The unit equation over \mathbb{Q}_{∞}

Samir Siksek (Warwick)
joint work with Nuno Freitas (ICMAT-Madrid), Alain Kraus
(Sorbonne) and Robin Visser (Warwick)

15 September 2023

\mathbb{Z}_{ℓ}-extensions of \mathbb{Q}

Let ℓ be an odd prime and $n \geq 1$. Then

$$
\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{\ell^{n+1}}\right) / \mathbb{Q}\right) \cong\left(\mathbb{Z} / \ell^{n+1} \mathbb{Z}\right)^{\times} \cong \mathbb{Z} / \ell^{n} \mathbb{Z} \times(\mathbb{Z} / \ell \mathbb{Z})^{\times}
$$

Thus $\mathbb{Q}\left(\zeta_{\ell^{n+1}}\right)$ has a subfield denoted by $\mathbb{Q}_{n, \ell}$ satisfying
(1) $\left[\mathbb{Q}_{n, \ell}: \mathbb{Q}\right]=\ell^{n}$;
(2) $\mathbb{Q}_{n, \ell}$ is totally real and Galois;
(3) $\operatorname{Gal}\left(\mathbb{Q}_{n, \ell} / \mathbb{Q}\right) \cong \mathbb{Z} / \ell^{n} \mathbb{Z}$;
(9) ℓ is totally ramifies in $\mathbb{Q}_{n, \ell}$, and all other primes are unramified.

Let

$$
\mathbb{Q}_{\infty, \ell}=\bigcup_{n=1}^{\infty} \mathbb{Q}_{n, \ell} \quad \text { (cyclotomic } \mathbb{Z}_{\ell} \text {-extension of } \mathbb{Q} \text {). }
$$

Then

$$
\operatorname{Gal}\left(\mathbb{Q}_{\infty, \ell} / \mathbb{Q}\right) \cong \mathbb{Z}_{\ell}
$$

Sometimes write $\mathbb{Q}_{n}=\mathbb{Q}_{n, \ell}$ and $\mathbb{Q}_{\infty}=\mathbb{Q}_{\infty, \ell}$.

Asymptotic Fermat over ℓ-extensions

K / \mathbb{Q} is an ℓ-extension if it is Galois and $[K: \mathbb{Q}]=\ell^{n}$.
Theorem (Freitas, Kraus and S.)
Let $\ell \geq 5$ be prime. Let K be an ℓ-extension of \mathbb{Q} such that

- K is totally real;
- ℓ is totally ramified in K;
- 2 is inert in K.

Then the asymptotic Fermat's Last Theorem holds for K: i.e. there is a constant C_{K} such that if $p>C_{K}$ is prime and $x^{p}+y^{p}+z^{p}=0$ with x, y, $z \in K$ then $x y z=0$.

Hypotheses are satisfied for $K=\mathbb{Q}_{n, \ell}$, with $\ell \geq 5$, provided $2^{\ell-1} \not \equiv 1$ $\left(\bmod \ell^{2}\right)$.

Asymptotic Fermat over ℓ-extensions

K / \mathbb{Q} is an ℓ-extension if it is Galois and $[K: \mathbb{Q}]=\ell^{n}$.
Theorem (Freitas, Kraus and S.)
Let $\ell \geq 5$ be prime. Let K be an ℓ-extension of \mathbb{Q} such that

- K is totally real;
- ℓ is totally ramified in K;
- 2 is inert in K.

Then the asymptotic Fermat's Last Theorem holds for K: i.e. there is a constant C_{K} such that if $p>C_{K}$ is prime and $x^{p}+y^{p}+z^{p}=0$ with x, y, $z \in K$ then $x y z=0$.

Hypotheses are satisfied for $K=\mathbb{Q}_{n, \ell}$, with $\ell \geq 5$, provided $2^{\ell-1} \not \equiv 1$ $\left(\bmod \ell^{2}\right)$.

A key step is showing that the unit equation

$$
\varepsilon+\delta=1, \quad \varepsilon, \delta \in \mathcal{O}_{K}^{\times}
$$

has no solutions.

The unit equation in ℓ-extensions

Lemma

- Let K be an ℓ-extension, $[K: \mathbb{Q}]=\ell^{n}$.
- Suppose ℓ is totally ramified:

$$
\ell \mathcal{O}_{K}=\lambda^{\ell^{n}} .
$$

Then $\varepsilon \equiv \pm 1(\bmod \lambda)$ for all $\varepsilon \in \mathcal{O}_{K}^{\times}$.

