Maximal Operators and Local Mean Value Theorems for Weyl Sums

Igor Shparlinski

University of New South Wales
Sydney

Joint work with:
Roger Baker, Julia Brandes and Changhao Chen

Set-up

Given a vector $\mathbf{u}=\left(u_{1}, \ldots, u_{d}\right) \in \mathrm{T}_{d}$, where

$$
\mathrm{T}_{d}=(\mathbb{R} / \mathbb{Z})^{d}=d \text {-dimensional unit torus, }
$$

we define our main object of study:

$$
\text { Weyl Sums: } \quad S_{d}(\mathbf{u} ; N)=\sum_{1 \leq n \leq N} \mathbf{e}\left(u_{1} n+\ldots+u_{d} n^{d}\right),
$$

where $\mathbf{e}(x)=\exp (2 \pi i x)$, named after Hermann Weyl, who introduced, investigated and foresaw their great value for mathematics in 1916.
As concrete examples of their capabilities, Hermann Weyl established:

- in 1916: the uniformity of distribution modulo one of the fractional parts of values of real polynomials;
- in 1921: the subconvexity bound for the Riemann zeta-function, the first non-trivial result towards the Lindelöf hypothesis.
$S_{d}(\mathbf{u} ; N)=\sum_{1}^{N} \mathbf{e}\left(u_{1} n+\ldots+u_{d} n^{d}\right) \quad \mathbf{u}=(\mathbf{x} \mid \mathbf{y}) ; \quad \mathrm{M}_{k}\left(S_{d}(\mathbf{x}, \mathbf{y} ; N)\right)=\quad \sup _{\mathbf{y}}\left|S_{d}(\mathbf{x}, \mathbf{y} ; N)\right|$

Weyl sums everywhere

Since then, lots of other applications have been found, including:

- bounds on the zero-free region of $\zeta(s)$ and thus bounds for the error term in the Prime Number Theorem;
- additive problems such as the Waring problem;
- bounds on very short character sums and thus on the L-functions with highly composite moduli;
- low-lying zeros of families of L-functions of elliptic curves;
- various problems from the uniformity of distribution theory and Diophantine approximations;
- Large sieve inequalities for polynomial moduli;

Later we will also mention some surprising applications to PDE's:
M. B. Erdogan \& G. Shakan (2019).

What do we know about Weyl sums?

Average values: Trivially, by the Parseval identity,

$$
\int_{\mathbf{T}_{d}}\left|S_{d}(\mathbf{u} ; N)\right|^{2} \mathrm{~d} \mathbf{u}=N .
$$

Bounds on higher moments

$$
J_{d, s}(N)=\int_{\mathrm{T}_{d}}\left|S_{d}(\mathbf{u} ; N)\right|^{2 s} \mathrm{~d} \mathbf{u}, \quad s=2,3, \ldots
$$

are highly nontrivial if $s>d$, for $s \leq d$ the reasonably elementary method of Mordell (1932) works. They are known under the collective name:

```
Vinogradov's Mean Value Theorem{s} (VMVT)
```

I. M. Vinogradov (1935):
(i) obtained the first nontrivial bounds on $J_{d, s}(N)$ with a "right saving" (but for larger than really necessary values of s);
(ii) linked such average bounds to pointwise bounds on $\left|S_{d}(\mathbf{u} ; N)\right|$.

After works of I. M. Vinogradov; Yu. V. Linnik; N. M. Korobov; A. A. Karatsuba; K. Ford; R. C. Vaughan; T. Wooley; ..., 85 years and several dozens of papers later, we have the following:

Optimal VMVT — Bourgain, Demeter \& Guth; Wooley (2016-2019)

For $s=2,3, \ldots$, we have

$$
N^{s}+N^{2 s-d(d+1) / 2} \ll J_{d, s}(N) \ll N^{s+o(1)}+N^{2 s-d(d+1) / 2} .
$$

This is due to

- T. Wooley (2016) for $d=3$;
- J. Bourgain, C. Demeter \& L. Guth (2016) for $d \geq 4$;
- T. Wooley (2019) for more general exponential sums with $\mathbf{e}\left(u_{1} \varphi_{1}(n)+\ldots+u_{d} \varphi_{d}(n)\right), \varphi_{j} \in \mathbb{Z}[T], j=1, \ldots, d$.

