax + by = cz

a, b, c fixed positive integers > 1

relatively prime

x, y, z unknown positive integers

・3x +4y = 5z

・ unknown= 1 allowed



Basic facts

・# {(x, y, z)} is absolutely finite.

L99 Subspace theorem

・x, y, z < Ceff(a, b, c).

L99 p-adic analogue to Baker’s method

In recent years, there has been important progress

on number of solutions.
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Proposition [Bennett,’01] atmost2pillai� �

For any a, b, c ∈ N；a, b > 1,gcd(a, b) = 1,

there are at most 2 sol.s to

ax − by = c x, y ≥ 1.
� �

・best possible

・special case of Pillai’s eq.

Motivation of Part I

3-variable version of atmost2pillai



Proposition [M. &Pink,’20] atmost2� �

For any a, b, c ∈ N>1；gcd(a, b, c) = 1,

there are at most 2 sol.s to

ax + by = cz x, y, z ≥ 1,

except for {a, b} = {3,5}, c = 2.
� �

・3+ 5=8 27+ 5=32 3+ 125=128

・∃∞∞∞(a, b, c) allowing the eq. to have 2 sol.s



Conjecture [Bennett,’01] atmost1pillai� �
For any a, b, c ∈ N；a, b > 1,gcd(a, b) = 1,

there is at most 1 sol. to

ax − by = c x, y ≥ 1,

except for the cases:

23 − 3 = 25 − 33 = 5 24 − 3 = 28 − 35 = 13

23 − 5 = 27 − 53 = 3 3− 2 = 32 − 23 = 1

13− 3 = 133 − 37 = 10 91− 2 = 912 − 213 = 89� �

The number of exceptional (a, b, c) is proven to be

finite by Subspace theorem & abc-conjecture.



Bennett confirmed atmost1pillai (his conjecture)

for each of the cases:

・c ≥ b2a
2 log a

・c ≤ by/6000 or c ≤ 100

• b ≡ ±1 mod a with a prime

(⇝ proving atmost1pillai for a : Fermat primes)

Q Can we prove a 3-variable version

of some of the above results?
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Conjecture [Scott &Styer,’16] atmost1� �

There is at most 1 sol. to

ax + by = cz,

except when (a, b, c) belongs to

{ (5,3,2), (13,3,2), (5,2,3), (7,2,3), (3,2,11),

(10,3,13), (3,2,35), (89,2,91), (5,2,133),

(3,2,259), (13,3,2200), (91,2,8283),

(2k − 1,2,2k +1); k ≥ 2 (̸= 3) }.
� �

・a, b, c ̸=perfect powers, a > b

・3-variable version of atmost1pillai



Previous worksPrevious worksPrevious works (’56～)

Sierpiński, Jeśmanoiwcz, Dem’janenko, Ko,· · ·

R.Scott (’93～)

・seq.s from factorization over Q(
√
−axby )

・works with R.Styer

⋆ c = 2 ⇒ atmost1

N.Terai, M.Le, P.Yuan, etc. (’94～)

・∃r ≥ 2；a2 + b2 = cr Terai’s conj.

・elementary+Baker+ternary eq.+ · · ·



A well-known theorem:A well-known theorem:A well-known theorem:

Proposition [Scott,’93]� �

There is at most 1 sol. to

ax + by = 2z,

except for {a, b} = {3,5}, {13,3}.
� �

・13+ 3=16 13+ 243=256

・purely algebraic manner in Q(
√
−axby )
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Fundamental result:Fundamental result:Fundamental result:

Theorem 1� �

a ≡ ±1 mod c & b ≡ ±1 mod c

⇒ atmost1� �

・3-variable version of one of Bennett’s results

・“&” can be replaced by “OR”.

・computation time: 2 weeks, by

ASUS computer with a 8-core 11th generation Intel-Core-7

11800H 4.6 GHz processor and with 16 GB of RAM



Corollary 1� �

c ∈ {2,3,6} ⇒ atmost1
� �
・『 p ∤ A ⇒ A ≡ ±1 mod p』for p ∈ {2,3}

・ another proof of Scott’s result for c = 2

For a set S of primes, we define the S-part of a positive

integer A as follows:

A[S] :=
∏
p∈S

p νp(A).

non-explicit but effective generalization:non-explicit but effective generalization:non-explicit but effective generalization:



Theorem 2

Let S be a set of odd prime factors of c.

