Online Number Theory Seminar

14 April 2023. - 17:00-17:50

László Szalay: On the difference of k-generalized Lucas numbers and powers of 2

Assume that $k \geq 2$ is a given positive integer. The k-generalized Lucas sequence $\left\{L_{n}^{(k)}\right\}_{n \geq 0}$ has positive integer initial values $k, 1,3, \ldots, 2^{k-1}-1$, and each term afterward is the sum of the k consecutive preceding elements:

$$
L_{n}^{(k)}=L_{n-1}^{(k)}+L_{n-2}^{(k)}+\cdots+L_{n-k}^{(k)}
$$

An integer n is said to be close to a positive integer m if it satisfies $|n-m|<\sqrt{m}$. In the talk, we solve completely a closeness problem, namely the diophantine inequality

$$
\left|L_{n}^{(k)}-2^{m}\right|<2^{m / 2}
$$

in the non-negative integers k, n, and m. This problem is equivalent to the resolution of the equation $L_{n}^{(k)}=2^{m}+t$ with the condition $|t|<2^{m / 2}, t \in \mathbb{Z}$. We also discovered a new formula for $L_{n}^{(k)}$ which was very useful in the investigation of one particular case of the problem.

