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Zy-extensions of Q)

Let ¢ be an odd prime and n > 1. Then
Gal(Q(¢i1)/Q) = (Z/0"T'Z)* = LJ"L x (ZJIZ).

Thus Q({yn+1) has a subfield denoted by Qs satisfying
Q [Qne: Q] =1
@ Q, is totally real and Galois;
9 Gal(Qn/Q) = Z/t"Z;

Q /is totally ramifies in Q, ¢, and all other primes are unramified.
Let

o
Qoo = U Qne (cyclotomic Zg-extension of Q).
n=1

Then
Gal(@oo,ﬁ/@) = Z€~

Sometimes write Q, = Q,¢ and Qo = Qoo ¢



Asymptotic Fermat over /-extensions
K/Q is an (-extension if it is Galois and [K : Q] = ¢".
Theorem (Freitas, Kraus and S.)
Let ¢ > 5 be prime. Let K be an {-extension of Q such that
o K is totally real;
o / is totally ramified in K;
@ 2 isinert in K.

Then the asymptotic Fermat's Last Theorem holds for K: i.e. there is a
constant Ck such that if p > Ck is prime and xP + yP + zP = 0 with x, y,
z € K then xyz = 0.

v

Hypotheses are satisfied for K = Q, ¢, with £ > 5, provided 21 £1
(mod ¢2).



Asymptotic Fermat over /-extensions
K/Q is an (-extension if it is Galois and [K : Q] = ¢".
Theorem (Freitas, Kraus and S.)
Let ¢ > 5 be prime. Let K be an {-extension of Q such that
o K is totally real;
o / is totally ramified in K;
@ 2 isinert in K.

Then the asymptotic Fermat's Last Theorem holds for K: i.e. there is a
constant Ck such that if p > Ck is prime and xP + yP + zP = 0 with x, y,
z € K then xyz = 0.

v

Hypotheses are satisfied for K = Q, ¢, with £ > 5, provided 21 £1
(mod ¢2).

A key step is showing that the unit equation
e+d = 1, g, 6 €O

has no solutions.



The unit equation in /-extensions

Lemma
o Let K be an (-extension, [K : Q] = ¢".
@ Suppose { is totally ramified:

0 = M.

Then e = +1 (mod \) for all e € Ok.

Proof.
Let G = Gal(K/Q). Then G = I(A\/£) (the inertia group).
Hence
e?=¢ (mod \), Vo € G.
Thus
+1 = Norm(e HEU = = ¢ (mod ),
oeG

since Ok /A = Fy.




The unit equation in /-extensions

Theorem
Let ¢ # 3.
o Let K be an (-extension, [K : Q] = ¢".
@ Suppose { is totally ramified: 0k = M.

Then the unit equation

e+d =1, g, 6 €0

has no solutions.

Proof.
True since +1 £1 # 1 (mod ?). O

@ Proof doesn't work for { =3 as =1 —1=1 (mod 3).

@ Unable to prove FLT over Q3.

@ Does the the unit equation have infinitely or finitely many solutions
over Q37




Some major theorems in Diophantine geometry

\ K a number field

A/K Mordell-Weil Theorem

abelian variety | A(K) is finitely generated

A, B/K abelian | Tate Conjecture (Faltings)

varieties Homg, (T/(A), T¢(B)) = Homk (A, B) ® Z

S finite set of | Shafarevich Conjecture (Faltings)

Ok-primes 3 finitely many isom classes

n>1 of dim n p.p. abelian varieties A/K
with good reduction outside S

C/K curve Mordell Conjecture (Faltings)

of genus > 2 C(K) is finite

S finite set of Siegel’s Theorem

Ok-primes €+ =1 has finitely many

solutions with ¢, 6 € OZ

Gydry (1974): effective Siegel.
Mordell-Weil, Shafarevich, Mordell: ineffective.



Replacing number field with Q.

A/K Analogue of Mordell-Weil: Mazur Conjecture
abelian variety | A(K) is finitely generated

A, B/K abelian | Analogue of Tate: Zarhin’s Theorem
varieties Homg, (Te(A), Te(B)) = Homk (A, B) @ Z

S finite set of Analogue of Shafarevich??

