ON THE NUMBER OF SOLUTIONS OF DECOMPOSABLE FORM INEQUALTITIES

C.L.Stewart

Department of Pure Mathematics University of Waterloo Waterloo, Ontario, Canada

Debrecen number theory seminar, November 22, 2024

Let *n* be an integer with $n \ge 2$ and put $\mathbf{X} = (X_1, ..., X_n)$. Let *F* be a non-zero decomposable form in *n* variables with integer coefficients and degree *d* with d > n, so

$$F(\mathbf{X}) = L_1(\mathbf{X})...L_d(\mathbf{X}) \tag{0.1}$$

where $L_1(\mathbf{X}), ..., L_d(\mathbf{X})$ are linear forms in $\mathbb{C}[X_1, ..., X_n]$.

Norm forms, discriminant forms, index forms and binary forms are examples of decomposable forms. Note that $L_1(\mathbf{X}), ..., L_d(\mathbf{X})$ are not uniquely determined by F since if $\alpha_1, ..., \alpha_d$ are complex numbers with

 $\alpha_1 \dots \alpha_d = 1$

then $F(\mathbf{X}) = H_1(\mathbf{X})...H_d(\mathbf{X})$ when

 $\alpha_i L_i(\mathbf{X}) = H_i(\mathbf{X})$

for *i* = 1, ..., *d*.

Let *m* be a positive integer and let $N_F(m)$ denote the number of points $(a_1, ..., a_n)$ with integer coordinates for which

$$|F(a_1,...,a_n)| \le m.$$
 (0.2)

Let V_F denote the volume of the set

 $\{(x_1,...,x_n)\in\mathbb{R}^n:|F(x_1,...,x_n)|\leq 1\}.$

By homogeneity the volume of

 $\{(x_1,...,x_n) \in \mathbb{R}^n : |F(x_1,...,x_n)| \le m\}$ (0.3)

is $V_F m^{n/d}$ and one might suppose that $N_F(m)$ is close to $V_F m^{n/d}$. When is that so? *F* is said to be of *finite type* if V_F is finite and the same is true for *F* restricted to any non-trivial rational subspace. In particular, for every *n*'-dimensional subspace *S* of \mathbb{R}^n defined over \mathbb{Q} the *n*'-dimensional volume of *F* restricted to *S* is finite.

In 2001 Thunder showed that if *F* is of finite type then

$$N_F(m) \ll_{n,d} m^{n/d}; \tag{0.4}$$

the symbol \ll together with a subscript means less than a positive number which depends on the terms in the subscript. Thunder's result resolved a conjecture of Schmidt and is best possible up to the dependence of the implicit constant on *n* and *d*.

For any element $\mathbf{x} = (x_1, ..., x_n)$ in \mathbb{C}^n let $\|\mathbf{x}\| = (x_1 \overline{x}_1 + ... + x_n \overline{x}_n)^{1/2}$. For any linear form $L(\mathbf{X}) = \alpha_1 X_1 + ... + \alpha_n X_n$ in $\mathbb{C}[X_1, ..., X_n]$ let **L** denote the coefficient vector $(\alpha_1, ..., \alpha_n)$ of $L(\mathbf{X})$. We define the quantity $\mathcal{H}(F)$ of F by

$$\mathcal{H}(F) = \prod_{i=1}^d \|\mathbf{L}_i\|.$$

Thunder also proved that if *F* is of finite type and *F* is not proportional to a power of a definite quadratic form in 2 variables then there exist positive numbers a_F and c_F such that

$$|N_F(m) - m^{n/d} V_F| \ll_{n,d} \mathcal{H}(F)^{c_F} (1 + \log m)^{n-2} m^{\frac{n-1}{d-a_F}}.$$
 (0.5)

If the discriminant of the form is non-zero then one may take $a_F = 1$ and $c_F = \binom{d-1}{n-1} - 1$.

In 1933 Mahler proved that if n = 2 and $F(X_1, X_2)$ is a binary form with integer coefficients which is irreducible over the rationals then

$$|N_F(m) - m^{2/d} V_F| \ll_F m^{1/(d-1)}.$$
 (0.6)

Thunder's result is a generalization of (0.6) since if *F* is irreducible over \mathbb{Q} then $a_F = 1$ and *F* is of finite type.

