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Z`-extensions of Q
Let ` be an odd prime and n ≥ 1. Then

Gal(Q(ζ`n+1)/Q) ∼= (Z/`n+1Z)× ∼= Z/`nZ× (Z/`Z)×.

Thus Q(ζ`n+1) has a subfield denoted by Qn,` satisfying

1 [Qn,` : Q] = `n;

2 Qn,` is totally real and Galois;

3 Gal(Qn,`/Q) ∼= Z/`nZ;

4 ` is totally ramifies in Qn,`, and all other primes are unramified.

Let

Q∞,` =
∞⋃
n=1

Qn,` (cyclotomic Z`-extension of Q).

Then
Gal(Q∞,`/Q) ∼= Z`.

Sometimes write Qn = Qn,` and Q∞ = Q∞,`.



Asymptotic Fermat over `-extensions
K/Q is an `-extension if it is Galois and [K : Q] = `n.

Theorem (Freitas, Kraus and S.)

Let ` ≥ 5 be prime. Let K be an `-extension of Q such that

K is totally real;

` is totally ramified in K;

2 is inert in K.

Then the asymptotic Fermat’s Last Theorem holds for K: i.e. there is a
constant CK such that if p > CK is prime and xp + yp + zp = 0 with x, y ,
z ∈ K then xyz = 0.

Hypotheses are satisfied for K = Qn,`, with ` ≥ 5, provided 2`−1 6≡ 1
(mod `2).

A key step is showing that the unit equation

ε+ δ = 1, ε, δ ∈ O×K
has no solutions.
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The unit equation in `-extensions

Lemma

Let K be an `-extension, [K : Q] = `n.

Suppose ` is totally ramified:

`OK = λ`
n
.

Then ε ≡ ±1 (mod λ) for all ε ∈ O×K .

Proof.

Let G = Gal(K/Q). Then G = I (λ/`) (the inertia group).
Hence

εσ ≡ ε (mod λ), ∀σ ∈ G .

Thus
±1 = Norm(ε) =

∏
σ∈G

εσ ≡ ε`
n ≡ ε (mod λ),

since OK/λ ∼= F`.



The unit equation in `-extensions

Theorem

Let ` 6= 3.

Let K be an `-extension, [K : Q] = `n.

Suppose ` is totally ramified: `OK = λ`
n
.

Then the unit equation

ε+ δ = 1, ε, δ ∈ O×K

has no solutions.

Proof.

True since ±1 ± 1 6≡ 1 (mod `).

Proof doesn’t work for ` = 3 as −1− 1 ≡ 1 (mod 3).

Unable to prove FLT over Qn,3.

Does the the unit equation have infinitely or finitely many solutions
over Q∞,3?



Some major theorems in Diophantine geometry

K a number field

A/K Mordell–Weil Theorem
abelian variety A(K ) is finitely generated

A, B/K abelian Tate Conjecture (Faltings)
varieties HomGK

(T`(A),T`(B)) ∼= HomK (A,B)⊗ Z`
S finite set of Shafarevich Conjecture (Faltings)
OK -primes ∃ finitely many isom classes
n ≥ 1 of dim n p.p. abelian varieties A/K

with good reduction outside S

C/K curve Mordell Conjecture (Faltings)
of genus ≥ 2 C (K ) is finite

S finite set of Siegel’s Theorem
OK -primes ε+ δ = 1 has finitely many

solutions with ε, δ ∈ O×S
Győry (1974): effective Siegel.
Mordell–Weil, Shafarevich, Mordell: ineffective.



Replacing number field with Q∞

K = Q∞
A/K Analogue of Mordell–Weil: Mazur Conjecture
abelian variety A(K ) is finitely generated

A, B/K abelian Analogue of Tate: Zarhin’s Theorem
varieties HomGK

(T`(A),T`(B)) ∼= HomK (A,B)⊗ Z`
S finite set of Analogue of Shafarevich??
OK -primes Can we say anything about dim n p.p.a.v. A/K
n ≥ 1 with good reduction outside S?

C/K curve Analogue of Mordell: Parshin Conjecture
of genus ≥ 2 C (K ) is finite

S finite set of Analogue of Siegel??
OK -primes Does ε+ δ = 1 have only finitely many

solutions with ε, δ ∈ O×S ?



Mazur Conjecture

Conjecture (Mazur)

Let A be an abelian variety over Q∞. Then A(Q∞) is finitely generated.

Theorem (Kato)

Let A/Q be a factor of J1(N). Then A(Q∞) is finitely generated.

Wiles: If E/Q is an elliptic curve then E is a factor of J1(N).



