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1.Introduction and motivation

A mathematical adventure that started with Fermat in 1637 and
ended with Andrew Wiles in 1995:

Theorem 1 (Fermat’s last theorem)

The equation xp + yp = zp has no solutions in non-zero integers x , y , z for
p ≥ 3.
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1. Introduction and motivation

A generalization of Fermat’s last theorem:

Conjecture 1 (Beal conjecture)

The equation xp + yq = z r has no solutions in non-zero mutually coprime
integers x , y , z for p, q, r ≥ 3.

Andrew Beal is a Dallas banker who has a general interest in
mathematics.
Beal has personally funded a standing prize of $ 1 million USD for its
proof or disproof.
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1. Introduction and Motivation

For given positive integers p, q, r satisfying 1/p + 1/q + 1/r < 1, the
generalized Fermat equation

Axp + Byq = Cz r (1)

has only finitely many primitive integer solutions [Darmon & Granville,
1997].

A = B = C = 1 and (p, q, r) = (n, n, n): Fermat’s equation
A = B = C = 1 and y = 1: Catalan’s equation
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1. Introduction and Motivation

the case 1/p + 1/q + 1/r = 1

(p, q, r) ∈ {(2, 6, 3), (2, 4, 4), (3, 3, 3), (4, 4, 2), (2, 3, 6)}: Each case
corresponds to an elliptic curve of rank 0.

the case (p, q, r) = (3, 3, 3) and (A,B,C ) = (1, 1, 1)

Now we consider the equation x3 + y3 = z3. The transformation

x =
6
X

+
Y

6X
, y =

6
X
− Y

6X

yields the elliptic curve
Y 2 = X 3 − 432.

All rational solutions of the above curve are (X ,Y ) = (12, 36), (12, 36) and
O. But none of them does not give any solution to the original equation.
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1. Introduction and Motivation

the case 1/p + 1/q + 1/r > 1

(p, q, r) ∈ {(2, 2, r), (2, q, 2), (2, 3, 3), (2, 3, 4), (2, 4, 3), (2, 3, 5)}: No
solution or infinitely many solutions.

the case (A,B,C ) = (1, 1, 1) and (p, q, r) = (2, 2, 2)

This case corresponds to the equation x2 + y2 = z2, which has infinitely
many solutions.
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1. Introduction and Motivation

five small solutions (for the case 1/p + 1/q + 1/r < 1)

1n + 23 = 32

25 + 72 = 34

73 + 132 = 29

27 + 173 = 712

35 + 114 = 1222

(Kelly, Scott and de Weger all found these examples independently.)
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1. Introduction and Motivation

five large solutions (for the case 1/p + 1/q + 1/r < 1)

177 + 762713 = 210639282

14143 + 22134592 = 657

92623 + 153122832 = 1137

438 + 962223 = 300429072

338 + 15490342 = 156133

(Beukers and Zagier have found these examples.)
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1. Introduction and Motivation

The most important progress in the field of the Diophantine equations
has been with Wiles’ proof of Fermat’s Last Theorem.

His proof is based on deep results about Galois representations
associated to elliptic curves and modular forms.
The method of using such results to deal with Diophantine problems,
is called the modular approach. After Wiles’ proof, the original
strategy was strengthened and many mathematicians achieved great
success in solving other equations that previously seemed hard.
As a result of these efforts, the generalized Fermat equation

Axp + Byq = Cz r , with 1/p + 1/q + 1/r < 1, (2)

where p, q, r ∈ Z≥2, A,B,C are non-zero integers and x , y , z are
unknown integers became a new area of interest.
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1. Introduction and Motivation

Modern techniques coming from Galois representations and modular
forms:

1 Methods of Frey–Hellegouarch curves and variants of Ribet’s
level-lowering theorem.

2 The modularity of elliptic curves or abelian varieties over the rationals
or totally real number fields.

Modern techniques allow to give partial (sometimes complete) results
concerning the set of solutions to generalized Fermat equation
(usually, when a radical of ABC is small),
at least when (p, q, r) is of the type (n, n, n), (n, n, 2), (n, n, 3),
(2n, 2n, 5), (2, 4, n), (2, 6, n), (2, n, 4), (2, n, 6), (3, 3, p), (2, 2n, 3),
(2, 2n, 5).
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1. Introduction and Motivation

Here, note that the notation {p, q, r} implies that all permutations of
the ordered triple {p, q, r} are taken into account.

