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Motiváló példák

Miért érdemes a diofantikus problémákat geometriai szemléletmóddal
vizsgálni?
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Pitagoraszi számhármasok

Primit́ıv pitagoraszi számhármasok

Parametrizáljuk azokat az a, b, c relat́ıv pŕım pozit́ıv egészeket,
melyek megoldják az

a2 + b2 = c2

egyenletet!

Az egyenlet egy ekvivalens alakja(a
c

)2

+

(
b

c

)2

= 1.

Az x = a/c és y = b/c helyetteśıtésen keresztül az egyenlet egész
megoldásait megfeleltethetjük az

x2 + y2 = 1

egységkör racionális pontjainak.
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Pitagoraszi számhármasok

Tétel

Az összes primit́ıv pitagoraszi számhármas

a = 2mn, b = m2 − n2, c = m2 + n2

alakú, ahol m, n relat́ıv pŕım pozit́ıv egészek és n < m.

Megmutatható, hogy a (0, 1) pontból végzett sztereografikus projekció
esetén a (0, 1) és P ′ pontokon átmenő egyenes az egységkört a

P =

(
2mn

m2 + n2
,
m2 − n2

m2 + n2

)
pontban metszi.

Algebrai geometria nyelvén: az affin egyenes és az egységkör által defi-
niált algebrai görbe biracionálisan ekvivalens, ahol a transzformációkat
a sztereografikus projekció és inverze adja meg.
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Fermat utolsó tétele

Tétel (Fermat-Wiles)

Az
xn + yn = zn

egyenletnek nincs nem triviális megoldása, ha n ≥ 3.

Yves Hellegouarch (60-as évek vége): a Fermat egyenlet egy a, b, c
megoldásához rendeljük hozzá az

En : y2 = x(x − an)(x − bn)

elliptikus görbét.

Modularitás-tétel (korábban Taniyama-Shimura-Weil-sejtés): a Q fe-
letti elliptikus görbék modulárisak.
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Fermat utolsó tétele

Frey (1982-85): ha létezne ellenpélda Fermat-tételére, akkor En nem
moduláris (ekkor még a modularitás-tétel csak sejtés volt).

Serre (1985): a Taniyama-Shimura-Weil-sejtés ún. ”szemistabil” esetéből
következne Fermat tétele. Csak részben bizonýıtotta, a kimaradó
részből lett az úgynevezett epszilon-sejtés.

Ribet (1986): epszilon-sejtés igazolása.

Wiles (1993): a Taniyama-Shimura-Weil-sejtés szemistabil esetének
egy nem teljes bizonýıtása.

Wiles, Taylor (1995): a kimaradó rész áthidalása.

Breuil, Conrad, Diamond, Taylor (1998): a modularitás-tétel.
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A kongruens szám probléma

Az n ∈ N kongruens szám, ha létezik a, b, c ∈ Q, hogy

a2 + b2 = c2 és n =
ab

2
.

Klasszikus megfogalmazásban: létezik olyan derékszögű háromszög,
hogy oldalai racionálisak és területe n.

Kongruens szám probléma

Adott természetes számról döntsük el, hogy kongruens szám-e.

Vegyük észre, hogy(
a + b

2

)2

=
a2 + 2ab + b2

4
=

c2 + 4n

4
=

(c
2

)2

+ n,

(
a− b

2

)2

=
a2 − 2ab + b2

4
=

c2 − 4n

4
=

(c
2

)2

− n.
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Legyen x = (c/2)2. Ekkor

x − n =

(
a− b

2

)2

és x + n =

(
a + b

2

)2

.

Azaz olyan x ∈ Q számot keresünk, hogy x − n, x , x + n egyszerre
racionális négyzetek. Következésképpen

y2 = (x − n)x(x + n) = x3 − n2x .

Tétel

Az n ∈ N pontosan akkor kongruens szám, ha az E : y2 = x3 − n2x
elliptikus görbe rangja pozit́ıv.

A kongruens szám tulajdonságra Tunnell adott egyszerűen ellenőrizhető
kritériumot Birch és Swinnerton-Dyer sejtését feltételezve.
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Algebrai halmazok

Példa egy geometriai objektum algebrai vizsgálatára.
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Affin algebrai halmazok

Legyen K egy test. A K feletti n dimenziós affin tér

An(K) = Kn.

An(K) elemeit pontoknak nevezzük.

n = 1: affin tengely.

n = 2: affin śık.

n = 3: affin tér.

Ha F ∈ K[X1, . . . ,Xn], akkor egy P = (a1, . . . , an) ∈ An(K) pont az
F zérója, ha F (P) = 0.

Ha F nem konstans, akkor zéróinak halmaza V (F ) az F által definiált
hiperfelület.
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Affin algebrai halmazok

Ha deg F = 1, akkor An(K) egy hiperśıkjáról beszélünk.

K = R, n = 2, F (x , y) = ax + by + c - V (F ) egyenes;

K = R, n = 3, F (x , y) = ax + by + cz + d - V (F ) śık.

és ı́gy tovább...

