The unit equation over \mathbb{Q}_{∞}

Samir Siksek (Warwick) joint work with Nuno Freitas (ICMAT–Madrid), Alain Kraus (Sorbonne) and Robin Visser (Warwick)

15 September 2023

$\mathbb{Z}_\ell\text{-extensions}$ of \mathbb{Q}

Let ℓ be an odd prime and $n \ge 1$. Then

 $\mathsf{Gal}(\mathbb{Q}(\zeta_{\ell^{n+1}})/\mathbb{Q}) \cong (\mathbb{Z}/\ell^{n+1}\mathbb{Z})^{\times} \cong \mathbb{Z}/\ell^n\mathbb{Z} \times (\mathbb{Z}/\ell\mathbb{Z})^{\times}.$

Thus $\mathbb{Q}(\zeta_{\ell^{n+1}})$ has a subfield denoted by $\mathbb{Q}_{n,\ell}$ satisfying

$$[\mathbb{Q}_{n,\ell}:\mathbb{Q}] = \ell^n;$$

2 $\mathbb{Q}_{n,\ell}$ is totally real and Galois;

$$\ \ \, {\sf Gal}(\mathbb{Q}_{n,\ell}/\mathbb{Q})\cong \mathbb{Z}/\ell^n\mathbb{Z};$$

• ℓ is totally ramifies in $\mathbb{Q}_{n,\ell}$, and all other primes are unramified.

Let

$$\mathbb{Q}_{\infty,\ell} \ = \ igcup_{n=1}^{\infty} \mathbb{Q}_{n,\ell} \qquad (ext{cyclotomic } \mathbb{Z}_\ell ext{-extension of } \mathbb{Q}).$$

Then

$$\mathsf{Gal}(\mathbb{Q}_{\infty,\ell}/\mathbb{Q}) \cong \mathbb{Z}_{\ell}.$$

Sometimes write $\mathbb{Q}_n = \mathbb{Q}_{n,\ell}$ and $\mathbb{Q}_{\infty} = \mathbb{Q}_{\infty,\ell}$.

Asymptotic Fermat over *l*-extensions

 K/\mathbb{Q} is an ℓ -extension if it is Galois and $[K:\mathbb{Q}] = \ell^n$.

Theorem (Freitas, Kraus and S.)

Let $\ell \geq 5$ be prime. Let K be an ℓ -extension of $\mathbb Q$ such that

- K is totally real;
- ℓ is totally ramified in K;
- 2 is inert in K.

Then the asymptotic Fermat's Last Theorem holds for K: i.e. there is a constant C_K such that if $p > C_K$ is prime and $x^p + y^p + z^p = 0$ with $x, y, z \in K$ then xyz = 0.

Hypotheses are satisfied for $K = \mathbb{Q}_{n,\ell}$, with $\ell \geq 5$, provided $2^{\ell-1} \neq 1 \pmod{\ell^2}$.

Asymptotic Fermat over *l*-extensions

 K/\mathbb{Q} is an ℓ -extension if it is Galois and $[K : \mathbb{Q}] = \ell^n$.

Theorem (Freitas, Kraus and S.)

Let $\ell \geq 5$ be prime. Let K be an ℓ -extension of $\mathbb Q$ such that

- K is totally real;
- ℓ is totally ramified in K;
- 2 is inert in K.

Then the asymptotic Fermat's Last Theorem holds for K: i.e. there is a constant C_K such that if $p > C_K$ is prime and $x^p + y^p + z^p = 0$ with $x, y, z \in K$ then xyz = 0.

Hypotheses are satisfied for $K = \mathbb{Q}_{n,\ell}$, with $\ell \geq 5$, provided $2^{\ell-1} \neq 1 \pmod{\ell^2}$.

A key step is showing that the **unit equation**

$$arepsilon+\delta \ = \ 1, \qquad arepsilon, \ \delta \in \mathcal{O}_{K}^{ imes}$$

has no solutions.

The unit equation in ℓ -extensions

Lemma

- Let K be an ℓ -extension, $[K : \mathbb{Q}] = \ell^n$.
- Suppose ℓ is totally ramified:

$$\ell \mathcal{O}_K = \lambda^{\ell^n}$$

Then $\varepsilon \equiv \pm 1 \pmod{\lambda}$ for all $\varepsilon \in \mathcal{O}_K^{\times}$.

Proof.