Ramachandra, in 1969, was the first to obtain an asymptotic result for $N_F(m)$ for a class of decomposable forms with $n \ge 3$. He did so when *F* has the shape

$F(\mathbf{X}) = N_{\mathbb{K}/\mathbb{Q}}(X_1 + \alpha X_2 + \alpha^2 X_3 + \dots + \alpha^{n-1} X_n)$

where $\mathbb{K} = \mathbb{Q}(\alpha)$ is a number field of degree *r* with $r \ge 8n^6$ and $N_{\mathbb{K}/\mathbb{Q}}$ denotes the norm from \mathbb{K} to \mathbb{Q} .

Let $\alpha_1, ..., \alpha_n$ be non-zero algebraic numbers and put $\mathbb{K} = \mathbb{Q}(\alpha_1, ..., \alpha_n)$. Suppose that $F(\mathbf{X})$ is a norm form so

$$F(\mathbf{X}) = N_{\mathbb{K}/\mathbb{Q}}(\alpha_1 X_1 + \dots + \alpha_n X_n) = \prod_{\sigma} \sigma(\alpha_1 X_1 + \dots + \alpha_n X_n)$$

where the product is taken over the isomorphic embeddings σ of \mathbb{K} into \mathbb{C} .

Let *V* be the vector space of all rational linear combinations of $\alpha_1, ..., \alpha_n$. For each subfield \mathbb{J} of \mathbb{K} we define the linear subspace $V^{\mathbb{J}}$ of *V* given by the elements of *V* which remain in *V* after multiplication by any element of \mathbb{J} . *F* is said to be non-degenerate if $\alpha_1, ..., \alpha_n$ are linearly independent over \mathbb{Q} and if $V^{\mathbb{J}} = \{0\}$ for each subfield \mathbb{J} of \mathbb{K} which is not \mathbb{Q} or an imaginary quadratic field.

In 1972 Schmidt proved that $N_F(m)$ is finite for each positive integer *m* if and only if *F* is non-degenerate. In 2000 Evertse proved that if *F* is a non-degenerate norm form then

 $N_{F}(m) \leq (16d)^{(n+1)^{3}/3} (1 + \log m)^{n(n-1)/2} m^{(n+\sum_{m=2}^{n-1} 1/m)/d)}.$ (0.7) Non-degenerate norm forms are of finite type and so (0.4) gives

a better dependence on m than (0.7) although the dependence of the upper bound on n and d is not explicit in (0.4).

Let $N_F^*(m)$ denote the number of vectors $(a_1, ..., a_n)$ with integer coordinates for which

 $0 < |F(a_1, ..., a_n)| \le m.$ (0.8)

If F is of finite type then F does not vanish at any non-zero integer point and so

 $N_F(m) = 1 + N_F^*(m).$ (0.9)

There exist distinct irreducible polynomials $F_1, ..., F_k$ with integer coefficients, content 1 and degrees $d_1, ..., d_k$ respectively and there exist positive integers $l_1, ..., l_k$ for which $d_1l_1 + ... + d_kl_k = d$ such that

$$F(\mathbf{X}) = C_0 F_1(\mathbf{X})^{l_1} \dots F_k(\mathbf{X})^{l_k}, \qquad (0.10)$$

where $|C_0|$ is the content of *F*.

For each integer *j* with $1 \le j \le k$ the polynomial $F_j(\mathbf{X})$ is of the form $aN_{\mathbb{K}/\mathbb{Q}}(L(\mathbf{X}))$ where *a* is a non-zero rational number, \mathbb{K} is a number field of degree d_j over \mathbb{Q} , $N_{\mathbb{K}/\mathbb{Q}}$ denotes the norm from \mathbb{K} to \mathbb{Q} and $L(\mathbf{X})$ is a linear form which is proportional to a linear form L_j with *i* from $\{1, ..., d\}$.

For i = 1, ..., d let B_i be the rational subspace of \mathbb{R}^n for which $L_i(\mathbf{X}) = 0$. Note that if $L_i(\mathbf{X})$ and $L_j(\mathbf{X})$ divide $F_h(\mathbf{X})$ in $\mathbb{C}[\mathbf{X}]$ for some h with $1 \le h \le k$ then $B_i = B_j$. Thus each polynomial $F_i(\mathbf{X})$ determines exactly one rational subspace of \mathbb{R}^n , say A_i , for which $F_i(\mathbf{X}) = 0$.

