ON THE NUMBER OF SOLUTIONS OF DECOMPOSABLE FORM INEQUALTITIES

C.L.Stewart

Department of Pure Mathematics University of Waterloo Waterloo, Ontario, Canada

Debrecen number theory seminar,November 22, 2024

Let *n* be an integer with $n \geq 2$ and put $\mathbf{X} = (X_1, ..., X_n)$. Let *F* be a non-zero decomposable form in *n* variables with integer coefficients and degree d with $d > n$, so

$$
F(\mathbf{X}) = L_1(\mathbf{X})....L_d(\mathbf{X})
$$
\n(0.1)

where $L_1(\mathbf{X}), ..., L_d(\mathbf{X})$ are linear forms in $\mathbb{C}[X_1, ..., X_n]$.

Norm forms, discriminant forms, index forms and binary forms are examples of decomposable forms. Note that $L_1(\mathbf{X}),..., L_d(\mathbf{X})$ are not uniquely determined by F since if $\alpha_1, ..., \alpha_d$ are complex numbers with

 α_1 $\alpha_d = 1$

then $F(\mathbf{X}) = H_1(\mathbf{X})...H_d(\mathbf{X})$ when

 $\alpha_i L_i(\mathbf{X}) = H_i(\mathbf{X})$

for $i = 1, ..., d$.

Let *m* be a positive integer and let $N_F(m)$ denote the number of points $(a_1, ..., a_n)$ with integer coordinates for which

$$
|F(a_1,...,a_n)| \leq m. \hspace{1cm} (0.2)
$$

Let *V^F* denote the volume of the set

 $\{(x_1, ..., x_n) \in \mathbb{R}^n : |F(x_1, ..., x_n)| \leq 1\}.$

By homogeneity the volume of

 $\{(x_1, ..., x_n) \in \mathbb{R}^n : |F(x_1, ..., x_n)| \le m\}$ (0.3)

is $V_F m^{n/d}$ and one might suppose that $N_F(m)$ is close to *VFmn*/*^d* . When is that so?

 QQ

F is said to be of *finite type* if *V^F* is finite and the same is true for *F* restricted to any non-trivial rational subspace. In particular, for every n'-dimensional subspace S of \mathbb{R}^n defined over $\mathbb Q$ the *n'*-dimensional volume of *F* restricted to *S* is finite.

In 2001 Thunder showed that if *F* is of finite type then

$$
N_F(m) \ll_{n,d} m^{n/d}; \qquad (0.4)
$$

the symbol \ll together with a subscript means less than a positive number which depends on the terms in the subscript. Thunder's result resolved a conjecture of Schmidt and is best possible up to the dependence of the implicit constant on *n* and *d*.

For any element $\mathbf{x} = (x_1, ..., x_n)$ in \mathbb{C}^n let $\|\mathbf{x}\| = (x_1\overline{x}_1 + ... + x_n\overline{x}_n)^{1/2}$. For any linear form $L(\mathbf{X}) = \alpha_1 X_1 + ... + \alpha_n X_n$ in $\mathbb{C}[X_1, ..., X_n]$ let **L** denote the coefficient vector $(\alpha_1, ..., \alpha_n)$ of $L(\mathbf{X})$. We define the quantity $H(F)$ of F by

$$
\mathcal{H}(F)=\prod_{i=1}^d\|\mathsf{L}_i\|.
$$

 Ω

Thunder also proved that if *F* is of finite type and *F* is not proportional to a power of a definite quadratic form in 2 variables then there exist positive numbers a_F and c_F such that

$$
|N_F(m)-m^{n/d}V_F| \ll_{n,d} \mathcal{H}(F)^{c_F}(1+\log m)^{n-2}m^{\frac{n-1}{d-a_F}}.
$$
 (0.5)

If the discriminant of the form is non-zero then one may take $a_F = 1$ and $c_F = \binom{d-1}{n-1}$ $\binom{a-1}{n-1}$ - 1.