Some known results with (A,B,C ) = (1, 1, 1)

{n, n, n} and n ≥ 3: Wiles and Taylor (Fermat’s last theorem) (1995).
{n, n, 2}: Darmon and Merel (for n prime ≥ 7) (1997), Poonen (for
n = 5, 6, 9) (1998).
{n, n, 3}: Darmon and Merel (for n prime ≥ 7) (1997), Lucas (19th
century) (for n = 4) and Poonen (for n = 5) (1998).
{3, 3, n}: Kraus (for 17 ≤ n ≤ 10000) (1993), Bruin (for n = 4, 5)
(2000,2003), Chen and Siksek (for 17 ≤ n ≤ 109) (2009), Dahmen (for
n = 7, 11, 13) (2008).
(2, n, 4): Application of Bennett-Skinner (2004), includes (4, n, 4) by
Darmon (1993).
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1. Introduction and Motivation

Some known results: continued
(2, 4, n): Ellenberg (for prime n ≥ 211) (2004) and Ghioca (for n = 7) (see
also Poonen Schaefer, Stoll-2007).
(2n, 2n, 5): Bennett (for n ≥ 7 and n = 2) (2005), Bruin for n = 3 (2000)
and n = 5 follows from Fermat’s last theorem.
(2, 2n, 3): Chen (for n prime and 7 < n < 1000 and n 6= 31) (2008),
Dahmen (the case n = 31 and n ≡ 5 (mod 6)) (2011)
(2, 2n, 5): Chen (for n > 17 prime and n ≡ 1 (mod 4)) (2010).
{2, 4, 6}: Bruin (1999).
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1. Introduction and Motivation

Some known results: continued

{2, 4, 5}: Bruin, 25 + 72 = 34, 35 + 114 = 1222 (2003).
{2, 3, 9}: Bruin, 132 + 73 = 29 (2005).
{2, 3, 8}: Bruin, 18 + 23 = 32 , 438 + 962223 = 300429072 ,
338 + 15490342 = 156133 (1999,2003).
{2, 3, 7}: Poonen, Schaefer and Stoll, 17 + 23 = 32, 27 + 173 = 712,
177 + 762713 = 210639282, 92623 + 153122832 = 1137 (2007).
{2, 6, n}: Bennett and Chen (2012), Bennett et al. (2015) (for the case
n ≥ 3)
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1. Introduction and Motivation

Some known results: continued
(3j , 3k , n), j , k ≥ 2, n ≥ 3: Immediate from Kraus (1998)
(3, 3, 2n), n ≥ 2: Bennett et al. (2015)
(3, 6, n), n ≥ 2: Bennett et al.(2015)
(2, 2n, k), k ∈ {9, 10, 15}, n ≥ 2: Bennett et al. (2015)
(4, 2n, 3), n ≥ 2: Bennett et al. (2015)
(2m, 2n, 3): Bennett et al. (2015) (n ≡ 3 (mod 4), m ≥ 2)
(2, 4n, 3): Bennett et al.(2015) (n ≡ ±2 (mod 5) or n ≡ ±2,±4
(mod 13)).
(3, 3n, 2): Bennett et al. (2014) (for n prime n ≡ 1 (mod 8))

Survey papers about solving the generalized Fermat equation when
ABC = 1: [Bennett, Chen, Dahmen, Yazdani-2015], [Bennett,
Mihǎilescu, Siksek- 2016].
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1.Introduction and motivation

When 1/p + 1/q + 1/r is close to one, for example, consider the
equations

x2 + y3 = z5, x2 + y3 = z7, x2 + y3 = z8,

then one needs new methods (Chabauty method or its refinements
[Bruin-1999,2003], or a combination of Chabauty type method with a
modular approach [Poonen, Schaefer, Stoll-2007], [Freitas, Naskręcki,
Stoll-2020]).

In 2022, we studied the Diophantine equation

ax2 + y2n = 4z3, x , y , z ∈ Z, gcd(x , y) = 1, n ∈ N≥2, (3)

where the class number of Q(
√
−a) with a ∈ {7, 11, 19, 43, 67, 163} is

1, [Chałupka, Dąbrowski, Soydan-JNT-2022].
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1. Introduction and motivation

In this talk, we first consider the Diophantine equation

x2 + ay2n = 4z3, x , y , z ∈ Z, gcd(x , y) = 1, n ∈ N≥2, (4)

where the class number of Q(
√
−a) with a ∈ {7, 11, 19, 43, 67, 163} is

1.

Why do we work on these equations?
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1. Introduction and motivation

x2 + y2n = z3 (Bennett, Bruin, Chen, Dahmen, Yazdani, 1999-2015).
It is known that this equation has no solutions for a family of n’s of
natural density one.

Our motivation:
1 To extend the above results (and methods) of Bruin, Chen and

Dahmen, by considering some Diophantine equations
Ax2 + By2n = Cz3 with (A,B,C )’s different from (1, 1, 1) (assuming
for simplicity that the class number of Q(

√
−AB) is one).

2 To extend our previous results about the Diophantine equation

ax2 + b2n = 4yk , k > 3 tek asal, x , y ∈ Z, n, k ∈ N, (x , y) = 1,

[Dąbrowski, Günhan, Soydan-JNT-2020].
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1. Introduction and motivation

In the above work, we suppose that a ∈ {7, 11, 19, 43, 67, 163} and b
is an odd prime. In the new work, we fix k = 3, but b is arbitrary.

Why were we unable to handle the Diophantine equations
7x2 + y2n+1 = 4z3 and x2 + 7y2n+1 = 4z3?