Put

$$d_{F} = \begin{cases} 0 & \text{if } A_{i} = \{\mathbf{0}\} \text{ for } i = 1, ..., k \\ \max\{l_{i_{1}}d_{i_{1}} + ... + l_{i_{j}}d_{i_{j}}\} & \text{otherwise,} \end{cases}$$
(0.11)
where the maximum is taken over those tuples $(i_{1}, ..., i_{j})$ of
distinct integers for which $A_{i_{1}} \cap ... \cap A_{i_{j}}$ is different from the zero
vector or equivalently for which there is a non-zero integer point
 $(s_{1}, ..., s_{n})$ for which $F_{i_{m}}(s_{1}, ..., s_{n}) = 0$ for $m = 1, ..., j$.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

F is said to be of *essentially finite type* if V_F is finite, $V(\tilde{F})$ is finite whenever \tilde{F} is *F* restricted to a rational subspace of \mathbb{R}^n which is not a subspace of A_i for i = 1, ..., k and

$$A_1 \cap ... \cap A_k = \{\mathbf{0}\}.$$
 (0.12)

If F is of essentially finite type then, by virtue of (0.12),

$$d_F < d. \tag{0.13}$$

Further, if *F* is of finite type then it is also of essentially finite type since in this case $A_i = \{0\}$ for i = 1, ..., k and so (0.12) holds.

THEOREM

Let $F(\mathbf{X})$ be a non-zero decomposable form in n variables with integer coefficients and degree d with $d > n \ge 2$ and let m be a positive integer. If F is of essentially finite type then

$$N_F^*(m) \ll_{n,d} m^{\frac{1}{d} + \frac{n-1}{d-d_F}}.$$
 (0.14)

Notice that if *F* is of finite type then $d_F = 0$ and Thunder's result (0.4) follows from (0.9) and (0.14).

The proof of Theorem 1 depends on a quantitative version of Schmidt's Subspace Theorem due to Evertse. A key feature of Theorem 1 is that the upper bound for $N_F^*(m)$ is independent of the coefficients of the form *F*. We require such an estimate in order to prove the analogue of Thunder's second estimate estimate (0.5) for forms of essentially finite type.

Before stating such a result we shall make explicit the quantities a_F and c_F .

For a factorization as in (0.1) of *F* we let I(F) denote the set of all *n*-tuples ($\mathbf{L}_{i_1}, ..., \mathbf{L}_{i_n}$) of linearly independent coefficient vectors. For each linear form $L_i(\mathbf{X})$ from (0.1) we denote by $b(L_i)$ the number of *n*-tuples in I(F) which contain \mathbf{L}_i and we put

 $b_F = \max\{b(L_1), ..., b(L_n)\}.$

Next let J(F) be the subset of I(F) consisting of *n*-tuples $(L_{i_1}, ..., L_{i_n})$ for which for j = 1, ..., n - 1 either $L_{i_{j+1}}$ is proportional to \overline{L}_{i_i} or \overline{L}_{i_j} is in the span of $L_{i_1}, ..., L_{i_l}$. We then put

$$a_F = \max\left\{rac{ ext{the number of } \mathbf{L}_i ext{ in the span of } \mathbf{L}_{i_1}, ..., \mathbf{L}_{i_j}}{j}
ight\}$$

where the maximum is taken over integers *j* from $\{1, ..., n-1\}$ and *n*-tuples $(\mathbf{L}_{i_1}, ..., \mathbf{L}_{i_n})$ from J(F).

Finally we put

$$c_F = \begin{cases} \binom{d-1}{n-1} - 1 & \text{if } \Delta_F \neq 0\\ \frac{b_F}{n!a_F} (d - (n-1)a_F) - \frac{1}{a_F} & \text{otherwise.} \end{cases}$$

C.L.STEWART

★ E → E

THEOREM

Let F(X) be a decomposable form in n variables with integer coefficients and degree d with $d > n \ge 2$ and let m be an integer with m > 1. If F is of essentially finite type then

 $|N_{F}^{*}(m) - m^{n/d}V_{F}| \ll_{n,d} \mathcal{H}(F)^{c_{F}}(\log m)^{n-2}m^{\frac{n-1}{d-a_{F}}}$

+ $(\log m + \log \mathcal{H}(F))^{n-1} m^{\frac{1}{d} + \frac{n-2}{d-d_F}} (0.15)$

If *F* is of finite type then $d_F = 0$ and $a_F \ge 1$. Thus

$$\frac{1}{d} + \frac{n-2}{d-d_F} = \frac{n-1}{d} < \frac{n-1}{d-a_F}$$

and so Thunder's second result (0.5) follows from Theorem 2.