Assume a, b ≡ ±1 modMS & cS>
√
c, where

(I) MS = Π
p∈S

p, cS = max( c[S], c[2] ); or

(II) MS = 4Π
p∈S

p, cS = c[S ∪ {2}].

If ax+by=cz has 2 sol.s, then a, b, c ≪ 1, or

cS/
√
c < C & a, b < exp

(
log C

(log cS)/ log
√
c −1

)
,

where C is some positive absolute const.

being effectively computable.



Restrictions with C under assuming 2 sol.s

・S = {odd primes of c}
(I)or(II)⇒ MS | c cS ≈ c;

c/
√
c ≪ 1 a, b ≪ 1 ⇒ effective Th1

・S = {odd primes of c} ∩ {3}
(I)⇒ MS ∈ {1,3} cS = max( c[2], c[3] )>

√
c;

max( c[2], c[3] ) /
√
c ≪ 1 a, b ≪c 1

⇒ following:



Corollary 2� �
For any fixed c satisfying

max( c[2], c[3] ) >
√
c,

atmost1 is true, except for only finitely

many pairs of a and b.� �

Corollary 3� �

c = pn · k ⇒ atmost1

where p∈{2,3}, k ̸≡ 0 (mod p), n≥n0(k).� �
・n0(k): const. depending only on k

・atmost1 is true for infinitely many values of c.
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Main idea with 2 sol.s (c prime)

ax + by = cz aX + bY = cZ z ≤ Z

⇝ cz | GCD( ae(a) ± 1, be(b) ± 1 ) ·∆

e(h) := ec(h) least s.t. he(h) ≡ ±1 (c)

∆ := |x・Y −X・y| ̸≠≠= 0

(This played a central role to prove atmost2.)

E := e(a) = e(b) w.l.o.g.

E = 1 ⇒ a, b：close∗ to 1 c-adically



Sketch of Proof of Theorem 1

νc (aX + bY ) = Z

＜＜＜・・・ by c-adic analogue to Baker

⇒ x, y,X, Y ≪E 1 ※E ≪c 1

⇝ cz ≪E (
√
c z)E

Assume E = 1

⇒ z < 100 c < 3 · 105 (Z < 80000)

Check {ax + by = cz & aX + bY = cZ

⇝ (a, b, c)= (5,3,2),(13,3,2),(5,2,3),(7,2,3) □



More detail for c = 2

Assume 2 | c

a ≡ 1 b ≡ −1 (4)

ax + by = cz aX + bY = cZ z ≤ Z

x, y,X, Y odd

⇒ ax ≡ −by aX ≡ −bY mod cz

⇝ a∆ ≡ 1 (, b∆ ≡ 1)



Since cz | a∆ − 1 ＆ 2 | c,

ν2(c) · z ≤ ν2(a
∆ − 1)

= ν2(a− 1) + ν2(∆)

⇝
ν2(c) · z ≤ min

{
ν2(a− 1), ν2(b+1)

}
+ ν2(∆)

Below, assume c = 2.

∴ 2z | gcd(a− 1, b+1) ·∆



Upper bound for ∆

∆ = |xY −Xy|

< xY (if xY > Xy)

<
log 2

log a
z ·

log 2

log b
Z ∵ ax < 2z bY < 2Z

≪ z ·
Z

log a log b



1st application of Baker (sketch)

aX + bY = 2Z

Z = ν2( a
X − (−b)Y )

≪
LCM( ec(a), ec(b) )

log2 2
log a log b log2B

B = max{X,Y }/H

≪
E

log2 2
log a log b log2

(
Z

log a log b

)

∴ Z ≪ log a log b



∆ ≪ z ·
Z

log a log b
≪ z much smaller than 2z

C :=
2z

gcd(2z,∆)
≈ 2z

C | gcd(a− 1, b+1)