1 In 2007, Poonen, Schaefer and Stoll find the primitive integer solutions
to x2 + y7 = z3. Their method combine the modular method together
with determination of rational points on certain genus-3 algebraic
curves. This case (and possible generalizations to Ax2 + By7 = Cz3) is
very difficult.

2 In 2020, Freitas, Naskrecki and Stoll considered a general Diophantine
equation x2 + yp = z3 (with p any prime > 7). They follow and refine
the arguments of Poonen, Schaefer and Stoll by combining new ideas
around the modular method with recent approaches to determination
of the set of rational points on certain algebraic curves.
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1. Introduction and motivation

As a result, they were able to find (under GRH) the complete set of
solutions of the Diophantine equation x2 + yp = z3 only for p = 11.
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1. Introduction and motivation

very recent progresses

In 2000, Darmon described a program to study the generalized Fermat
equation using modularity of abelian varieties of GL2-type over totally
real fields. The original approach was based on hard open conjectures,
which have made it difficult to apply in practice. This is called
Darmon’s program.

On 10 th of August 2023 and 14 th of August 2023, Billerey, Chen,
Dieulefait and Freitas put two papers on arxiv.org.
In their first paper, building on the progress surrounding the modular
method from the last two decades, they analyze and expand the
current limits of this program by developing all the necessary
ingredients to use Frey abelian varieties for new Diophantine
applications.
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method from the last two decades, they analyze and expand the
current limits of this program by developing all the necessary
ingredients to use Frey abelian varieties for new Diophantine
applications.
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1. Introduction and motivation

very recent progresses

In particular, they deal with all but the fifth and last step in the
modular method for Fermat equations of signature (r , r , p) in almost
full generality.

As an application, for all integers n ≥ 2, they give a resolution of the
generalized Fermat equation

x11 + y11 = zn

for solutions (a, b, c) such that a + b satisfies certain 2- or 11-adic
conditions.
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1. Introduction and motivation

very recent progresses

And also the tools developed can be viewed as an advance in
addressing a difficulty not treated in Darmon’s original program: even
assuming ‘big image’ conjectures about residual Galois
representations, one still needs to find a method to eliminate Hilbert
newforms at the Serre level which do not have complex multiplication.

In fact, they are able to reduce the problem of solving x5 + y5 = zp to
Darmon’s ‘big image conjecture’, thus completing a line of ideas
suggested in his original program, and notably only needing the Cartan
case of his conjecture.
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1. Introduction and motivation

very recent progresses

In their second paper, as a first application, they use a multi-Frey
approach combining two Frey elliptic curves over totally real fields, a
Frey hyperelliptic curve over Q due to Kraus, and ideas from the
Darmon program to give a complete resolution of the generalized
Fermat equation

x7 + y7 = 3zn

for all integers n ≥ 2.

Moreover, they explain how the use of higher dimensional Frey abelian
varieties allows a more efficient proof of this result due to additional
structures that they afford, compared to using only Frey elliptic curves.
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1. Introduction and motivation

very recent progresses

As a second application, they use some of these additional structures
that Frey abelian varieties possess to show that a full resolution of the
generalized Fermat equation

x7 + y7 = zn

depends only on the Cartan case of Darmon’s big image conjecture. In
the process, they solve the previous equation for solutions (a, b, c)
such that a + b satisfies certain 2- or 7-adic conditions and all n ≥ 2.

In July 2023, a survey paper about Darmon’s program was published
by A. Koutsianas & I. Chen. For the details, please see this survey
paper.
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2. The main results

Theorem 2 (Chałupka, Dąbrowski, Soydan-?)

The Diophantine equation

x2 + ay2n = 4z3, x , y , z ∈ Z, gcd(x , y) = 1, n ∈ N≥2,

has no solutions where the class number of Q(
√
−a) with

a ∈ {11, 19, 43, 67, 163} is 1.
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2. The main results

Theorem 3 (Chałupka, Dąbrowski, Soydan-?)

Let x , y , z be coprime integers such that x2 + 7y4 = 4z3. Then there are
rational numbers s, t such that one of the following holds.

x = ±(−s4 − 8ts3 + 18t2s2 + 24t3s − 9t4)

(−405t8 − 108st7 − 504s2t6 + 252s3t5 − 294s4t4 − 84s5t3

− 56s6t2 + 4s7t − 5s8),

y = ±(s2 + 3t2)(−s4 + 6ts3 + 18t2s2 − 18t3s − 9t4),

z = (162t8 − 108st7 + 252s2t6 + 252s3t5 + 84s4t4 − 84s5t3

+ 28s6t2 + 4s7t + 2s8),

(5)
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2. The main results

x = ±(1/32)(s4 + 21t4)(441t8 − 714s4t4 + s8)

y = (3/4)st(s4 − 21t4),

z = (1/16)(441t8 + 294s4t4 + s8),

(6)

x = ±(1/32)(3s4 + 7t4)(9s8 − 714t4s4 + 49t8)

y = (3/4)st(3s4 − 7t4),

z = (1/16)(9s8 + 294t4s4 + 49t8).

(7)
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2. The main results

Theorem 4 (Chałupka, Dąbrowski, Soydan-?)