Proof.

Let $G=\operatorname{Gal}(K / \mathbb{Q})$. Then $G=I(\lambda / \ell)$ (the inertia group).
Hence

$$
\varepsilon^{\sigma} \equiv \varepsilon \quad(\bmod \lambda), \quad \forall \sigma \in G .
$$

Thus

$$
\pm 1=\operatorname{Norm}(\varepsilon)=\prod_{\sigma \in G} \varepsilon^{\sigma} \equiv \varepsilon^{\ell^{n}} \equiv \varepsilon(\bmod \lambda)
$$

since $\mathcal{O}_{K} / \lambda \cong \mathbb{F}_{\ell}$.

The unit equation in ℓ-extensions

Theorem
Let $\ell \neq 3$.

- Let K be an ℓ-extension, $[K: \mathbb{Q}]=\ell^{n}$.
- Suppose ℓ is totally ramified: $\quad \ell \mathcal{O}_{K}=\lambda^{\ell^{n}}$.

Then the unit equation

$$
\varepsilon+\delta=1, \quad \varepsilon, \delta \in \mathcal{O}_{K}^{\times}
$$

has no solutions.

Proof.

True since $\quad \pm 1 \pm 1 \not \equiv 1(\bmod \ell)$.

- Proof doesn't work for $\ell=3$ as $-1-1 \equiv 1(\bmod 3)$.
- Unable to prove FLT over $\mathbb{Q}_{n, 3}$.
- Does the the unit equation have infinitely or finitely many solutions over $\mathbb{Q}_{\infty, 3}$?

Some major theorems in Diophantine geometry

	K a number field
A / K	Mordell-Weil Theorem
abelian variety	$A(K)$ is finitely generated
$A, B / K$ abelian	Tate Conjecture (Faltings) varieties
Hom $_{G_{K}}\left(T_{\ell}(A), T_{\ell}(B)\right) \cong \operatorname{Hom}_{K}(A, B) \otimes \mathbb{Z}_{\ell}$	
\mathcal{O}_{K} finite set of	Shafarevich Conjecture (Faltings) $_{n \geq 1}$
$\exists$$\exists$ finitely many isom classes of dim n p.p. abelian varieties A / K with good reduction outside S	
C / K curve	Mordell Conjecture (Faltings) of genus ≥ 2 $C(K)$ is finite
S finite set of	Siegel's Theorem \mathcal{O}_{K}-primes

Győry (1974): effective Siegel.
Mordell-Weil, Shafarevich, Mordell: ineffective.

Replacing number field with \mathbb{Q}_{∞}

	$K=\mathbb{Q}_{\infty}$
A/K abelian variety	Analogue of Mordell-Weil: Mazur Conjecture $A(K)$ is finitely generated
$A, B / K$ abelian varieties	Analogue of Tate: Zarhin's Theorem $\operatorname{Hom}_{G_{K}}\left(T_{\ell}(A), T_{\ell}(B)\right) \cong \operatorname{Hom}_{K}(A, B) \otimes \mathbb{Z}_{\ell}$
$\begin{aligned} & S \text { finite set of } \\ & \mathcal{O}_{K} \text {-primes } \\ & n \geq 1 \end{aligned}$	Analogue of Shafarevich?? Can we say anything about dim n p.p.a.v. A / K with good reduction outside S?
C / K curve of genus ≥ 2	Analogue of Mordell: Parshin Conjecture $C(K)$ is finite
S finite set of \mathcal{O}_{K}-primes	Analogue of Siegel?? Does $\varepsilon+\delta=1$ have only finitely many solutions with $\varepsilon, \delta \in \mathcal{O}_{S}^{\times}$?

Mazur Conjecture

Conjecture (Mazur)

Let A be an abelian variety over \mathbb{Q}_{∞}. Then $A\left(\mathbb{Q}_{\infty}\right)$ is finitely generated.

Theorem (Kato)

Let A / \mathbb{Q} be a factor of $J_{1}(N)$. Then $A\left(\mathbb{Q}_{\infty}\right)$ is finitely generated.
Wiles: If E / \mathbb{Q} is an elliptic curve then E is a factor of $J_{1}(N)$.

Conjecture (Mazur)

Let A be an abelian variety over \mathbb{Q}_{∞}. Then $A\left(\mathbb{Q}_{\infty}\right)$ is finitely generated.