Let
$$G = \text{Gal}(K/\mathbb{Q})$$
. Then $G = I(\lambda/\ell)$ (the inertia group).
Hence

$$\varepsilon^{\sigma} \equiv \varepsilon \pmod{\lambda}, \quad \forall \sigma \in G.$$

Thus

$$\pm 1 = \operatorname{\mathsf{Norm}}(arepsilon) = \prod_{\sigma\in {\mathcal{G}}} arepsilon^\sigma \equiv arepsilon^{\ell^n} \equiv arepsilon \pmod{\lambda},$$

since $\mathcal{O}_{\mathcal{K}}/\lambda \cong \mathbb{F}_{\ell}$.

The unit equation in ℓ -extensions

Theorem

Let $\ell \neq 3$.

• Let K be an ℓ -extension, $[K : \mathbb{Q}] = \ell^n$.

• Suppose ℓ is totally ramified: $\ell \mathcal{O}_{K} = \lambda^{\ell^{n}}$. Then the unit equation

$$\varepsilon + \delta = 1, \qquad \varepsilon, \ \delta \in \mathcal{O}_{K}^{\times}$$

has no solutions.

Proof.

True since $\pm 1 \pm 1 \not\equiv 1 \pmod{\ell}$.

- Proof doesn't work for $\ell = 3$ as $-1 1 \equiv 1 \pmod{3}$.
- Unable to prove FLT over $\mathbb{Q}_{n,3}$.
- Does the the unit equation have infinitely or finitely many solutions over $\mathbb{Q}_{\infty,3}?$

Some major theorems in Diophantine geometry

	K a number field
A/K	Mordell–Weil Theorem
abelian variety	A(K) is finitely generated
A, B/K abelian	Tate Conjecture (Faltings)
varieties	$\operatorname{Hom}_{G_{\mathcal{K}}}(T_{\ell}(A), T_{\ell}(B)) \cong \operatorname{Hom}_{\mathcal{K}}(A, B) \otimes \mathbb{Z}_{\ell}$
S finite set of	Shafarevich Conjecture (Faltings)
$\mathcal{O}_{\mathcal{K}}$ -primes	∃ finitely many isom classes
$n \ge 1$	of dim n p.p. abelian varieties A/K
	with good reduction outside S
C/K curve	Mordell Conjecture (Faltings)
of genus \geq 2	C(K) is finite
S finite set of	Siegel's Theorem
\mathcal{O}_K -primes	$arepsilon+\delta=1$ has finitely many
	solutions with $arepsilon$, $\delta\in \mathcal{O}_{\mathcal{S}}^{ imes}$
Győry (1974): effective Siegel.	

Mordell-Weil, Shafarevich, Mordell: ineffective.

Replacing number field with \mathbb{Q}_∞

	$\mathcal{K} = \mathbb{Q}_{\infty}$
A/K	Analogue of Mordell–Weil: Mazur Conjecture
abelian variety	A(K) is finitely generated
A, B/K abelian	Analogue of Tate: Zarhin's Theorem
varieties	$\operatorname{Hom}_{G_{\mathcal{K}}}(T_{\ell}(A),T_{\ell}(B))\cong\operatorname{Hom}_{\mathcal{K}}(A,B)\otimes\mathbb{Z}_{\ell}$
S finite set of	Analogue of Shafarevich??
\mathcal{O}_{K} -primes	Can we say anything about dim n p.p.a.v. A/K
$n \geq 1$	with good reduction outside S?
C/K curve	Analogue of Mordell: Parshin Conjecture
of genus \geq 2	C(K) is finite
S finite set of	Analogue of Siegel??
\mathcal{O}_{K} -primes	Does $arepsilon+\delta=1$ have only finitely many
	solutions with ε , $\delta \in \mathcal{O}_{\mathcal{S}}^{\times}$?

Mazur Conjecture

Conjecture (Mazur)

Let A be an abelian variety over \mathbb{Q}_{∞} . Then $A(\mathbb{Q}_{\infty})$ is finitely generated.

Theorem (Kato)

Let A/\mathbb{Q} be a factor of $J_1(N)$. Then $A(\mathbb{Q}_{\infty})$ is finitely generated.

Wiles: If E/\mathbb{Q} is an elliptic curve then E is a factor of $J_1(N)$.

Conjecture (Mazur)

Let A be an abelian variety over \mathbb{Q}_{∞} . Then $A(\mathbb{Q}_{\infty})$ is finitely generated.

Conjecture (Parshin)

Let C/\mathbb{Q}_{∞} be a curve of genus ≥ 2 . Then $C(\mathbb{Q}_{\infty})$ is finite.

Theorem (Greenberg)

 $Mazur \implies Parshin$

Proof.