Remark:

The upper bound is equivalent to the estimate

$$
J_{d, d(d+1) / 2}(N) \leq N^{d(d+1) / 2+o(1)}
$$

for the critical value $s=d(d+1) / 2$.
$S_{d}(\mathbf{u} ; N)=\sum_{1}^{N} \mathbf{e}\left(u_{1} n+\ldots+u_{d} n^{d}\right) \quad \mathbf{u}=(\mathbf{x} \mid \mathbf{y})$

Pointwise bounds: Here our knowledge is quite scarce.

Vinogradov's Method + Optimal VMVT

Let $\mathbf{u}=\left(u_{1}, \ldots, u_{d}\right) \in \mathrm{T}_{d}$ be such that for some ν with $2 \leq \nu \leq d$ and some integers a and q with $\operatorname{gcd}(a, q)=1$ we have

$$
\left|u_{\nu}-a / q\right| \leq 1 / q^{2}
$$

Then

$$
\left|S_{d}(\mathbf{u} ; N)\right| \leq N^{1+o(1)}\left(q^{-1}+N^{-1}+q N^{-\nu}\right)^{1 / d(d-1)}
$$

Nowadays we do not have any plausible approach to do better, eg, replace $1 / d(d-1) \rightarrow 1 / d$ and $\operatorname{drop} N^{-1}$, as expected.

Remark:

It is obvious that any bound of this kind must depend on Diophantine properties of the non-linear coefficients u_{2}, \ldots, u_{d}.

What is next?

Recall that for the Weyl sums:

- We have a complete knowledge of their average values.
- We know something but overall very little about their pointwise behaviour.

Question:

Can we "interpolate" between these two types of results?

This question leads us to studying some very well-known notions of Functional Analysis:
Maximal Operators and Restriction Bounds
for the Weyl sums $S_{d}(\mathbf{u} ; N)$ (as functions of \mathbf{u}).

Recall:

Let $\mathbf{u}=\left(u_{1}, \ldots, u_{d}\right) \in \mathrm{T}_{d}$ be such that for some ν with $2 \leq \nu \leq d$ and some positive integers a and q with $\operatorname{gcd}(a, q)=1$ we have

$$
\left|u_{\nu}-a / q\right| \leq 1 / q^{2}
$$

Then

$$
\left|S_{d}(\mathbf{u} ; N)\right| \leq N^{1+o(1)}\left(q^{-1}+N^{-1}+q N^{-\nu}\right)^{1 / d(d-1)}
$$

Observation: The bound depends on approximations to only one of the non-linear coefficients u_{2}, \ldots, u_{d}, say, u_{d} and for a.a. $u_{d} \in[0,1]$ we can choose $q=N^{1+o(1)}$ in the above.

Hence, we immediate derive
For a.a. $u_{d} \in[0,1]$ and all $\left(u_{1}, \ldots, u_{d-1}\right) \in \mathrm{T}_{d-1}$, we have

$$
\left|S_{d}(\mathbf{u} ; N)\right| \leq N^{1-1 / d(d-1)+o(1)}, \quad \text { as } N \rightarrow \infty
$$

For a.a. $u_{d} \in[0,1]$ and all $\left(u_{1}, \ldots, u_{d-1}\right) \in \mathrm{T}_{d-1}$, we have

$$
\left|S_{d}(\mathbf{u} ; N)\right| \leq N^{1-1 / d(d-1)+o(1)}, \quad \text { as } N \rightarrow \infty .
$$

Question:

Can we have stronger and/or more general statements?