Általánosabban, ha S ⊂ K[X1, . . . ,Xn] polinomok egy halmaza, akkor

V (S) = {P ∈ An(K) : F (P) = 0 bármely F ∈ S esetén}.

A V ⊂ An(K) affin algebrai halmaz vagy egyszerűen algebrai halmaz,
ha V = V (S) valamely S ⊂ K[X1, . . . ,Xn] esetén.
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Algebrai halmazok szerkezete

Emlékeztetésképpen, ha R egy gyűrű, akkor I az R egy ideálja, amennyi-
ben

I az (R,+) részcsoportja;

I zárt az R-beli elemekkel való szorzásra.

Ha S ⊂ R, akkor az S által generált ideál a legszűkebb ideál I , hogy
S ⊂ I . Ha R kommutat́ıv és egységelemes, akkor az S = {s1, . . . , sr}
által generált ideál

{a1s1 + · · ·+ ar sr : ai ∈ R}.

Speciálisan, az S = {F1, . . . ,Fr} ⊂ K[X1, . . . ,Xn] által generált ideál

{G1F1 + · · ·+ GrFr : Gi ∈ K[X1, . . . ,Xn]}.
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Algebrai halmazok szerkezete

Álĺıtás

Ha I az S által generált ideál K[X1, . . . ,Xn]-ben, akkor V (S) = V (I ).

Bizonýıtás.

Standard. Megmutatható, hogy V (I ) ⊂ V (S) és V (S) ⊂ V (I ).

Azaz, minden algebrai halmaz előálĺıtható az S-beli polinomok által
generált ideál seǵıtségével.

Ennél többet is mondhatunk.

Tétel

Minden algebrai halmaz véges sok hiperfelület metszete.

Az eredeti defińıcióban S akármennyi polinom halmaza is lehetett.
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Algebrai halmazok szerkezete

Újabb algebrai eszközökre lesz szükségünk.

Egy gyűrű Noether, ha benne minden ideál végesen generált.

Tétel (Hilbert bázistétele)

Ha R Noether gyűrű, akkor R[X1, . . . ,XN ] is Noether gyűrű.

A bázistételt nem igazoljuk, azonban (mivel a testek Noether gyűrűk)
az előző álĺıtás most már egyszerű következménnyé változik.

Bizonýıtás.

Legyen V (I ) az algebrai halmaz. Mivel K[X1, . . . ,Xn] Noether, ezért
I = (F1, . . . ,Fr ) végesen generált és V (I ) = V (F1)∩ · · · ∩V (Fr ).
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Algebrai halmazok szerkezete

V ⊂ An(K) algebrai halmaz reducibilis, ha léteznek olyan V 6= V1,V2 ⊂
An(K) algebrai halmazok, hogy V = V1 ∪ V2. Ellenkező esetben V
irreducibilis.

Emlékeztetésképpen, egy I ideál pŕımideál, ha nem az egész gyűrű és
a gyűrű bármely olyan a, b elemeire, melyre ab ∈ I , a ∈ I vagy b ∈ I
teljesül.

Álĺıtás

A V algebrai halmaz pontosan akkor irreducibilis, ha I (V ) pŕımideál
An(K)-ban.

Tétel

Minden algebrai halmaz egyértelműen felbontható véges sok
irreducibilis páronként egymást nem tartalmazó algebrai halmaz
uniójára.
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Hilbert Nullstellensatz

Algebrailag zárt test felett ideálbeli polinomoknak van közös zérója,
amennyiben az ideál nem a teljes polinomgyűrű.

Tétel (”Gyenge” Nullstellensatz)

Tegyük fel, hogy K algebrailag zárt, I egy K[X1, . . . ,Xn], ami nem a
teljes polinomgyűrű. Ekkor V (I ) 6= ∅.

Az Nullstellensatz teljes erejű kimondásához bevezetjük az ideál ra-
dikáljának fogalmát.

Ha I ideál K[X1, . . . ,Xn]-ben, akkor radikálja

√
I = {F ∈ K[X1, . . . ,Xn] : ∃m ∈ N, hogy Fm ∈ I}.

Ha I = Rad(I ), akkor I radikál ideálnak nevezzük.
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Hilbert Nullstellensatz

Tétel (Nullstellensatz)

Legyen K algebrailag zárt, I egy K[X1, . . . ,Xn]-beli ideál. Ekkor
I (V (I )) = Rad(I ).

A tétel egy értelmezése: ha F1, . . . ,Fr ,G ∈ K[X1, . . . ,Xn] és G eltűnik
minden esetben, amikor F1, . . . ,Fr eltűnik, akkor

Gm = G1F1 + · · ·+ GrFr (m ∈ N, Gi ∈ K[X1, . . . ,Xn]).

Következmény

Ha I radikál ideál, akkor I (V (I )) = I . Azaz egyértelmű megfeleltetés
van a radikál ideálok és az algebrai halmazok között.

Következmény

Ha I pŕımideál, akkor V (I ) irreducibilis. Azaz egyértelmű
megfeleltetés van a pŕımideálok és az algebrai halmazok között.
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Köszönöm a figyelmet!

Folytatás?
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