- Let J be the Jacobian of C.
- $J(\mathbb{Q}_{\infty}) = J(\mathbb{Q}_n)$ for some *n*, by Mazur.
- Enlarge *n* so that $C(\mathbb{Q}_n) \neq \emptyset$.
- By Abel–Jacobi, $C(\mathbb{Q}_{\infty}) \subset J(\mathbb{Q}_{\infty}) = J(\mathbb{Q}_n)$.
- Thus $C(\mathbb{Q}_{\infty}) = C(\mathbb{Q}_n)$.
- $C(\mathbb{Q}_n)$ is finite by Faltings.

No Siegel over \mathbb{Q}_∞

Theorem (S.–Visser) Let $K = \mathbb{Q}_{\infty,3}$. Then

$$\varepsilon + \delta = 1, \qquad \varepsilon, \ \delta \in \mathcal{O}_K^{\times}$$

has infinitely many solutions.

Theorem (S.–Visser)

Let $\ell = 2$, 5 or 7 and $K = \mathbb{Q}_{\infty,\ell}$. Let v_{ℓ} be the unique prime above ℓ . Let $S = \{v_{\ell}\}$. Then

$$\varepsilon + \delta = 1, \qquad \varepsilon, \ \delta \in \mathcal{O}_{\mathcal{S}}^{\times}$$

has infinitely many solutions.

Cyclotomic Units from Cyclotomic Polynomials

Let
$$\zeta = \zeta_{\ell^{n+1}}$$
.
 $X^m - 1 = \prod_{d|m} \Phi_d(X), \qquad \Phi_m(X) = \prod_{d|m} (X^d - 1)^{\mu(m/d)}$
Can conclude

$$\operatorname{Cyc}_n = \left\langle \zeta, \quad \Phi_m(\zeta) \quad : \quad 1 < m < \frac{\ell^{n+1}}{2}, \ \ell \nmid m \right\rangle$$
 cyclotomic units
in $\mathbb{Q}(\zeta_{\ell^{n+1}})$

$$\operatorname{SCyc}_n = \left\langle \zeta, \quad \Phi_m(\zeta) \quad : \quad 1 \le m < \frac{\ell^{n+1}}{2}, \ \ell \nmid m \right\rangle \qquad \begin{array}{c} \operatorname{cyclotomic} v_\ell \operatorname{-units} \\ \operatorname{in} \mathbb{Q}(\zeta_{\ell^{n+1}}) \end{array}$$

Write $\operatorname{SCyc}_n^+ = \mathbb{Q}(\zeta_{\ell^{n+1}})^+ \cap \operatorname{SCyc}_n$.

Kummer–Sinnott: $[\mathcal{O}_{v_{\ell}}^{\times} : \mathrm{SCyc}_{n}^{+}] = h_{n}^{+} := \# \mathrm{Cl}(\mathbb{Q}(\zeta_{\ell^{n+1}})^{+}).$

Let $\ell = 5$. Let $\zeta = \zeta_{5^{n+1}}$. The Galois group $Gal(\mathbb{Q}(\zeta)/\mathbb{Q}_{n,5})$ is cyclic and generated by

$$\sigma_a: \zeta \mapsto \zeta^a, \qquad a^2 \equiv -1 \pmod{5^{n+1}}.$$

Let

$$F = (x_1^2 + x_1x_3 + x_3^2)(x_2^2 + x_2x_4 + x_4^2) = x_3^2x_4^2 \cdot \Phi_3(x_1/x_3) \cdot \Phi_3(x_2/x_4),$$

$$G = (x_1^2 - x_1x_3 + x_3^2)(x_2^2 - x_2x_4 + x_4^2) = x_3^2x_4^2 \cdot \Phi_6(x_1/x_3) \cdot \Phi_6(x_2/x_4),$$

$$H = (x_1x_4 + x_2x_3)(x_1x_2 + x_3x_4) = x_2x_3^2x_4 \cdot \Phi_2(x_1x_4/x_2x_3) \cdot \Phi_2(x_1x_2/x_3x_4)$$

•
$$F + G = 2H$$
.

- *F*, *G*, *H* are invariant under $x_1 \mapsto x_2 \mapsto x_3 \mapsto x_4 \mapsto x_1$.
- $F(\zeta, \zeta^a, \zeta^{a^2}, \zeta^{a^3}) \in \mathcal{O}(\mathbb{Q}_{n,5})^{\times}$. Same for G, H.
- $\therefore \varepsilon + \delta = 2$ has infinitely many solutions in $\mathcal{O}(\mathbb{Q}_{\infty,5})^{\times}$.