Any solution to the Diophantine equation x2 + 7y6 = 4z3 in coprime
integers x , y , z is of the type

(xm, ym, zm) = (±ωm(P)/4d3
m,±ψm(P)/dm,±ϕm(P)/4d2

m)

for some positive integer m, where P = (8, 20), ϕm, ψm and ωm denote
the division polynomials associated to the elliptic curve Y 2 = X 3 − 112,
and dm := gcd(±ωm(P)/4,±ψm(P),±ϕm(P)/4).
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2. The main results

Theorem 5 (Chałupka, Dąbrowski, Soydan-?)

The Diophantine equation x2 + 7y8 = 4z3 has the following non-trivial
solutions (x , y , z): (±5,±1, 2), (±16690170427,±105, 4114726) and
(±165997441137915,±481, 1902746962).

Theorem 6 (Chałupka, Dąbrowski, Soydan-?)

Assume the abc conjecture. Then for a positive proportion of primes p, all
non-trivial solutions to the Diophantine equation x2 + 7y2p = 4z3 in
coprime integers x ,y ,z are given by (x , y , z) = (±5,±1, 2).
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2. The main results

Theorem 7 (Chałupka, Dąbrowski, Soydan-?)

Let n be any integer ≥ 2. The Diophantine equation x2 + 7y2n = 4z12 has
no solutions in coprime integers x , y , z .
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3. The sketch for the proof (Theorem 2)

By Theorem 2, we see that the Diophantine equation x2 + ay2n = 4z3

has no solutions where the class number of Q(
√
−a) with

a ∈ {11, 19, 43, 67, 163} is 1.
As the class number of Q(

√
−a) with a ∈ {7, 11, 19, 43, 67, 163} is 1,

we have the following factorization for the left side of the eq.
x2 + ay2n = 4z3

x + yn
√
−a

2
· x − yn

√
−a

2
= z3.

Now we have
x + yn

√
−a

2
=

(
u + v

√
−a

2

)3

,

where u, v are odd rational integers. Note that gcd(u, v) = 1.
Equating the real and imaginer parts, we obtain the following result.
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3. The sketch for the proof (Theorem 2)

Lemma 1 (Chałupka, Dąbrowski, Soydan-2022)

Suppose that (x , y , z) is a solution to x2 + ay2n = 4z3. Then

(x , yn, z) =

(
u(u2 − 3av2)

4
,
v(3u2 − av2)

4
,
u2 + av2

4

)
(8)

for some odd u, v ∈ Z with gcd(u, v) = 1.
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3. The sketch for the proof (Theorem 2)

By Lemma 1, we have u(u2 − 3av2) = 4yn or v(3u2 − av2) = 4yn.
Now, if a ∈ {11, 19, 43, 67, 163}, then u(u2 − 3av2) is congruent to 0
modulo 8, while 4yn is congruent to 4 modulo 8, a contradiction. So,
the proof is completed.

Hence, this lemma completes the proof of Theorem 2.
So, we only need to consider the Diophantine equation

x2 + 7y2n = 4z3.
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3. The sketch for the proof (Theorem 3)

Here we consider the Diophantine equation x2 + 7y4 = 4z3.

We obtain all families of solutions to the title equation (variants of
Zagier’s result in the case x2 + y4 = z3).
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3. The sketch for the proof (Theorem 4)

Here we consider the Diophantine equation x2 + 7y6 = 4z3.

The above equation corresponds to the elliptic curve

E : Y 2 = X 3 − 247.

By MAGMA, we obtain that the Mordell-Weil group of E is cyclic
infinite, generated by the point P = (8, 20).
Each solution (x , y , z) of the Diophantine equation x2 + 7y6 = 4z3 in
coprime integers x , y , z leads to a rational point (4z/y2, 4x/y3) on
the elliptic curve E . We can obtain all such solutions (up to the signs
of x and y) considering integer multiplicities mP of the point P . Now
using some known results about elliptic curves, we are done.
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3. The sketch for the proof (Theorem 5)

Here we consider the Diophantine equation

7x2 + y8 = 4z3.

Any primitive solution of the Diophantine equation 7x2 + y8 = 4z3

satisfies, of course, the equation 7x2 + (y2)4 = 4z3. Hence using
Theorem 3, we obtain formulas describing x , y2 and z .

In particular we have the following formulas for y2:

y2 = ±(s2 + 3t2)(−s4 + 6ts3 + 18t2s2 − 18t3s − 9t4),

y2 = (3/4)st(s4 − 21t4),

y2 = (3/4)st(3s4 − 7t4).

Note that t = 0 implies y = 0. Therefore, nontrivial solutions
correspond to affine rational points on one of the following genus two
curves:
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3. The sketch for the proof (Theorem 5)

Therefore, nontrivial solutions correspond to affine rational points on
one of the following genus two curves:

C5 : Y 2 = (X 2 + 3)(−X 4 + 6X 3 + 18X 2 − 18X − 9),

C6 : Y 2 = −(X 2 + 3)(−X 4 + 6X 3 + 18X 2 − 18X − 9),

C7 : Y 2 = X 5 − 357X ,

C8 : Y 2 = X 5 − 377X .
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3. The sketch for the proof (Theorem 5)

Definition 2
Let V be a variety defined over Q. V is everywhere locally solvable (ELS)
if the set V (Qp) is nonempty for all places p ≤ ∞ of Q.