In 1933 Mahler proved that if $n = 2$ and $F(X_1, X_2)$ is a binary form with integer coefficients which is irreducible over the rationals then

$$
|N_F(m)-m^{2/d}V_F|\ll_F m^{1/(d-1)}.
$$
 (0.6)

Thunder's result is a generalization of [\(0.6\)](#page-9-0) since if *F* is irreducible over $\mathbb Q$ then $a_F = 1$ and F is of finite type.

Ramachandra, in 1969, was the first to obtain an asymptotic result for $N_F(m)$ for a class of decomposable forms with $n > 3$. He did so when *F* has the shape

 $F(X) = N_{K/\mathbb{Q}}(X_1 + \alpha X_2 + \alpha^2 X_3 + ... + \alpha^{n-1} X_n)$

where $\mathbb{K} = \mathbb{Q}(\alpha)$ is a number field of degree r with $r \geq 8 n^6$ and $N_{K/\mathbb{Q}}$ denotes the norm from K to Q.

Let $\alpha_1, ..., \alpha_n$ be non-zero algebraic numbers and put $\mathbb{K} = \mathbb{Q}(\alpha_1, ..., \alpha_n)$. Suppose that $F(\mathbf{X})$ is a norm form so

$$
F(\mathbf{X}) = N_{\mathbb{K}/\mathbb{Q}}(\alpha_1 X_1 + \dots + \alpha_n X_n) = \prod_{\sigma} \sigma(\alpha_1 X_1 + \dots + \alpha_n X_n)
$$

where the product is taken over the isomorphic embeddings σ of K into C .

Let *V* be the vector space of all rational linear combinations of $\alpha_1, ..., \alpha_n$. For each subfield J of K we define the linear subspace *V* ^J of *V* given by the elements of *V* which remain in *V* after multiplication by any element of J. *F* is said to be non-degenerate if $\alpha_1, ..., \alpha_n$ are linearly independent over $\mathbb O$ and if $\overline{\mathsf{V}^{\mathbb{J}}} = \{0\}$ for each subfield $\mathbb {J}$ of $\mathbb {K}$ which is not $\mathbb {Q}$ or an imaginary quadratic field.

In 1972 Schmidt proved that $N_F(m)$ is finite for each positive integer *m* if and only if *F* is non-degenerate. In 2000 Evertse proved that if *F* is a non-degenerate norm form then

 $N_F(m) \leq (16d)^{(n+1)^3/3}(1+\log m)^{n(n-1)/2}m^{(n+\sum_{m=2}^{n-1}1/m)/d)}.$ (0.7) Non-degenerate norm forms are of finite type and so [\(0.4\)](#page-6-0) gives a better dependence on *m* than [\(0.7\)](#page-13-0) although the dependence

of the upper bound on *n* and *d* is not explicit in [\(0.4\)](#page-6-0).

Let *N_Ě*(*m*) denote the number of vectors (*a*₁, ..., *a*_{*n*}) with integer coordinates for which

 $0 < |F(a_1, ..., a_n)| \le m.$ (0.8)

If *F* is of finite type then *F* does not vanish at any non-zero integer point and so

> $N_F(m) = 1 + N_F^*$ (0.9)

There exist distinct irreducible polynomials *F*1, ..., *F^k* with integer coefficients, content 1 and degrees $d_1, ..., d_k$ respectively and there exist positive integers $l_1, ..., l_k$ for which $d_1 l_1 + ... + d_k l_k = d$ such that

$$
F(\mathbf{X}) = C_0 F_1(\mathbf{X})^{l_1} ... F_k(\mathbf{X})^{l_k},
$$
 (0.10)

where $|C_0|$ is the content of F.