For the proof we appeal to Theorem 1 and, once again, to a quantitative version of the Subspace Theorem.

If F is of essentially finite type and F is not proportional to a power of a definite quadratic form in 2 variables then

$$1 \le a_F \le \frac{d}{n} - \frac{1}{n(n-1)}.$$
 (0.16)

The discriminant Δ_F of a form as in (0.1) is given by

$$\Delta_{F} = \prod_{(i_{1},...,i_{n})} det(\mathsf{L}_{i_{1}}^{tr},...,\mathsf{L}_{i_{n}}^{tr})$$

where the product is taken over all *n*-tuples of distinct integers $(i_1, ..., i_n)$ with $1 \le i_j \le d$ for j = 1, ..., n. Here \mathbf{L}^{tr} denotes the transpose of \mathbf{L} .

Let B(x, y) denote the Beta function. In 1996 Bean and Thunder proved that if $\Delta_F \neq 0$ then

$$|\Delta_F|^{\frac{(d-n)!}{d!}} V_F \le C_n \tag{0.17}$$

where

$$C_n = \frac{2}{n} \prod_{k=1}^{n-1} \left(B(\frac{1}{n+1}, \frac{k}{n+1}) + B(\frac{n-k}{n+1}, \frac{k}{n+1}) + B(\frac{n-k}{n+1}, \frac{1}{n+1}) \right);$$

the case when n = 2 was established by Bean in 1994.

They proved that the upper bound of C_n is sharp in (0.17) and that C_n grows like a constant times $(2n)^n$.

If Δ_F is non-zero then $a_F = 1$ and $c_F = \binom{d-1}{n-1} - 1$. Thus by Theorem 2 and (0.17) we have the following result.

COROLLARY

Let $F(\mathbf{X})$ be a decomposable form in n variables with integer coefficients and degree d with $d > n \ge 2$ and let m be an integer with m > 1. If F is of essentially finite type and $\Delta_F \neq 0$ then

 $N_F^*(m) \ll_{n,d} m^{n/d} |\Delta_F|^{-\frac{(d-n)!}{n!}} + \mathcal{H}(F)^{\binom{d-1}{n-1}-1} (\log m)^{n-2} m^{\frac{n-1}{d-1}}$

+ $(\log m + \log \mathcal{H}(F))^{n-1} m^{\frac{1}{d} + \frac{n-2}{d-d_F}} (0.18)$

When n = 2, $F(\mathbf{X})$ is a binary form and if Δ_F is non-zero then F is of essentially finite type and d_F is either 0 or 1. Since $a_F = 1$ we obtain our next result.

COROLLARY

Let $F(\mathbf{X})$ be a binary form with integer coefficients, degree d with $d \ge 3$ and $\Delta_F \ne 0$. Let m be a positive integer. Then

$$|N_F^*(m) - m^{2/d} V_F| \ll_d m^{\frac{1}{d-1}} \mathcal{H}(F)^{d-2}.$$
 (0.19)

Corollary 4 generalizes Mahler's result (0.6), where F is assumed to be irreducible over the rationals, to the case where F has a non-zero discriminant. By (0.5) such a result holds when F is of finite type but that does not give Corollary 4 in the case when F has a linear factor over the rationals. The proofs of Theorems 1 and 2 build on the work of Thunder. He proceeds by establishing an upper bound for each \mathbf{x} in \mathbb{R}^n for

 $\frac{\prod_{j=1}^{n} |L_{i_j}(\mathbf{x})|}{|det(\mathbf{L}_{i_1}^{tr}, ..., \mathbf{L}_{i_n}^{tr})|}$

for some *n*-tuple $(L_{i_1}, ..., L_{i_n})$ from I(F). Thunder establishes two such estimates.

Let $F(\mathbf{X})$ be a decomposable form in *n* variables with integer coefficients and degree *d* with $d > n \ge 2$ as in (0.1).