Conjecture (Parshin)

Let C / \mathbb{Q}_{∞} be a curve of genus ≥ 2. Then $C\left(\mathbb{Q}_{\infty}\right)$ is finite.
Theorem (Greenberg)
Mazur \Longrightarrow Parshin

Proof.

- Let J be the Jacobian of C.
- $J\left(\mathbb{Q}_{\infty}\right)=J\left(\mathbb{Q}_{n}\right)$ for some n, by Mazur.
- Enlarge n so that $C\left(\mathbb{Q}_{n}\right) \neq \emptyset$.
- By Abel-Jacobi, $C\left(\mathbb{Q}_{\infty}\right) \subset J\left(\mathbb{Q}_{\infty}\right)=J\left(\mathbb{Q}_{n}\right)$.
- Thus $C\left(\mathbb{Q}_{\infty}\right)=C\left(\mathbb{Q}_{n}\right)$.
- $C\left(\mathbb{Q}_{n}\right)$ is finite by Faltings.

No Siegel over \mathbb{Q}_{∞}

Theorem (S.-Visser)
Let $K=\mathbb{Q}_{\infty, 3}$. Then

$$
\varepsilon+\delta=1, \quad \varepsilon, \delta \in \mathcal{O}_{K}^{\times}
$$

has infinitely many solutions.

Theorem (S.-Visser)
Let $\ell=2,5$ or 7 and $K=\mathbb{Q}_{\infty, \ell}$. Let v_{ℓ} be the unique prime above ℓ. Let $S=\left\{v_{\ell}\right\}$. Then

$$
\varepsilon+\delta=1, \quad \varepsilon, \delta \in \mathcal{O}_{S}^{\times}
$$

has infinitely many solutions.

Cyclotomic Units from Cyclotomic Polynomials

Let $\zeta=\zeta_{\ell^{n+1}}$.

$$
X^{m}-1=\prod_{d \mid m} \Phi_{d}(X), \quad \Phi_{m}(X)=\prod_{d \mid m}\left(X^{d}-1\right)^{\mu(m / d)}
$$

Can conclude

$$
\begin{gathered}
\mathrm{Cyc}_{n}=\left\langle\zeta, \quad \Phi_{m}(\zeta): 1<m<\frac{\ell^{n+1}}{2}, \ell \nmid m\right\rangle \\
\mathrm{SCyc}_{n}=\left\langle\zeta, \quad \Phi_{m}(\zeta): \quad 1 \leq m<\frac{\ell^{n+1}}{2}, \ell \nmid m\right\rangle \quad \begin{array}{c}
\text { cyclotomic units } \\
\text { in } \mathbb{Q}\left(\zeta_{\ell^{n+1}}\right)
\end{array} \\
\begin{array}{c}
\text { cyclotomic } v_{\ell-\text {-units }}^{\text {in } \mathbb{Q}\left(\zeta_{\ell n+1}\right)}
\end{array}
\end{gathered}
$$

Write $\mathrm{SCyc}_{n}^{+}=\mathbb{Q}\left(\zeta_{\ell \ell^{n+1}}\right)^{+} \cap \mathrm{SCyc}_{\mathrm{n}}$.
Kummer-Sinnott: $\left[\mathcal{O}_{v_{\ell}}^{\times}: \mathrm{SCyc}_{n}^{+}\right]=h_{n}^{+}:=\# \mathrm{Cl}\left(\mathbb{Q}\left(\zeta_{\ell^{n+1}}\right)^{+}\right)$.

Let $\ell=5$. Let $\zeta=\zeta_{5^{n+1}}$. The Galois group $\operatorname{Gal}\left(\mathbb{Q}(\zeta) / \mathbb{Q}_{n, 5}\right)$ is cyclic and generated by

$$
\sigma_{a}: \zeta \mapsto \zeta^{a}, \quad a^{2} \equiv-1 \quad\left(\bmod 5^{n+1}\right)
$$

Let

$$
\begin{gathered}
F=\left(x_{1}^{2}+x_{1} x_{3}+x_{3}^{2}\right)\left(x_{2}^{2}+x_{2} x_{4}+x_{4}^{2}\right)=x_{3}^{2} x_{4}^{2} \cdot \Phi_{3}\left(x_{1} / x_{3}\right) \cdot \Phi_{3}\left(x_{2} / x_{4}\right), \\
G=\left(x_{1}^{2}-x_{1} x_{3}+x_{3}^{2}\right)\left(x_{2}^{2}-x_{2} x_{4}+x_{4}^{2}\right)=x_{3}^{2} x_{4}^{2} \cdot \Phi_{6}\left(x_{1} / x_{3}\right) \cdot \Phi_{6}\left(x_{2} / x_{4}\right), \\
H=\left(x_{1} x_{4}+x_{2} x_{3}\right)\left(x_{1} x_{2}+x_{3} x_{4}\right)=x_{2} x_{3}^{2} x_{4} \cdot \Phi_{2}\left(x_{1} x_{4} / x_{2} x_{3}\right) \cdot \Phi_{2}\left(x_{1} x_{2} / x_{3} x_{4}\right)
\end{gathered}
$$