Ok-primes Can we say anything about dim n p.p.a.v. A/K
n>1 with good reduction outside 57

C/K curve Analogue of Mordell: Parshin Conjecture
of genus > 2 C(K) is finite

S finite set of Analogue of Siegel??

Ok-primes Does € + § = 1 have only finitely many

solutions with ¢, 6 € OZ?




Mazur Conjecture

Conjecture (Mazur)
Let A be an abelian variety over Qu,. Then A(Qw) is finitely generated. J

Theorem (Kato)
Let A/Q be a factor of Ji(N). Then A(Q) is finitely generated. J

Wiles: If E/Q is an elliptic curve then E is a factor of Ji(N).



Conjecture (Mazur)

Let A be an abelian variety over Q.. Then A(Qw) is finitely generated.

v

Conjecture (Parshin)
Let C/Q be a curve of genus > 2. Then C(Qy) is finite.

Theorem (Greenberg)
Mazur = Parshin

Proof.

@ Let J be the Jacobian of C.

e J(Qu) = J(Qp) for some n, by Mazur.
Enlarge n so that C(Q,) # 0.
By Abel-Jacobi, C(Qs) C J(Qxo) = J(Qp).
Thus C(Qu) = C(Q0).
C(Qp) is finite by Faltings.




No Siegel over Q4

Theorem (S.—Visser)
Let K = Quo,3. Then

e+6=1, & 6€0O

has infinitely many solutions.

Theorem (S.—Visser)

Let ¢ =2,50r7 and K = Qo ¢. Let v, be the unique prime above (. Let
S ={wve}. Then
e+6=1, g, 0 € OF

has infinitely many solutions.




Cyclotomic Units from Cyclotomic Polynomials

Let C = anﬂ.
xm-1 = [Jeax),  on(x) = [J(x¢ -1y
d| d|lm

Can conclude

£”+1 cyclotomic units
Cycn = C, d)m(C) . 1 <m< 2 ) £+ m in Q(CZ"‘H)

€n+1 cyclotomic v,-units

SCye, = (¢ @mlQ) © 1<m<—— £fm " Q)

Write SCyc; = Q((pm1)™ N SCycy.

Kummer=Sinnott: [0 : SCyc}] = hf = # Cl(Q(pmr1) ™).



Let £ =5. Let ( = (gnr1. The Galois group Gal(Q(¢)/Qn5) is cyclic and
generated by

0a:C (2, a®>=-1 (mod 5"1).
Let

F = (G4 xix3 +x3) (X3 + xoxq + x3) = x3xz - D3(x1/x3) - P3(x0/xa),
G = (% —x1x3+ X§)(X22 — x4+ x3) = X%Xf - ®p(x1/x3) - Po(x2/xa),

H = (xaxa +xx3)(xixe + x3x1) = xaxixa - Pa(xixa/x2x3) - Do(x1x2/x3x4)

o F+G=2H.

@ F, G, H are invariant under x; — xo — X3 —> Xg — X1.
° F(C,Ca,CaQ,Ca3) € O(Qps5)*. Same for G, H.

o .. €+ ¢ = 2 has infinitely many solutions in O(Q,5)*.



No Shafarevich over Q.

Let
E: Y?’=XxX3_X.

o Let e € O(Quo)™. Let
E. : eY?=X3-X.

Then E. has good reduction away from primes above 2.

o E. =g Es = e/d € (OX)2.

o #0O*/(0*)? =00

@ We obtain infinitely many isomorphism classes of elliptic curves over
Qoo with good reduction away from 2.

o E %@ E.



No Shafarevich over Q.

Theorem (S.—Visser)
Let ¢ > 11 be an odd prime and let g = L%J.

@ There is an infinite family of genus g hyperelliptic curves over Qu ¢
with good reduction away from {v : v | 2(}.

e The curves are pairwise non-isomorphic over Q.

@ The Jacobians have good reduction away from {v : v | 2¢}, and are
pairwise non-isomorphic over Q.

@ Moreover, if
¢ e {11,23,59,107,167,263, 347,359},

then the Jacobians are pairwise non-isogenous over Q. ¢.