LEMMA

If $F(\mathbf{X})$ is of essentially finite type and F is not proportional to a power of a definite quadratic form in 2 variables then there is a positive number $C_1 = C_1(n, d)$, which depends on n and d, such that for every $\mathbf{x} \neq \mathbf{0}$ in \mathbb{R}^n there is an n-tuple $(\mathbf{L}_{i_1}, ..., \mathbf{L}_{i_n})$ in J(F) for which

$$\frac{\prod_{j=1}^{n} |L_{i_j}(\boldsymbol{x})|}{|\det(\boldsymbol{L}_{i_1}^{tr},...,\boldsymbol{L}_{i_n}^{tr})|} \leq C_1 \left(\frac{|F(\boldsymbol{x})|}{\|\boldsymbol{x}\|^{d-na_F}}\right)^{1/a_F} \mathcal{H}(F)^{c_F}$$

The preceding Lemma was proved by Thunder when F is of finite type.

Let l'(F) be the subset of l(F) consisting of the *n*-tuples $(\mathbf{L}_{i_1}, ..., \mathbf{L}_{i_n})$ of linearly independent coefficient vectors with $i_1 < i_2 < ... < i_n$.

LEMMA

If $F(\mathbf{X})$ is of essentially finite type and $\mathcal{H}(F)$ is minimal among forms equivalent to F then there is a positive number $C_2 = C_2(n, d)$, which depends on n and d, such that for every \mathbf{X} in \mathbb{R}^n there is an n-tuple $(\mathbf{L}_{i_1}, ..., \mathbf{L}_{i_n})$ in l'(F) and there is a polynomial $G(\mathbf{X})$ in $\mathbb{Z}[\mathbf{X}]$ of degree d_0 , with $d_0 \ge d - d_F$, which divides $F(\mathbf{X})$ in $\mathbb{Z}[\mathbf{X}]$ for which

$$\frac{\prod_{j=1}^{n} |L_{i_j}(\boldsymbol{x})|}{|\det(\boldsymbol{L}_{i_1}^{tr},...,\boldsymbol{L}_{i_n}^{tr})|} \leq C_2 \frac{|F(\boldsymbol{x})|^{1/d} |G(\boldsymbol{x})|^{\frac{n-1}{d_0}}}{\mathcal{H}(F)^{1/d}}$$

If *T* is in $GL_n(\mathbb{Z})$ then the form $G(\mathbf{X}) = F(T(\mathbf{X}))$ is said to be equivalent to *F*. Then $V_F = V_G$ but $\mathcal{H}(F)$ need not be equal to $\mathcal{H}(G)$. Put

 $\mathcal{H}_0(F) = \min_T \mathcal{H}(F \circ T)$

where the minimum is taken over *T* in $GL_n(\mathbb{Z})$.

In 1989 Schmidt established a quantitative version of the Subspace Theorem . This was subsequently refined by Evertse in 1996. By combining Lemma 5 with the result of Evertse we are able to prove the following result.

LEMMA

Let F be a decomposable form in n variables with integer coefficients and degree d with $d > n \ge 2$ as in (0.1). Suppose that F is of essentially finite type and that F is not proportional to a power of a definite quadratic form in 2 variables. Put

$$C = max(C_1, m^{\frac{1}{a_F}}, m^{\frac{1}{d}}\mathcal{H}_0(F)^{1+c_F})^{4a_F(n-1)}$$
(0.20)

where C_1 is given in Lemma 5. There is a positive number c, which is computable in terms of n and d, and there are t proper rational subspaces $T_1, ..., T_t$ of \mathbb{Q}^n with $t \le c$ such that if **a** is an integer point with $||\mathbf{a}|| \ge C$ for which

$1 \leq |F(a)| \leq m$

then **a** is in $T_1 \cup ... \cup T_t$.

Suppose F is proportional to a power of a definite quadratic form in 2 variables, say

$$F(X_1, X_2) = h(AX_1^2 + BX_1X_2 + CX_2^2)^k$$
(0.21)

with h, k, A, B, C integers with $h \neq 0, k \geq 2$ and $B^2 - 4AC < 0$.

Lemma

Then

$$|N_F^*(m) - \frac{2\pi}{\sqrt{4AC - B^2}} (\frac{m}{h})^{2/d}| \ll (\frac{m}{h})^{1/d}.$$
 (0.22)

C.L.STEWART

DECOMPTALK

47/49

・ロト <
回 > <
三 > <
三 ・ の へ
の
</p>

In 1915 Landau gave an asymptotic estimate for $N_G(m)$, hence also for $N_G^*(m)$, when $G(X_1, X_2) = AX_1^2 + BX_1X_2 + CX_2^2$ however he did not make explicit the dependence on the coefficients of *G* in his estimate, a feature that we require. Thank you for your attention.