ELS is necessary for existence of Q-points, but sufficient!
We check that the curve C5 has no rational points. Indeed, the
MAGMA commmand HasPointsEverywhereLocally(f , 2) gives
C5(Q3) = ∅.
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3. The sketch for the proof (Theorem 5)

In 1941, Claude Chabauty proved the finiteness of the number of
rational points on curves of genus g > 0 with a jacobian of
Mordell-Weil rank < g over Q.

This is a method for finding the rational points on a curve C of genus
at least 2, that applies when the Mordell-Weil group of Jac(C ) has
rank less than the genus of C. It involves doing local calculations at
some prime where C has good reduction.
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3. The sketch for the proof (Theorem 5)

We use Magma subroutines Chabauty and Chabauty0 for C7 and C8,
respectively.

(i) Jac(C7) has Q-rank 1, and [(7,−70)−∞] has infinite order in
Jac(C7)(Q), hence we can use Chabauty.
(ii) Jac(C8) has Q-rank 0, hence we use Chabauty0.
Calculations in Magma show that the following points in C6(Q) are
the only ones with heights bounded by 108.
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3. The sketch for the proof (Theorem 5)

Lemma 8

We have
{(1,−4), (1, 4), (−11/4,−481/64), (−11/4, 481/64),∞+,∞−} ⊂ C6(Q).

Jac(C6) has Q-rank 1 or 2 (probably 2), and a standard Chabauty’s
method for calculating C6(Q) does not work. Then elliptic Chabauty
method were unsuccessful.
By Chabauty-Coleman estimate we have #C6(Q) ≤ #C6(F5) + 2 = 8.
Taking into account the above estimate and calculations in Magma,
we expect that in Lemma 8 we may replace ⊂ by the equality of sets.
The calculations in Magma took about 380 hours.
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3. The sketch for the proof (Theorem 5)

Remark 9
We expect (using the above Remarks) that the solutions listed in Theorem
5 are all non-trivial solutions to the Diophantine equation x2 + 7y8 = 4z3.
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3. The sketch for the proof (Theorem 6)

Here we consider the Diophantine equation x2 + 7y2n = 4z3 where
n = p is a prime ≥ 7.

Let us start with the conjectural description of the set of solutions of
the title equation. Throughout this section we will assume that n = p
is a prime ≥ 7.

Conjecture 2

Let p ≥ 7 be a prime. All non-trivial solutions to the Diophantine equation
x2 + 7y2p = 4z3 in coprime integers x ,y ,z are given by
(x , y , z) = (±5,±1, 2).

Conjecture 2 follows from the Conjectures 3 and 4 below. Using
[Conjecture 2, Ivorra & Kraus-2006] and Proposition 13, we
immediately obtain the following result.
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3. The sketch for the proof (Theorem 6)

Theorem 6
Assume the abc conjecture. Then for a positive proportion of primes p, all
non-trivial solutions to the Diophantine equation x2 + 7y2p = 4z3 in
coprime integers x ,y ,z are given by (x , y , z) = (±5,±1, 2).

Below we will formulate the Conjectures 3 and 4, and prove some
results towards each of them.
We have reduced the problem of solving the title equation to solving
the equations 7α2p + 4βp = 3u2 and 32p−37α2p + 4βp = u2.
(i) First consider the equation

7α2p + 4βp = 3u2.
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3. The sketch for the proof (Theorem 6)

Conjecture 3

Let n = p be a prime ≥ 7. All non-trivial solutions to the Diophantine
equation 7X 2p + 4Y p = 3Z 2 in coprime odd integers X ,Y ,Z are given by
(X ,Y ,Z ) = (±1,−1,±1).

Such a conjecture, for all p ≥ p0, follows from a famous abc
conjecture (see [Ivorra-Kraus, Conjecture 2-2006]).

Using modular approach, we immediately obtain the following result
towards Conjecture 3.

Proposition 10

Let p ≥ 7 be a prime. The Diophantine equation 7X 2p + 4Y p = 3Z 2 has
no solutions (a, b, c), where a, b, c are coprime odd integers and b ≡ 1
(mod 4).
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3. The sketch for the proof (Theorem 6)

The main steps of the modular method over totally real fields can be
summarized as follows.

modular approach

Constructing a Frey curve
Attach an elliptic curve E/K to a putative solution of a Diophantine
equation, where K is some totally real field. In the case of Fermat’s
Last Theorem, following an idea of Frey–Hellegouarch one considers
the curve

y2 = x(x − ap)(x + bp)

where ap + bp = cp , abc 6= 0, a, b, c ∈ Z. Studying different
equations require constructing different curves; such an elliptic curve is
called a Frey elliptic curve or simply Frey curve for short.
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3. The sketch for the proof (Theorem 6)

modular approach

Modularity
Prove modularity of E/K .