 Ω

For each integer *j* with $1 \le j \le k$ the polynomial $F_i(\mathbf{X})$ is of the form $aN_{K/\mathbb{O}}(L(\mathbf{X}))$ where *a* is a non-zero rational number, K is a number field of degree d_i over \mathbb{Q} , $N_{K/\mathbb{Q}}$ denotes the norm from $\mathbb K$ to $\mathbb Q$ and $L(X)$ is a linear form which is proportional to a linear form L_i with *i* from $\{1, ..., d\}$.

For $i = 1, ..., d$ let B_i be the rational subspace of \mathbb{R}^n for which $L_i(\mathbf{X}) = 0$. Note that if $L_i(\mathbf{X})$ and $L_i(\mathbf{X})$ divide $F_h(\mathbf{X})$ in $\mathbb{C}[\mathbf{X}]$ for some *h* with 1 \leq *h* \leq *k* then B_i $=$ $B_j.$ Thus each polynomial $F_i(\mathbf{X})$ determines exactly one rational subspace of \mathbb{R}^n , say A_i , for which $F_i(\mathbf{X}) = 0$.

Put

$$
d_F = \begin{cases} 0 & \text{if } A_i = \{0\} \text{ for } i = 1, ..., k \\ \max\{l_{i_1}d_{i_1} + ... + l_{i_j}d_{i_j}\} & \text{otherwise,} \end{cases}
$$
(0.11)
where the maximum is taken over those tuples $(i_1, ..., i_j)$ of
distinct integers for which $A_{i_1} \cap ... \cap A_{i_j}$ is different from the zero
vector or equivalently for which there is a non-zero integer point

 $(S_1, ..., S_n)$ for which $F_{i_m}(s_1, ..., s_n) = 0$ for $m = 1, ..., j$.

K 로 ▶ ... 目 2990

K ロ ▶ K 伊 ▶ K ヨ

F is said to be of *essentially finite type* if V_F is finite, $V(\tilde{F})$ is finite whenever $\tilde{\mathsf{F}}$ is $\mathsf F$ restricted to a rational subspace of $\mathbb R^n$ which is not a subspace of A_i for $i=1,...,k$ and

$$
A_1 \cap \ldots \cap A_k = \{0\}.
$$
 (0.12)

If *F* is of essentially finite type then, by virtue of [\(0.12\)](#page-19-0) ,

$$
d_F < d. \tag{0.13}
$$

Further, if *F* is of finite type then it is also of essentially finite type since in this case $A_i = \{0\}$ for $i = 1, ..., k$ and so [\(0.12\)](#page-19-0) holds.

つくへ

THEOREM

Let F(*X*) *be a non-zero decomposable form in n variables with integer coefficients and degree d with d > n* \geq *2 and let m be a positive integer. If F is of essentially finite type then*

$$
N_F^*(m) \ll_{n,d} m^{\frac{1}{d} + \frac{n-1}{d-d_F}}.
$$
 (0.14)

Notice that if *F* is of finite type then $d_F = 0$ and Thunder's result [\(0.4\)](#page-6-0) follows from [\(0.9\)](#page-14-0) and [\(0.14\)](#page-21-0).

The proof of Theorem [1](#page-21-1) depends on a quantitative version of Schmidt's Subspace Theorem due to Evertse. A key feature of Theorem 1 is that the upper bound for $N_F^*(m)$ is independent of the coefficients of the form *F*. We require such an estimate in order to prove the analogue of Thunder's second estimate estimate [\(0.5\)](#page-8-0) for forms of essentially finite type.

Before stating such a result we shall make explicit the quantities a_F and c_F .