- $F+G=2 H$.
- F, G, H are invariant under $x_{1} \mapsto x_{2} \mapsto x_{3} \mapsto x_{4} \mapsto x_{1}$.
- $F\left(\zeta, \zeta^{a}, \zeta^{a^{2}}, \zeta^{a^{3}}\right) \in \mathcal{O}\left(\mathbb{Q}_{n, 5}\right)^{\times}$. Same for G, H.
- $\therefore \varepsilon+\delta=2$ has infinitely many solutions in $\mathcal{O}\left(\mathbb{Q}_{\infty, 5}\right)^{\times}$.

No Shafarevich over \mathbb{Q}_{∞}

Let

$$
E: Y^{2}=X^{3}-X
$$

- Let $\varepsilon \in \mathcal{O}\left(\mathbb{Q}_{\infty}\right)^{\times}$. Let

$$
E_{\varepsilon}: \varepsilon Y^{2}=X^{3}-X
$$

Then E_{ε} has good reduction away from primes above 2.

- $E_{\varepsilon} \cong_{\mathbb{Q}_{\infty}} E_{\delta}$

$$
\varepsilon / \delta \in\left(\mathcal{O}^{\times}\right)^{2}
$$

- $\# \mathcal{O}^{\times} /\left(\mathcal{O}^{\times}\right)^{2}=\infty$
- We obtain infinitely many isomorphism classes of elliptic curves over \mathbb{Q}_{∞} with good reduction away from 2.
- $E_{\varepsilon} \cong_{\overline{\mathbb{Q}}} E$.

No Shafarevich over \mathbb{Q}_{∞}

Theorem (S.-Visser)
Let $\ell \geq 11$ be an odd prime and let $g=\left\lfloor\frac{\ell-3}{4}\right\rfloor$.

- There is an infinite family of genus g hyperelliptic curves over $\mathbb{Q}_{\infty, \ell}$ with good reduction away from $\{v: v \mid 2 \ell\}$.
- The curves are pairwise non-isomorphic over $\overline{\mathbb{Q}}$.
- The Jacobians have good reduction away from $\{v: v \mid 2 \ell\}$, and are pairwise non-isomorphic over $\overline{\mathbb{Q}}$.
- Moreover, if

$$
\ell \in\{11,23,59,107,167,263,347,359\}
$$

then the Jacobians are pairwise non-isogenous over $\mathbb{Q}_{\infty, \ell}$.

Hyperelliptic Construction

- Let $\zeta=\zeta_{\ell^{n+1}}$. Let $\alpha=\zeta^{i}, \beta=\zeta^{j}$

$$
\left(\alpha+\alpha^{-1}\right)-\left(\beta+\beta^{-1}\right)=\alpha^{-1} \cdot(1-\alpha \beta) \cdot\left(1-\alpha \beta^{-1}\right) \in \mathrm{SCyc}_{n}^{+}
$$ unless $\alpha=\beta^{ \pm 1}$.