Irreducibility
Prove irreducibility of ρE ,p, the mod p Galois representation attached
to E .
Level lowering
Conclude that ρE ,p ∼= ρg ,p where g is a Hilbert newform over K of
parallel weight 2, trivial character and level among finitely many
explicit; here ρg ,p denotes the mod p representation attached to g for
some p | p.
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3. The sketch for the proof (Theorem 6)

modular approach

Contradiction
Compute all the newforms predicted in the previous step; then, for
each computed newform g and p | p in its field of coefficients, show
that ρE ,p 6∼= ρg ,p. This rules out the isomorphism predicted by level
lowering, yielding a contradiction. This final step is also known as the
elimination step.
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3. The sketch for the proof (Theorem 6)

Remark 11
Let us explain why we can’t prove anything when b ≡ 3 (mod 4). One
reason is that the solution (x , y , z) = (1,−1, 1) of the equation
7xp + 4yp = 3z2 is going to be an obstruction, unless it corresponds to a
newform with complex multiplication (as in the case of the equation
4xp + yp = 3z2 in section 6 of [Ivorra-Kraus-2006]). In our case we need
to consider the newforms of weight 2 and level 504, and all such forms are
without complex multiplication.
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3. The sketch for the proof (Theorem 6)

(ii) Next, we consider the equation

32p−37α2p + 4βp = u2

.
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3. The sketch for the proof (Theorem 6)

Conjecture 4

Let p ≥ 7 be a prime. The Diophantine equation 32p−37X 2p + 4Y p = Z 2

has no solutions in coprime odd integers.

Using modular approach, we obtain the following result towards
Conjecture 4.

Proposition 12

Let p ≥ 7 be a prime. The Diophantine equation 32p−37X 2p + 4Y p = Z 2

has no solutions (a, b, c), where a, b, c are coprime odd integers and b ≡ 3
(mod 4).
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3. The sketch for the proof (Theorem 6)

Below we will prove some unconditional results towards Conjecture 4.
As a first result we use the symplectic method to show that
Conjecture 4 holds for infinitely many p’s.

Proposition 13

The Diophantine equation 32p−37X 2p + 4Y p = Z 2 has no solution in
coprime odd integers for any prime p ≡ 5 or 11 (mod 12).
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3. The sketch for the proof (Theorem 6)

Symplectic method
The first symplectic criterion was established in 1992 by Kraus and Oesterlé
and it is applicable when E and E ′ have a common prime ` of multiplicative
reduction. The reason for the name is that the method is conceptually
based on the symplectic behaviour of isomorphic Galois representations.
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3. The sketch for the proof (Theorem 6)

Symplectic/anti-symplectic isomorphism

Let p ≥ 3 be a prime. Let E and E ′ be elliptic curves over Q and write
E [p] and E ′[p] for their p-torsion modules. Write GQ for the absolute
Galois group. Let ϕ : E [p]→ E ′[p] be a GQ-modules isomorphism. There
is an element d(ϕ) ∈ F×p such that, for all P,Q ∈ E [p], the Weil pairings
satisfy eE ′,p(ϕ(P), ϕ(Q)) = eE ,p(P,Q)d(ϕ). We say that ϕ is a symplectic
isomorphism if d(ϕ) is a square modulo p and an anti-symplectic
otherwise. If the Galois representation ρE ,p is irreducible then all
GQ-isomorphisms have the same symplectic type.
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3. The sketch for the proof (Theorem 6)

Lemma 3 (Kraus & Oesterlé, 1992)

Let ` 6= p be primes with p ≥ 3. Let E and E ′ be elliptic curves over Q`

with multiplicative reduction. Suppose that E [p] and E ′[p] are isomorphic
GQ`

-modules. Assume further that p - v`(∆′m). Furthermore

E [p] and E ′[p] are symplectically isomorphic ⇔
(
v`(∆m)/v`(∆′m)

p

)
= 1.

Moreover, E [p] and E [p] are not both symplectically and
anti-symplectically isomorphic.
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3. The sketch for the proof (Theorem 6)

Here we will assume that p ≥ 7 is a prime and apply variants of the
method introduced by Kraus. Kraus stated a very interesting criterion
[Kraus-1998] that often allows to prove that the Diophantine equation
x3 + y3 = zp (p an odd prime) has no primitive solutions for fixed p,
and verified his criterion for all primes 17 ≤ p < 104.

Such a criterion has been formulated (and refined) in other situations.

Kraus Type Criterion
Let q ≥ 11 be a prime number, and let k ≥ 1 be an integer factor of q − 1.
Let µk(Fq) denote the group of k-th roots of unity in F×q . Set

Ak,q := {ξ ∈ µk(Fq) :
7 + 2233ξ

33 is a square inFq}.