 \leftarrow

つへへ

For a factorization as in [\(0.1\)](#page-1-0) of *F* we let *I*(*F*) denote the set of all *n*-tuples ($\mathsf{L}_{i_1},...,\mathsf{L}_{i_n}$) of linearly independent coefficient vectors. For each linear form $L_i(\mathbf{X})$ from [\(0.1\)](#page-1-0) we denote by $b(L_i)$ the number of *n*-tuples in $I(F)$ which contain **L**_{*i*} and we put

 $b_F = \max\{b(L_1), ..., b(L_n)\}.$

 Ω

Next let *J*(*F*) be the subset of *I*(*F*) consisting of *n*-tuples $(\mathsf{L}_{i_1},...,\mathsf{L}_{i_n})$ for which for $j=1,...,n-1$ either $\mathsf{L}_{i_{j+1}}$ is proportional to L_{i_j} or L_{i_j} is in the span of $\mathsf{L}_{i_1},...,\mathsf{L}_{i_j}.$ We then put

$$
a_F = \max \left\{ \frac{\text{the number of } L_i \text{ in the span of } L_{i_1}, ..., L_{i_j}}{j} \right\}
$$

where the maximum is taken over integers *j* from $\{1, ..., n-1\}$ and *n*-tuples $(\mathsf{L}_{i_1},...,\mathsf{L}_{i_n})$ from $\mathsf{J}(F)$.

Finally we put

$$
c_F = \begin{cases} \binom{d-1}{n-1} - 1 & \text{if } \Delta_F \neq 0\\ \frac{b_F}{n! a_F} (d - (n-1)a_F) - \frac{1}{a_F} & \text{otherwise.} \end{cases}
$$

C.L.STEWART D[ECOMPTALK](#page-0-0)

$$
27/49
$$

メロトメ団 トメ きとメ きとう 目 299

THEOREM

Let F(*X*) *be a decomposable form in n variables with integer coefficients and degree d with* $d > n \geq 2$ *and let m be an integer with m* > 1*. If F is of essentially finite type then*

 $|N^*_{\mathsf{F}}(m) - m^{\mathsf{n/d}}V_{\mathsf{F}}| \ll_{\mathsf{n},\mathsf{d}} \mathcal{H}(\mathsf{F})^{c_{\mathsf{F}}}(\log m)^{\mathsf{n}-2}m^{\frac{\mathsf{n}-1}{d-\mathsf{a}_{\mathsf{F}}}}$

+ (log m + *log H(F))^{n−1}m¹^{d+ d−d}^E (0.15)</sub>*

If *F* is of finite type then $d_F = 0$ and $d_F \geq 1$. Thus

$$
\frac{1}{d}+\frac{n-2}{d-d_F}=\frac{n-1}{d}<\frac{n-1}{d-a_F}
$$

and so Thunder's second result [\(0.5\)](#page-8-0) follows from Theorem [2.](#page-27-0)

For the proof we appeal to Theorem [1](#page-21-1) and, once again, to a quantitative version of the Subspace Theorem.

If *F* is of essentially finite type and *F* is not proportional to a power of a definite quadratic form in 2 variables then

$$
1\leq a_F\leq \frac{d}{n}-\frac{1}{n(n-1)}.\tag{0.16}
$$

The discriminant Δ_F of a form as in [\(0.1\)](#page-1-0) is given by

$$
\Delta_{\mathcal{F}} = \prod_{(i_1,...,i_n)} \text{det}(\mathsf{L}_{i_1}^{tr},...,\mathsf{L}_{i_n}^{tr})
$$

where the product is taken over all *n*-tuples of distinct integers $(i_1,...,i_n)$ with 1 \leq i_j \leq d for $j=1,...,n.$ Here $\mathsf{L}^{\textit{tr}}$ denotes the transpose of **L**.

Let *B*(*x*, *y*) denote the Beta function. In 1996 Bean and Thunder proved that if $\Delta_F \neq 0$ then

$$
|\Delta_F|^{\frac{(d-n)!}{d!}}V_F\leq C_n \qquad (0.17)
$$

where

$$
C_n = \frac{2}{n} \prod_{k=1}^{n-1} \left(B(\frac{1}{n+1}, \frac{k}{n+1}) + B(\frac{n-k}{n+1}, \frac{k}{n+1}) + B(\frac{n-k}{n+1}, \frac{1}{n+1}) \right);
$$

the case when $n = 2$ was established by Bean in 1994.