- Let $\gamma_{1}=\zeta+\zeta^{-1}$ and let $\gamma_{1}, \ldots, \gamma_{(\ell-1) / 2}$ be the conjugates of γ_{1} in $\mathbb{Q}(\zeta)^{+} / \mathbb{Q}_{n, \ell}$.
- Let $C_{n}: Y^{2}=\left(X-\gamma_{1}\right)\left(X-\gamma_{2}\right) \cdots\left(X-\gamma_{(\ell-1) / 2}\right)$.
- C_{n} / \mathbb{Q}_{n}.
- $\Delta(\mathrm{pol})=\prod_{i<j}\left(\gamma_{i}-\gamma_{j}\right)^{2} \in \mathrm{SCyc}_{n}^{+}$.
- C_{n} / \mathbb{Q}_{n} has genus $\lfloor(\ell-3) / 4\rfloor$, has good reduction away from $\{v: v \mid 2 \ell\}$.
J_{m}, J_{n} are non-isogenous for $m>n$ (sketch)
- Let ℓ, q be odd primes, such that $\ell=2 q+1, \quad \mathbb{F}_{q}^{\times}=\langle 2\rangle$.
- $\Omega_{\infty}^{+}=\cup_{k} \mathbb{Q}\left(\zeta_{\ell^{k}}+\zeta_{\ell^{k}}^{-1}\right), \quad\left[\Omega_{\infty}^{+}: \mathbb{Q}_{\infty}\right]=q$.
- $C_{n}: Y^{2}=\left(X-\gamma_{1}\right)\left(X-\gamma_{2}\right) \cdots\left(X-\gamma_{q}\right) . \gamma_{1}=\zeta_{l^{n+1}}+\zeta_{\ell_{n+1}}^{-1}$.
- $C_{m}: Y^{2}=\left(X-\delta_{1}\right)\left(X-\delta_{2}\right) \cdots\left(X-\delta_{q}\right) . \delta_{1}=\zeta_{\ell^{m+1}}+\zeta_{\ell^{m+1}}^{-1}$.
- Write $J_{n}=\operatorname{Jac}\left(C_{n}\right) / \mathbb{Q}_{\infty}$. Then $J_{n}[2]$ is irreducible as $G_{\mathbb{Q}_{\infty}}$-module.
- Suppose $\phi: J_{n} \rightarrow J_{m}$ is an isogeny, defined over \mathbb{Q}_{∞} of minimal degree. Want a contradiction.
- As $J_{n}[2]$ is irreducible, ϕ has odd degree.
- Hence $\mathbb{Q}_{\infty}\left(J_{n}\left[2^{r}\right]\right)=\mathbb{Q}_{\infty}\left(J_{m}\left[2^{r}\right]\right)$ for all $r \geq 1$.
- Plan A: compute $\mathbb{Q}_{\infty}\left(J_{n}[2]\right), \mathbb{Q}_{\infty}\left(J_{m}[2]\right)$. If different then have a contradiction.
- Bad news: $\mathbb{Q}_{\infty}\left(J_{n}[2]\right)=\mathbb{Q}_{\infty}\left(\gamma_{1}\right)=\Omega_{\infty}^{+}=\mathbb{Q}_{\infty}\left(J_{m}[2]\right)$. No contradiction.
J_{m}, J_{n} are non-isogenous for $m>n$ (sketch)
- Let ℓ, q be odd primes, such that $\ell=2 q+1, \quad \mathbb{F}_{q}^{\times}=\langle 2\rangle$.
- $\Omega_{\infty}^{+}=\cup_{k} \mathbb{Q}\left(\zeta_{\ell^{k}}+\zeta_{\ell^{k}}^{-1}\right), \quad\left[\Omega_{\infty}^{+}: \mathbb{Q}_{\infty}\right]=q$.
- $C_{n}: Y^{2}=\left(X-\gamma_{1}\right)\left(X-\gamma_{2}\right) \cdots\left(X-\gamma_{q}\right) . \gamma_{1}=\zeta_{\ell^{n+1}}+\zeta_{\ell^{n+1}}^{-1}$.
- $C_{m}: Y^{2}=\left(X-\delta_{1}\right)\left(X-\delta_{2}\right) \cdots\left(X-\delta_{q}\right) . \delta_{1}=\zeta_{\ell^{m+1}}+\zeta_{\ell^{m+1}}^{-1}$.
- Plan B: compute $\mathbb{Q}_{\infty}\left(J_{n}[4]\right), \mathbb{Q}_{\infty}\left(J_{m}[4]\right)$. If different then have a contradiction.
- $\mathbb{Q}_{\infty}\left(J_{n}[4]\right)=\Omega_{\infty}^{+}\left(\sqrt{\gamma_{i}-\gamma_{j}}: 1 \leq i, j \leq q\right)$. Suppose fields of 4-torsion are same:
- $\Omega_{\infty}^{+}\left(\sqrt{\gamma_{i}-\gamma_{j}}: 1 \leq i, j \leq q\right)=\Omega_{\infty}^{+}\left(\sqrt{\delta_{i}-\delta_{j}}: 1 \leq i, j \leq q\right)$.
- $\left\langle\gamma_{i}-\gamma_{j}: 1 \leq i, j \leq q\right\rangle=\left\langle\delta_{i}-\delta_{j}: 1 \leq i, j \leq q\right\rangle$ in $\Omega_{\infty}^{+} /\left(\Omega_{\infty}^{+}\right)^{2}$.
- We obtain a relation between elements of SCyc_{m}^{+}up to the square of $\mu \in \mathcal{O}\left(\mathbb{Q}\left(\zeta_{\ell^{m+1}}\right)^{+}\right)_{S}^{\times}$.
J_{m}, J_{n} are non-isogenous for $m>n$ (sketch continued)
- Let ℓ, q be odd primes, such that $\ell=2 q+1, \quad \mathbb{F}_{q}^{\times}=\langle 2\rangle$.
- $\Omega_{\infty}^{+}=\cup_{k} \mathbb{Q}\left(\zeta_{\ell^{k}}+\zeta_{\ell^{k}}^{-1}\right), \quad\left[\Omega_{\infty}^{+}: \mathbb{Q}_{\infty}\right]=q$.
- $C_{n}: Y^{2}=\left(X-\gamma_{1}\right)\left(X-\gamma_{2}\right) \cdots\left(X-\gamma_{q}\right) . \gamma_{1}=\zeta_{l^{n+1}}+\zeta_{\ell_{n+1}}^{-1}$.
- $C_{m}: Y^{2}=\left(X-\delta_{1}\right)\left(X-\delta_{2}\right) \cdots\left(X-\delta_{q}\right) . \delta_{1}=\zeta_{\ell^{m+1}}+\zeta_{\ell^{m+1}}^{-1}$.
- $\left\langle\gamma_{i}-\gamma_{j}: 1 \leq i, j \leq q\right\rangle=\left\langle\delta_{i}-\delta_{j}: 1 \leq i, j \leq q\right\rangle$ in $\Omega_{\infty}^{+} /\left(\Omega_{\infty}^{+}\right)^{2}$.
- $\delta_{1}-\delta_{2}=\mu^{2} \cdot \prod_{i<j}\left(\gamma_{i}-\gamma_{j}\right)^{x_{i, j}} \quad x_{i, j} \in\{0,1\}$.
- We obtain a relation between elements of SCyc_{m}^{+}up to the square of $\mu \in \mathcal{O}\left(\mathbb{Q}\left(\zeta_{\ell^{m+1}}\right)^{+}\right)_{S}^{x}$.
- Recall $\left[\mathcal{O}\left(\mathbb{Q}\left(\zeta_{\ell^{m+1}}\right)^{+}\right)_{s}^{\times}: \mathrm{SCyc}_{m}^{+}\right]=h_{m}^{+}:=\# \mathrm{Cl}\left(\mathbb{Q}\left(\zeta_{\ell^{m+1}}\right)^{+}\right)$.
- If $2 \nmid h_{m}^{+}$then $\mu \in \mathrm{SCyc}_{m}^{+}$, can obtain a contradiction!
$h_{m}^{+}:=\# \mathrm{Cl}\left(\mathbb{Q}\left(\zeta_{\ell^{m+1}}\right)^{+}\right)$. Want values of ℓ such that $2 \nmid h_{m}^{+}$for all $m \geq 0$. Recall $h_{m}^{+} \mid h_{m}$.