Conjecture (Mazur)

Let A be an abelian variety over Q∞. Then A(Q∞) is finitely generated.

Conjecture (Parshin)

Let C/Q∞ be a curve of genus ≥ 2. Then C (Q∞) is finite.

Theorem (Greenberg)

Mazur =⇒ Parshin

Proof.

Let J be the Jacobian of C .

J(Q∞) = J(Qn) for some n, by Mazur.

Enlarge n so that C (Qn) 6= ∅.
By Abel–Jacobi, C (Q∞) ⊂ J(Q∞) = J(Qn).

Thus C (Q∞) = C (Qn).

C (Qn) is finite by Faltings.



No Siegel over Q∞

Theorem (S.–Visser)

Let K = Q∞,3. Then

ε+ δ = 1, ε, δ ∈ O×K

has infinitely many solutions.

Theorem (S.–Visser)

Let ` = 2, 5 or 7 and K = Q∞,`. Let υ` be the unique prime above `. Let
S = {υ`}. Then

ε+ δ = 1, ε, δ ∈ O×S
has infinitely many solutions.



Cyclotomic Units from Cyclotomic Polynomials

Let ζ = ζ`n+1 .

Xm − 1 =
∏
d |m

Φd(X ), Φm(X ) =
∏
d |m

(X d − 1)µ(m/d)

Can conclude

Cycn =

〈
ζ, Φm(ζ) : 1 < m <

`n+1

2
, ` - m

〉
cyclotomic units

in Q(ζ`n+1 )

SCycn =

〈
ζ, Φm(ζ) : 1 ≤ m <

`n+1

2
, ` - m

〉
cyclotomic υ`-units

in Q(ζ`n+1 )

Write SCyc+n = Q(ζ`n+1)+ ∩ SCycn.

Kummer–Sinnott: [O×υ` : SCyc+n ] = h+n := # Cl(Q(ζ`n+1)+).



Let ` = 5. Let ζ = ζ5n+1 . The Galois group Gal(Q(ζ)/Qn,5) is cyclic and
generated by

σa : ζ 7→ ζa, a2 ≡ −1 (mod 5n+1).

Let

F = (x21 + x1x3 + x23 )(x22 + x2x4 + x24 ) = x23x
2
4 · Φ3(x1/x3) · Φ3(x2/x4),

G = (x21 − x1x3 + x23 )(x22 − x2x4 + x24 ) = x23x
2
4 · Φ6(x1/x3) · Φ6(x2/x4),

H = (x1x4 + x2x3)(x1x2 + x3x4) = x2x
2
3x4 · Φ2(x1x4/x2x3) · Φ2(x1x2/x3x4),

F + G = 2H.

F , G , H are invariant under x1 7→ x2 7→ x3 7→ x4 7→ x1.

F (ζ, ζa, ζa
2
, ζa

3
) ∈ O(Qn,5)×. Same for G , H.

∴ ε+ δ = 2 has infinitely many solutions in O(Q∞,5)×.



No Shafarevich over Q∞

Let
E : Y 2 = X 3 − X .

Let ε ∈ O(Q∞)×. Let

Eε : εY 2 = X 3 − X .

Then Eε has good reduction away from primes above 2.

Eε ∼=Q∞ Eδ ⇐⇒ ε/δ ∈ (O×)2.

#O×/(O×)2 =∞
We obtain infinitely many isomorphism classes of elliptic curves over
Q∞ with good reduction away from 2.

Eε ∼=Q E .



No Shafarevich over Q∞

Theorem (S.–Visser)

Let ` ≥ 11 be an odd prime and let g = b `−34 c.
There is an infinite family of genus g hyperelliptic curves over Q∞,`
with good reduction away from {υ : υ | 2`}.
The curves are pairwise non-isomorphic over Q.

The Jacobians have good reduction away from {υ : υ | 2`}, and are
pairwise non-isomorphic over Q.

Moreover, if

` ∈ {11, 23, 59, 107, 167, 263, 347, 359},

then the Jacobians are pairwise non-isogenous over Q∞,`.



Hyperelliptic Construction

Let ζ = ζ`n+1 . Let α = ζ i , β = ζ j

(α + α−1)− (β + β−1) = α−1 · (1− αβ) · (1− αβ−1) ∈ SCyc+n

unless α = β±1.

Let γ1 = ζ + ζ−1 and let γ1, . . . , γ(`−1)/2 be the conjugates of γ1 in
Q(ζ)+/Qn,`.

Let Cn : Y 2 = (X − γ1)(X − γ2) · · · (X − γ(`−1)/2).