They proved that the upper bound of *Cⁿ* is sharp in [\(0.17\)](#page-32-0) and that *Cⁿ* grows like a constant times (2*n*) *n* .

If Δ_F is non-zero then $a_F = 1$ and $c_F = \binom{d-1}{n-1}$ $\binom{a-1}{n-1}$ − 1. Thus by Theorem 2 and [\(0.17\)](#page-32-0) we have the following result.

COROLLARY

Let F(*X*) *be a decomposable form in n variables with integer coefficients and degree d with d* > *n* ≥ 2 *and let m be an integer with m* > 1*. If F is of essentially finite type and* Δ _{*F*} \neq 0 *then*

 $N_F^*(m) \ll_{n,d} m^{n/d} |\Delta_F|^{-\frac{(d-n)!}{n!}} + \mathcal{H}(F)^{\binom{d-1}{n-1}-1} (\log m)^{n-2} m^{\frac{n-1}{d-1}}$

*+ (*log *m* + log *H*(*F*))^{*n*−1}*m*^{$\frac{1}{d}$ + $\frac{n-2}{d-d_f}$ (0.18)}

When $n = 2$, $F(X)$ is a binary form and if Δ_F is non-zero then F is of essentially finite type and d_F is either 0 or 1. Since $a_F = 1$ we obtain our next result.

COROLLARY

Let F(*X*) *be a binary form with integer coefficients, degree d with d* \geq 3 *and* Δ *F* \neq 0*. Let m be a positive integer. Then*

$$
|N_F^*(m)-m^{2/d}V_F|\ll_d m^{\frac{1}{d-1}}\mathcal{H}(F)^{d-2}.
$$
 (0.19)

 QQ

Corollary [4](#page-36-0) generalizes Mahler's result [\(0.6\)](#page-9-0), where *F* is assumed to be irreducible over the rationals, to the case where *F* has a non-zero discriminant. By [\(0.5\)](#page-8-0) such a result holds when *F* is of finite type but that does not give Corollary [4](#page-36-0) in the case when *F* has a linear factor over the rationals.

The proofs of Theorems [1](#page-21-1) and [2](#page-27-0) build on the work of Thunder. He proceeds by establishing an upper bound for each **x** in \mathbb{R}^n for

 $\prod_{j=1}^n |L_{i_j}(\mathbf{x})|$ $|\textit{det}(\mathbf{L}^{tr}_{i_1},...,\mathbf{L}^{tr}_{i_n})|$

for some *n*-tuple $(\mathsf{L}_{i_1},...,\mathsf{L}_{i_n})$ from $\mathsf{I}(\mathcal{F}).$ Thunder establishes two such estimates.

 Ω

Let *F*(**X**) be a decomposable form in *n* variables with integer coefficients and degree *d* with $d > n > 2$ as in [\(0.1\)](#page-1-0).

LEMMA

If F(*X*) *is of essentially finite type and F is not proportional to a power of a definite quadratic form in* 2 *variables then there is a positive number* $C_1 = C_1(n, d)$ *, which depends on n and d,* \boldsymbol{s} uch that for every $\boldsymbol{x} \neq \boldsymbol{0}$ in \mathbb{R}^n there is an n-tuple $(\boldsymbol{L}_{i_1},...,\boldsymbol{L}_{i_n})$ in *J*(*F*) *for which*

$$
\frac{\prod_{j=1}^n |L_{i_j}(\boldsymbol{x})|}{|\text{det}(\boldsymbol{L}_{i_1}^{tr},..., \boldsymbol{L}_{i_n}^{tr})|} \leq C_1 \bigg(\frac{|F(\boldsymbol{x})|}{\|\boldsymbol{x}\|^{d-na_F}}\bigg)^{1/a_F} \mathcal{H}(F)^{c_F}.
$$

The preceding Lemma was proved by Thunder when *F* is of finite type.