Theorem (Estes, Stevenhagen, 1994)
Let ℓ, q be odd primes, such that $\ell=2 q+1$, and $\mathbb{F}_{q}^{\times}=\langle 2\rangle$. Then h_{0} is odd.

Theorem (Washington, 1978)
Let $p \neq \ell$. Then $\operatorname{ord}_{p}\left(h_{m}\right)$ is bounded as $m \rightarrow \infty$.

Theorem (Ichimura and Nakajima, 2012)
Let $\ell \leq 509$. Then h_{m} / h_{0} is odd for all m.

No Shafarevich over \mathbb{Q}_{∞}

Theorem (S.-Visser)
Let $\ell \geq 11$ be an odd prime and let $g=\left\lfloor\frac{\ell-3}{4}\right\rfloor$.

- There is an infinite family of genus g hyperelliptic curves over $\mathbb{Q}_{\infty, \ell}$ with good reduction away from $\{v: v \mid 2 \ell\}$.
- The curves are pairwise non-isomorphic over $\overline{\mathbb{Q}}$.
- The Jacobians have good reduction away from $\{v: v \mid 2 \ell\}$, and are pairwise non-isomorphic over $\overline{\mathbb{Q}}$.
- Moreover, if

$$
\ell \in\{11,23,59,107,167,263,347,359\}
$$

then the Jacobians are pairwise non-isogenous over $\mathbb{Q}_{\infty, \ell}$.