G.SOYDAN 15 December 2023 60 / 83



3. The sketch for the proof (Theorem 6)

Here we will assume that p ≥ 7 is a prime and apply variants of the
method introduced by Kraus. Kraus stated a very interesting criterion
[Kraus-1998] that often allows to prove that the Diophantine equation
x3 + y3 = zp (p an odd prime) has no primitive solutions for fixed p,
and verified his criterion for all primes 17 ≤ p < 104.
Such a criterion has been formulated (and refined) in other situations.

Kraus Type Criterion
Let q ≥ 11 be a prime number, and let k ≥ 1 be an integer factor of q − 1.
Let µk(Fq) denote the group of k-th roots of unity in F×q . Set

Ak,q := {ξ ∈ µk(Fq) :
7 + 2233ξ

33 is a square inFq}.

G.SOYDAN 15 December 2023 60 / 83



3. The sketch for the proof (Theorem 6)

Here we will assume that p ≥ 7 is a prime and apply variants of the
method introduced by Kraus. Kraus stated a very interesting criterion
[Kraus-1998] that often allows to prove that the Diophantine equation
x3 + y3 = zp (p an odd prime) has no primitive solutions for fixed p,
and verified his criterion for all primes 17 ≤ p < 104.
Such a criterion has been formulated (and refined) in other situations.

Kraus Type Criterion
Let q ≥ 11 be a prime number, and let k ≥ 1 be an integer factor of q − 1.
Let µk(Fq) denote the group of k-th roots of unity in F×q . Set

Ak,q := {ξ ∈ µk(Fq) :
7 + 2233ξ

33 is a square inFq}.

G.SOYDAN 15 December 2023 60 / 83



3. The sketch for the proof (Theorem 6)

Kraus Type Criterion
For each ξ ∈ Ak,q, we denote by δξ the least non-negative integer such that

δ2ξ mod q =
7 + 2233ξ

33 .

We associate with each ξ ∈ Ak,q the following equation

Y 2 = X 3 + δξX
2 + ξX .

Its discriminant equals 243−37ξ2, so it defines an elliptic curve Eξ over Fq.
We put aq(ξ) := q + 1−#Eξ(Fq).
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3. The sketch for the proof (Theorem 6)

Theorem 14 (Chałupka, Dąbrowski, Soydan-?)

Let p ≥ 7 be a prime (resp. p = 11). Suppose that for each elliptic curve

F ∈ {588C1, 1176G1} (resp. F ∈ {168A1, 1686B1})

there exists a positive integer k such that the following three conditions
hold

1 q := kp + 1 is a prime,

2 aq(F )2 6≡ 4 (mod p),

3 aq(F )2 6≡ aq(ξ)2 (mod p) for all ξ ∈ Ak,q.

Then the equation 32p−37x2p + 4yp = z2 has no solutions in coprime odd
integers.
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3. The sketch for the proof (Theorem 6)

Corollary 15 (Chałupka, Dąbrowski, Soydan-?)

Let 7 ≤ p < 109 and p 6= 13, 17 be a prime. Then there are no triples
(x , y , z) of coprime odd integers satisfying 32p−37x2p + 4yp = z2.

The computations took about 270 hours (with two desktop
computers).
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3. The sketch for the proof
The Diophantine equation x2 + 7y2p = 4z3 for 7 ≤ p ≤ 19 prime

the Selmer Chabauty method of Stoll

The Selmer Chabauty method of Stoll [Stoll-2018] may lead to
determining the set Dp(Q) for Dp : Y 2 = 12X p + 21, for prime values
of p, 7 ≤ p ≤ 19. Such a result, combined with Corollary 15 will give
all solutions to the title Diophantine equations.

Solving the title equation can be reduced to solving the following two
Diophantine equations in coprime odd integers:

7X 2p + 4Y p = 3Z 2

and
32p−37X 2p + 4Y p = Z 2.

A Kraus type criterion shows that the second one has no solutions (see
Corollary 15).
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3. The sketch for the proof
The Diophantine equation x2 + 7y2p = 4z3 for 7 ≤ p ≤ 19 prime

the Selmer Chabauty method of Stoll

The first Diophantine equation leads to the curve
Dp : Y 2 = 12X p + 21. Note that {∞, (−1, 3), (−1,−3)} ⊂ Dp(Q),
and the rational points (−1,±3) lead to the (obvious) solutions
(x , y , z) = (±5,±1, 2) of the Diophantine equation x2 + 7y14 = 4z3.

Let 7 ≤ p ≤ 19 be a prime. Following the Selmer Chabauty method
(here we skip some technical details) may lead to determining Dp(Q).
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3. The sketch for the proof
The Diophantine equation x2 + 7y10 = 4z3

We expect (compare Conjecture 2), that all non-trivial solutions to the
Diophantine equation x2 + 7y10 = 4z3 in coprime integers x ,y ,z are
given by (x , y , z) = (±5,±1, 2) or (±1788379,±15, 12184).