Hyperelliptic Construction

o Let ( = (1. Leta=( pg=¢
(@+a)—(B+87") =at-(1-af)-(1-af™) € SCycy

unless o = B+1.

o Let vy =(+ (¢ tandletn,... ;V(e—1)/2 be the conjugates of v in
Q(g)Jr/Qn,Z-

o Let Cyt Y2 = (X~ 1)(X —72) - (X — v(e1)2)
e C,/Q,.
o A(pol) = [ [ (v — ) € SCyey.
i<j
o C,/Qp has genus | (¢ — 3)/4], has good reduction away from
{v : v]2}.



Im,

Jp, are non-isogenous for m > n (sketch)

Let ¢, g be odd primes, such that £ =2qg + 1, Fx = (2).

QL = U Q(r + ¢, 1L Qs =4

Co o Y= (X=m)(X =72) - (X =7g) M = Corr + (i

Cn t Y2 =(X=61)(X = 62) (X = 6g). 1= (pmur + (-
Write J, = Jac(Cp)/Qoo. Then J,[2] is irreducible as Gg_ -module.

Suppose ¢ : J, — J, is an isogeny, defined over Qs of minimal
degree. Want a contradiction.

As J,[2] is irreducible, ¢ has odd degree.
Hence Qoo (Jn[27]) = Qoo (Im[27]) for all r > 1.

Plan A: compute Qoo(Jn[2]), Qoo(Im[2]). If different then have a
contradiction.

Bad news: Quo(Jn[2]) = Quo(11) = QL = Qo (Im[2]). No
contradiction.



Im,

Jp, are non-isogenous for m > n (sketch)

Let ¢, g be odd primes, such that £ =2qg + 1, Fx = (2).
QL = UkQ(Cp + ¢, [Q% - Qo] = g

Cot V2= (X—m)(X —%2) (X = 7). 11 = (ot + (.
Cm @ Y2 =(X=61)(X = 02) (X = 8q). 61 = Cmer + (s

Plan B: compute Qoo(Jn[4]), Qoo(Im[4]). If different then have a
contradiction.

Qoo(Inl4]) = QL (V7 — 7 : 1 < i,j < q). Suppose fields of 4-torsion
are same:

QL(Vri—7:1<ij<q) = QL(/0i = :1<i,j<q).
(i 1<ij<q) =6 -0 :1<ij<q)in QL/(QL)>

We obtain a relation between elements of SCyc;' up to the square of
€ O(Q(Cmin) )5



Jm, Jn are non-isogenous for m > n (sketch continued)

@ Let ¢, g be odd primes, such that / =2q + 1, FX = (2).

o QL =UQl + G, 195 :Qx] =0

0 Co:t YP=(X—m)(X—72) (X =7) 711 =1+ (s
O Gt Y2 = (X = 81)(X = 82) -+ (X = 0g). 1= Comer + Cika.
o (yi—7:1<ij<q)={(5—-0;:1<i,j<q)inQL/(QL)>.

061 —0 =y [J(vi—u)¥  xije€{0,1}.
i<j

@ We obtain a relation between elements of SCyc, up to the square of
€ O(Q(¢min) )5 -

o Recall [O(QCumin) )% : SCyei] = bt i= # CUQ(Gmin) ).

e If 21 ht then u € SCyc;, can obtain a contradiction!



hY = # CI(Q(¢ym+1)T). Want values of £ such that 21 A, for all m > 0.
Recall A | hp,.
Theorem (Estes, Stevenhagen, 1994)

Let ¢, q be odd primes, such that { =2q + 1, and ¥ = (2). Then ho is
odd.

Theorem (Washington, 1978)
Let p # £. Then ord,(hpy) is bounded as m — oo.

Theorem (Ichimura and Nakajima, 2012)
Let £ <509. Then hy/ho is odd for all m.




No Shafarevich over Q.

Theorem (S.—Visser)
Let ¢ > 11 be an odd prime and let g = L%J.

@ There is an infinite family of genus g hyperelliptic curves over Qu ¢
with good reduction away from {v : v | 2(}.

e The curves are pairwise non-isomorphic over Q.

@ The Jacobians have good reduction away from {v : v | 2¢}, and are
pairwise non-isomorphic over Q.

@ Moreover, if
¢ e {11,23,59,107,167,263, 347,359},

then the Jacobians are pairwise non-isogenous over Q. ¢.