No Shafarevich over \mathbb{Q}_{∞}

Let

$$E : Y^2 = X^3 - X.$$

• Let $\varepsilon \in \mathcal{O}(\mathbb{Q}_{\infty})^{\times}$. Let

$$E_{\varepsilon} : \varepsilon Y^2 = X^3 - X.$$

Then E_{ε} has good reduction away from primes above 2.

- $E_{\varepsilon} \cong_{\mathbb{Q}_{\infty}} E_{\delta} \qquad \Longleftrightarrow \qquad \varepsilon/\delta \in (\mathcal{O}^{\times})^2.$
- $\#\mathcal{O}^{\times}/(\mathcal{O}^{\times})^2 = \infty$
- We obtain infinitely many isomorphism classes of elliptic curves over \mathbb{Q}_{∞} with good reduction away from 2.
- $E_{\varepsilon} \cong_{\overline{\mathbb{Q}}} E.$

No Shafarevich over \mathbb{Q}_∞

Theorem (S.-Visser)

Let $\ell \geq 11$ be an odd prime and let $g = \lfloor \frac{\ell-3}{4} \rfloor$.

- There is an infinite family of genus g hyperelliptic curves over Q_{∞,ℓ} with good reduction away from {v : v | 2ℓ}.
- The curves are pairwise non-isomorphic over Q
- The Jacobians have good reduction away from {v : v | 2ℓ}, and are pairwise non-isomorphic over Q.
- Moreover, if

 $\ell \in \{11, 23, 59, 107, 167, 263, 347, 359\},\$

then the Jacobians are pairwise non-isogenous over $\mathbb{Q}_{\infty,\ell}$.

Hyperelliptic Construction

J_m , J_n are non-isogenous for m > n (sketch)

- Let ℓ , q be odd primes, such that $\ell = 2q + 1$, $\mathbb{F}_q^{\times} = \langle 2 \rangle$.
- $\Omega^+_{\infty} = \cup_k \mathbb{Q}(\zeta_{\ell^k} + \zeta_{\ell^k}^{-1}), \qquad [\Omega^+_{\infty} : \mathbb{Q}_{\infty}] = q.$

•
$$C_n$$
 : $Y^2 = (X - \gamma_1)(X - \gamma_2) \cdots (X - \gamma_q)$. $\gamma_1 = \zeta_{\ell^{n+1}} + \zeta_{\ell^{n+1}}^{-1}$.

•
$$C_m$$
 : $Y^2 = (X - \delta_1)(X - \delta_2) \cdots (X - \delta_q)$. $\delta_1 = \zeta_{\ell^{m+1}} + \zeta_{\ell^{m+1}}^{-1}$.

- Write $J_n = \operatorname{Jac}(C_n)/\mathbb{Q}_{\infty}$. Then $J_n[2]$ is irreducible as $G_{\mathbb{Q}_{\infty}}$ -module.
- Suppose $\phi: J_n \to J_m$ is an isogeny, defined over \mathbb{Q}_{∞} of minimal degree. Want a contradiction.
- As $J_n[2]$ is irreducible, ϕ has odd degree.
- Hence $\mathbb{Q}_{\infty}(J_n[2^r]) = \mathbb{Q}_{\infty}(J_m[2^r])$ for all $r \ge 1$.
- Plan A: compute $\mathbb{Q}_{\infty}(J_n[2])$, $\mathbb{Q}_{\infty}(J_m[2])$. If different then have a contradiction.
- Bad news: Q_∞(J_n[2]) = Q_∞(γ₁) = Ω⁺_∞ = Q_∞(J_m[2]). No contradiction.

J_m , J_n are non-isogenous for m > n (sketch)

- Let ℓ , q be odd primes, such that $\ell = 2q + 1$, $\mathbb{F}_q^{\times} = \langle 2 \rangle$.
- $\Omega^+_{\infty} = \cup_k \mathbb{Q}(\zeta_{\ell^k} + \zeta_{\ell^k}^{-1}), \qquad [\Omega^+_{\infty} : \mathbb{Q}_{\infty}] = q.$

•
$$C_n$$
 : $Y^2 = (X - \gamma_1)(X - \gamma_2) \cdots (X - \gamma_q)$. $\gamma_1 = \zeta_{\ell^{n+1}} + \zeta_{\ell^{n+1}}^{-1}$.