Let $I'(F)$ be the subset of $I(F)$ consisting of the *n*-tuples (**L***i*¹ , ..., **L***iⁿ*) of linearly independent coefficient vectors with $i_1 < i_2 < ... < i_n$.

LEMMA

If $F(X)$ *is of essentially finite type and* $H(F)$ *is minimal among forms equivalent to F then there is a positive number* $C_2 = C_2(n, d)$, which depends on n and d, such that for every **x** i *n* \mathbb{R}^n there is an n-tuple $(L_{i_1},...,L_{i_n})$ in $I'(\mathcal{F})$ and there is a *polynomial G(X) in* $\mathbb{Z}[X]$ *of degree d*₀*, with d*₀ $> d - d$ *F, which divides F*(*X*) *in* Z[*X*] *for which*

$$
\frac{\prod_{j=1}^n |L_{i_j}(\bm{x})|}{|\text{det}(\bm{L}^{\text{tr}}_{i_1},...,\bm{L}^{\text{tr}}_{i_n})|} \leq C_2 \frac{|F(\bm{x})|^{1/d}|G(\bm{x})|^{\frac{n-1}{d_0}}}{\mathcal{H}(F)^{1/d}}.
$$

If *T* is in $GL_n(\mathbb{Z})$ then the form $G(\mathbf{X}) = F(T(\mathbf{X}))$ is said to be equivalent to *F*. Then $V_F = V_G$ but $H(F)$ need not be equal to $H(G)$. Put

 $\mathcal{H}_0(F) = \min_{\mathcal{T}} \mathcal{H}(F \circ \mathcal{T})$

where the minimum is taken over T in $GL_n(\mathbb{Z})$.

In 1989 Schmidt established a quantitative version of the Subspace Theorem . This was subsequently refined by Evertse in 1996. By combining Lemma 5 with the result of Evertse we are able to prove the following result.

LEMMA

Let F be a decomposable form in n variables with integer coefficients and degree d with d > *n* ≥ 2 *as in* [\(0.1\)](#page-1-0)*. Suppose that F is of essentially finite type and that F is not proportional to a power of a definite quadratic form in* 2 *variables. Put*

$$
C = \max(C_1, m^{\frac{1}{a_F}}, m^{\frac{1}{d}} \mathcal{H}_0(F)^{1+c_F})^{4a_F(n-1)}
$$
(0.20)

*where C*¹ *is given in Lemma [5.](#page-39-0) There is a positive number c, which is computable in terms of n and d, and there are t proper rational subspaces* $T_1, ..., T_t$ *of* \mathbb{Q}^n *with* $t < c$ *such that if a is an integer point with* ∥*a*∥ ≥ *C for which*

$1 \leq |F(a)| \leq m$

then a is in $T_1 \cup ... \cup T_t$ *.*

 Ω

Suppose *F* is proportional to a power of a definite quadratic form in 2 variables, say

$$
F(X_1, X_2) = h(AX_1^2 + BX_1X_2 + CX_2^2)^k
$$
 (0.21)

with h, k, A, B, C integers with $h \neq 0, k \geq 2$ and $B^2 - 4AC < 0.$

LEMMA *Then* $N_F^*(m) - \frac{2\pi}{\sqrt{4\pi G}}$ 4*AC* − *B*² $\left(\frac{m}{4}\right)$ $\left(\frac{m}{h}\right)^{2/d}$ | ≪ ($\frac{m}{h}$ *h*) 1/*d* (0.22)

C.L.STEWART D[ECOMPTALK](#page-0-0) 47/49

イロト (御) イ君) イ君) 三君

 2990

In 1915 Landau gave an asymptotic estimate for *NG*(*m*), hence also for $N_G^*(m)$, when $G(X_1, X_2) = AX_1^2 + BX_1X_2 + CX_2^2$ however he did not make explicit the dependence on the coefficients of *G* in his estimate, a feature that we require.

Thank you for your attention.

∍

-b

€

 2990

4 ロ ▶ 4 伊

 \sim