2nd application of Baker (sketch)

νC(2
Z) = νC( a

X − (−b)Y )

Z

z
≪

LCM( eC(a), eC(b) )

log2C
log a log b log2B

B = max{X,Y }/H · logC

≪
1

z2
log a log b log2

(
Z

log a log b
· z

)

∴ z · Z ≪ log a log b



z · Z ≪ log(2z)
1
x · log(2z)

1
y ≪

z2

xy

x, y ≪ 1 Z ≪ z X, Y ≪ 1

∆ ≪ 1 C ≈ 2z

Note that C ≤ a− 1, b+1. trivial

∴ 2z ≪ (2z)
1

max{x,y}

x > 1 or y > 1

(2/
√
2)z≪1 z ≪ 1 Z ≪ 1 ...(1hour)... //



x = 1 & y = 1

a+ b = 2z

a = AC +1 b = BC − 1 A+B = 2z/C

(AC +1)X + (BC − 1)Y = 2Z

mod C2

⇝ C | AX +BY (if Z ≥ 2z)

⇒ C ≪ A+B

(2/
√
2)z ≪ 1 ...(50min)... // □



Another application of Theorem 1:Another application of Theorem 1:Another application of Theorem 1:

Theorem 3� �

c：Fermat prime∗ ⇒ atmost1
� �

・3 5 17 257 65537

・computation time: 9 hours

・Th 1 + #(Z/cZ)× power of 2 + c prime

・22
n
+1 ̸= prime for n = 5, · · ·,32



Sketch of Proof

ax + by = cz aX + bY = cZ

E=ec(a)=ec(b) ∆= |x・Y −X・y|

“Th 1 + φ(c) power of 2 + c prime”

yields a nice restriction on the parities of x, y,X, Y .

E | φ(c) E | ∆ (∵ aφ(c) ≡ 1, a∆ ≡ ±1 (c) )

・E > 1 by Th 1

・2 | E by φ(c) power of 2

∴ 2 | ∆



・x ̸≡ X mod2 or y ̸≡ Y mod2

by Scott’s parity result for c prime

⇒ x, y : even OR X,Y : even︸ ︷︷ ︸
assume

⇝ aX/2, bY/2 : terms of π, Z, where ππ̄ = c ;

E = E(c, Z) ≪ log c ;

Z ≪ z by Baker (complex, 2-logs)

Further, min{z, Z} ≪c 1

by π-adic analogue to Baker
(F. Luca’s idea for Terai’s conj.)

+ and more ⇝ {a, b} = {c− 2,2} □



6
Status of atmost1 for each small c

c 2 3 5 6 7 10 11 12
status ✓ ✓ ✓ ✓ ? ? ? ✓∗

13 14 15 17 18 19 20 21 22
? ? ? ✓ ✓∗ ? ? ? ?

23 24 26 28 29 30 31 33 34
? ✓∗ ? ? ? ? ? ? ?

35 37 38 39 40 41 42 43 44
? ? ? ? ✓∗ ? ? ? ?

✓ solved completely

✓∗ solved except for only finitely many (a, b)
being effectively determined



Future work (Part III in progress)Future work (Part III in progress)Future work (Part III in progress)

・more investigations to case E > 1

・proving atmost1 for c ∈ {other values}

・proving atmost1pillai for a ∈ {other values}

・application of abc-conjecture
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Theory 61 (1996), 311–342.

F. Luca, On the system of Diophantine equations a2 + b2 =

(m2 + 1)r and ax + by = (m2 + 1)z, Acta Arith. 153 (2012),

373–392.



T. Miyazaki and I. Pink, Number of solutions to a special type of

unit equations in two variables, preprint 2020, arXiv:2006.15952.

T. Miyazaki and I. Pink, Number of solutions to a special type of

unit equations in two variables II, preprint 2022, arXiv:2205.11217.

R. Scott, On the equations px − by = c and ax + by = cz, J.

Number Theory 44 (1993), 153–165.

R. Scott and R. Styer, Number of solutions to ax+by = cz, Publ.

Math. Debrecen 88 (2016), 131–138.

Thank you for your attention!