- C_m : $Y^2 = (X \delta_1)(X \delta_2) \cdots (X \delta_q)$. $\delta_1 = \zeta_{\ell^{m+1}} + \zeta_{\ell^{m+1}}^{-1}$.
- Plan B: compute Q_∞(J_n[4]), Q_∞(J_m[4]). If different then have a contradiction.
- $\mathbb{Q}_{\infty}(J_n[4]) = \Omega_{\infty}^+(\sqrt{\gamma_i \gamma_j} : 1 \le i, j \le q)$. Suppose fields of 4-torsion are same:
- $\Omega^+_{\infty}(\sqrt{\gamma_i-\gamma_j}:1\leq i,j\leq q) = \Omega^+_{\infty}(\sqrt{\delta_i-\delta_j}:1\leq i,j\leq q).$
- $\langle \gamma_i \gamma_j : 1 \le i, j \le q \rangle = \langle \delta_i \delta_j : 1 \le i, j \le q \rangle$ in $\Omega_{\infty}^+ / (\Omega_{\infty}^+)^2$.
- We obtain a relation between elements of SCyc_m^+ up to the square of $\mu \in \mathcal{O}(\mathbb{Q}(\zeta_{\ell^{m+1}})^+)_S^{\times}$.

J_m , J_n are non-isogenous for m > n (sketch continued)

- Let ℓ , q be odd primes, such that $\ell = 2q + 1$, $\mathbb{F}_q^{\times} = \langle 2 \rangle$.
- $\Omega^+_{\infty} = \cup_k \mathbb{Q}(\zeta_{\ell^k} + \zeta_{\ell^k}^{-1}), \qquad [\Omega^+_{\infty} : \mathbb{Q}_{\infty}] = q.$
- C_n : $Y^2 = (X \gamma_1)(X \gamma_2) \cdots (X \gamma_q)$. $\gamma_1 = \zeta_{\ell^{n+1}} + \zeta_{\ell^{n+1}}^{-1}$.
- C_m : $Y^2 = (X \delta_1)(X \delta_2) \cdots (X \delta_q)$. $\delta_1 = \zeta_{\ell^{m+1}} + \zeta_{\ell^{m+1}}^{-1}$.
- $\langle \gamma_i \gamma_j : 1 \le i, j \le q \rangle = \langle \delta_i \delta_j : 1 \le i, j \le q \rangle$ in $\Omega^+_{\infty}/(\Omega^+_{\infty})^2$.
- $\delta_1 \delta_2 = \mu^2 \cdot \prod_{i < j} (\gamma_i \gamma_j)^{\mathbf{x}_{i,j}} \qquad \mathbf{x}_{i,j} \in \{0, 1\}.$
- We obtain a relation between elements of SCyc_m^+ up to the square of $\mu \in \mathcal{O}(\mathbb{Q}(\zeta_{\ell^{m+1}})^+)_S^{\times}$.
- Recall $[\mathcal{O}(\mathbb{Q}(\zeta_{\ell^{m+1}})^+)_S^{\times} : \mathrm{SCyc}_m^+] = h_m^+ := \# \operatorname{Cl}(\mathbb{Q}(\zeta_{\ell^{m+1}})^+).$
- If $2 \nmid h_m^+$ then $\mu \in SCyc_m^+$, can obtain a contradiction!

 $h_m^+ := \# \operatorname{Cl}(\mathbb{Q}(\zeta_{\ell^{m+1}})^+)$. Want values of ℓ such that $2 \nmid h_m^+$ for all $m \ge 0$. Recall $h_m^+ \mid h_m$.

Theorem (Estes, Stevenhagen, 1994)

Let ℓ , q be odd primes, such that $\ell = 2q + 1$, and $\mathbb{F}_q^{\times} = \langle 2 \rangle$. Then h_0 is odd.

Theorem (Washington, 1978)

Let $p \neq \ell$. Then $\operatorname{ord}_p(h_m)$ is bounded as $m \to \infty$.

Theorem (Ichimura and Nakajima, 2012)

Let $\ell \leq 509$. Then h_m/h_0 is odd for all m.

No Shafarevich over \mathbb{Q}_∞

Theorem (S.-Visser)

Let $\ell \geq 11$ be an odd prime and let $g = \lfloor \frac{\ell-3}{4} \rfloor$.

- There is an infinite family of genus g hyperelliptic curves over Q_{∞,ℓ} with good reduction away from {v : v | 2ℓ}.
- The curves are pairwise non-isomorphic over Q
- The Jacobians have good reduction away from {v : v | 2ℓ}, and are pairwise non-isomorphic over Q.
- Moreover, if

 $\ell \in \{11, 23, 59, 107, 167, 263, 347, 359\},\$

then the Jacobians are pairwise non-isogenous over $\mathbb{Q}_{\infty,\ell}$.