Cn/Qn.

∆(pol) =
∏
i<j

(γi − γj)2 ∈ SCyc+n .

Cn/Qn has genus b(`− 3)/4c, has good reduction away from
{υ : υ | 2`}.



Jm, Jn are non-isogenous for m > n (sketch)

Let `, q be odd primes, such that ` = 2q + 1, F×q = 〈2〉.

Ω+
∞ = ∪kQ(ζ`k + ζ−1

`k
), [Ω+

∞ : Q∞] = q.

Cn : Y 2 = (X − γ1)(X − γ2) · · · (X − γq). γ1 = ζ`n+1 + ζ−1
`n+1 .

Cm : Y 2 = (X − δ1)(X − δ2) · · · (X − δq). δ1 = ζ`m+1 + ζ−1
`m+1 .

Write Jn = Jac(Cn)/Q∞. Then Jn[2] is irreducible as GQ∞-module.

Suppose φ : Jn → Jm is an isogeny, defined over Q∞ of minimal
degree. Want a contradiction.

As Jn[2] is irreducible, φ has odd degree.

Hence Q∞(Jn[2r ]) = Q∞(Jm[2r ]) for all r ≥ 1.

Plan A: compute Q∞(Jn[2]), Q∞(Jm[2]). If different then have a
contradiction.

Bad news: Q∞(Jn[2]) = Q∞(γ1) = Ω+
∞ = Q∞(Jm[2]). No

contradiction.



Jm, Jn are non-isogenous for m > n (sketch)

Let `, q be odd primes, such that ` = 2q + 1, F×q = 〈2〉.

Ω+
∞ = ∪kQ(ζ`k + ζ−1

`k
), [Ω+

∞ : Q∞] = q.
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Plan B: compute Q∞(Jn[4]), Q∞(Jm[4]). If different then have a
contradiction.

Q∞(Jn[4]) = Ω+
∞(
√
γi − γj : 1 ≤ i , j ≤ q). Suppose fields of 4-torsion

are same:

Ω+
∞(
√
γi − γj : 1 ≤ i , j ≤ q) = Ω+

∞(
√
δi − δj : 1 ≤ i , j ≤ q).

〈γi − γj : 1 ≤ i , j ≤ q〉 = 〈δi − δj : 1 ≤ i , j ≤ q〉 in Ω+
∞/(Ω+

∞)2.

We obtain a relation between elements of SCyc+m up to the square of
µ ∈ O(Q(ζ`m+1)+)×S .



Jm, Jn are non-isogenous for m > n (sketch continued)

Let `, q be odd primes, such that ` = 2q + 1, F×q = 〈2〉.

Ω+
∞ = ∪kQ(ζ`k + ζ−1

`k
), [Ω+

∞ : Q∞] = q.

Cn : Y 2 = (X − γ1)(X − γ2) · · · (X − γq). γ1 = ζ`n+1 + ζ−1
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∞/(Ω+

∞)2.

δ1 − δ2 = µ2 ·
∏
i<j

(γi − γj)xi,j xi ,j ∈ {0, 1}.

We obtain a relation between elements of SCyc+m up to the square of
µ ∈ O(Q(ζ`m+1)+)×S .

Recall [O(Q(ζ`m+1)+)×S : SCyc+m] = h+m := # Cl(Q(ζ`m+1)+).

If 2 - h+m then µ ∈ SCyc+m, can obtain a contradiction!



h+m := # Cl(Q(ζ`m+1)+). Want values of ` such that 2 - h+m for all m ≥ 0.
Recall h+m | hm.

Theorem (Estes, Stevenhagen, 1994)

Let `, q be odd primes, such that ` = 2q + 1, and F×q = 〈2〉. Then h0 is
odd.

Theorem (Washington, 1978)

Let p 6= `. Then ordp(hm) is bounded as m→∞.

Theorem (Ichimura and Nakajima, 2012)

Let ` ≤ 509. Then hm/h0 is odd for all m.



No Shafarevich over Q∞

Theorem (S.–Visser)

Let ` ≥ 11 be an odd prime and let g = b `−34 c.
There is an infinite family of genus g hyperelliptic curves over Q∞,`
with good reduction away from {υ : υ | 2`}.
The curves are pairwise non-isomorphic over Q.

The Jacobians have good reduction away from {υ : υ | 2`}, and are
pairwise non-isomorphic over Q.

Moreover, if

` ∈ {11, 23, 59, 107, 167, 263, 347, 359},

then the Jacobians are pairwise non-isogenous over Q∞,`.