We may consider the equations

7α2p + 4βp = 3u2

and
32p−37α2p + 4βp = u2

for p = 5, and in this case they lead to the genus 2 curves
C1 : Y 2 = 12X 5 + 21 and C2 : Y 2 = 4X 5 + 37 × 7, respectively.
Now Magma shows that Jac(Ci ) (i = 1, 2) have Q-ranks 2, hence a
standard Chabauty’s method for calculating Ci (Q) (i = 1, 2) does not
work.
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3. The sketch for the proof
The Diophantine equation x2 + 7y10 = 4z3

It is easy to check the following results.

Lemma 16

We have
(i) {(−1,−3), (−1, 3),∞} ⊂ C1(Q);
(ii) {(−5,−53), (−5, 53),∞} ⊂ C2(Q).

Calculations in Magma show that the above points are the only ones
with heights bounded by 3× 107 (it took about 53 hours for each
curve on the desktop computer). We expect that in Lemma 16 we
may replace ⊂ by the equality of sets.

As a consequence, we are lead to the above conjectural description of
the set of solution to the Diophantine equation x2 + 7y10 = 4z3.
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3. The sketch for the proof (Theorem 7)
The Diophantine equation x2 + 7y2n = 4z12

Of course, we may (and will) assume that n = p is a prime. Writing
7y2p = (2z6 − x)(2z6 + x), we are led to consider the Diophantine
equation u2p + 7v2p = 4z6.
Next, writing 7v2p = (2z3 − up)(2z3 + up), we are led to consider the
Diophantine equation

7V 2p + 2Up = Z 2p. (9)

If x , y , z in the title equation are coprime, then U,V ,Z are odd and
coprime.
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3. The sketch for the proof (Theorem 7)
The Diophantine equation x2 + 7y2n = 4z12

(i) Let p = 2. In this case, the title equation leads to an elliptic curve
E : Y 2 = X 3 − 28X , with E (Q) = {(0, 0),∞}.

(ii) Let p = 3. In this case, the equation 7v6 = (2z3 − u3)(2z3 + u3)
leads to 2z3 = S6 + T 3. Now, it is well known that the only rational
points on the cubic curve X 3 + Y 3 = 2 are (1, 1) and the point at
infinity.
(iii) Let p ≥ 5 be any prime. Suppose that the coprime odd integers
a, b, c solve the equation (9). The associated Frey curve is

E = Ep
a,b,c : y2 = x(x − 7a2p)(x + 2bp)

(see [Kraus-1997,Section 4] for details). Here we follow the procedure
of the signature (p, p, p).
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4. Some conjectures and questions on this work

Conjecture 5
Let p ≥ 7 be a prime. All non-trivial solutions to the Diophantine equation
x2 + 7y2p = 4z3 in coprime integers x ,y ,z are given by
(x , y , z) = (±5,±1, 2).

Conjecture 6

All non-trivial solutions to the Diophantine equation x2 + 7y10 = 4z3 in
coprime integers x ,y ,z are given by (x , y , z) = (±5,±1, 2) or
(±1788379,±15, 12184).

Question 1

Has the Diophantine equation 7x2 + y2p = 4z3 any solution for all primes
p ≥ 109?
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4. Some conjectures and questions on this work

Conjecture 7

The Diophantine equation 7x2 + y14 = 4z3 has no solution in coprime odd
integers.

Here we discuss a few approaches to this equation and the obstacles
to making them work here.
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Why is hard to prove Conjecture 7 for us?

Here we discuss a few approaches to this equation and the obstacles
to making them work here.

(i) The modular method. The Diophantine equation 7x2 + y14 = 4z3

is reduced to the equations

α2p − 4βp = 21v2

and
32p−3α2p − 4βp = 7v2

for p = 7: X 14 − 4Y 7 = 21Z 2 and 311X 14 − 4Y 7 = 7Z 2, respectively.
In both cases, we could not exclude the possibility that the Galois
representation associated to the Frey type curve arises from newform
with nonrational Fourier coefficients.
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Why is hard to prove Conjecture 7 for us?

(ii) Chabauty type approach in genus 3. The Diophantine equations
from (i) lead to the genus 3 curves D1 : y2 = x7 + 212 · 37 · 77 and
D2 : y2 = x7 + 212 · 311 · 77, respectively. Magma calculations show
that the only rational points on Di (Q) (with bounds 109) are points at
infinity, as expected. Magma also shows that ranks of Jac(Di )(Q)
(i = 1, 2) are bounded by 1.
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Why is hard to prove Conjecture 7 for us?

There are two technical problems to use Chabauty method:

1 One needs explicit rational points of infinite order (not easy to find).
2 There is no readily available implementation of Chabauty’s method for

(odd degree) hyperelliptic genus 3 curves.

Professor Stoll suggested to try the methods of his papers [Stoll,
2018], but we were not able to follow his advise yet.
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Why is hard to prove Conjecture 7 for us?

(iii) Combination of the modular and Chabauty methods. One may
consider a more general Diophantine equation 7x2 + y7 = 4z3, try to
follow the paper [Poonen,Schaefer,Stoll-2007], and then deduce the
solutions for the original Diophantine equation. It seems a very
difficult task, but maybe the only available way ...
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Thank you for your attention!

Köszönöm a figyelmet!
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