Prototype Theorem

For a.a. components of $\mathbf{u} \in \mathrm{T}_{d}$ on prescribed k positions the following holds: For all components on the remaining $d-k$ positions, for all $N \in \mathbb{N}$, we have $\left|S_{d}(\mathbf{u} ; N)\right| \leq X X X$ (whatever we can prove for $X X X$).

This has been studied, with a chain of consecutive improvements, by:
L. Flaminio \& G. Forni (2014);
T. Wooley (2016);
C. Chen \& I.S. (2019).
$S_{d}(\mathbf{u} ; N)=\sum_{1}^{N} \mathbf{e}\left(u_{1} n+\ldots+u_{d} n^{d}\right) \quad \mathbf{u}=(\mathbf{x} \mid \mathbf{y}) ; \quad \mathrm{M}_{k}\left(S_{d}(\mathbf{x}, \mathbf{y} ; N)\right)=\quad \sup _{\mathbf{y}}\left|S_{d}(\mathbf{x}, \mathbf{y} ; N)\right|$

It is convenient to reformulate and generalise this question.

Given

- a vector $\varphi=\left(\varphi_{1}, \ldots, \varphi_{d}\right) \in \mathbb{Z}[T]^{d}$ of d linearly independent with constants polynomials,
- a vector $\mathbf{u}=\left(u_{1}, \ldots, u_{d}\right) \in \mathrm{T}_{d}$,
we define

$$
T_{\varphi}(\mathbf{u} ; N)=\sum_{n=1}^{N} \mathbf{e}\left(u_{1} \varphi_{1}(n)+\ldots+u_{d} \varphi_{d}(n)\right)
$$

For $\varphi_{i}(T)=T^{i}$ these are Weyl sums $S_{d}(\mathbf{u} ; N)$. Decompose $\mathbf{u} \in \mathrm{T}_{d}=\mathrm{T}_{k} \times \mathrm{T}_{d-k}$ as

$$
\mathbf{u}=(\mathbf{x} \mid \mathbf{y}) \in \mathrm{T}_{k} \times \mathrm{T}_{d-k}
$$

and write

$$
T_{\varphi}(\mathbf{x}, \mathbf{y} ; N)=T_{\varphi}(\mathbf{u} ; N)
$$

We emphasise that φ is a vector rather than a set - the order matters!

Maximal Operators on Weyl Sums

Following L. Flaminio \& G. Forni (2014), T. Wooley (2016), we are interested in bounds on

$$
T_{\varphi}(\mathbf{x}, \mathbf{y} ; N)
$$

which hold for

$$
\text { a.a. } \mathbf{x} \in \mathrm{T}_{k} \text { and all } \mathbf{y} \in \mathrm{T}_{d-k}
$$

Equivalently, we are interested in bounds on

$$
\text { Maximal Operators: } \sup _{\mathbf{y} \in \mathrm{T}_{d-k}}\left|T_{\varphi}(\mathbf{x}, \mathbf{y} ; N)\right|
$$

which hold for a.a. $\mathbf{x} \in \mathrm{T}_{k}$.

Why do we expect $\sup _{\mathbf{y} \in \mathrm{T}_{d-k}}\left|T_{\varphi}(\mathbf{x}, \mathbf{y} ; N)\right|$ to be small?

The set of large Weyl sums is very sparse.

Figure: Almost all vertical lines miss red areas \bullet of large Weyl sums in T_{2}

Some concrete results

L. Flaminio \& G. Forni (2014);
T. Wooley (2016);
C. Chen \& I.S. (2019):

For φ with a nontrivial Wronskian, for a.a. $\mathbf{x} \in \mathrm{T}_{k}$,

$$
\sup _{\mathbf{y} \in \mathrm{T}_{d-k}}\left|T_{\varphi}(\mathbf{x}, \mathbf{y} ; N)\right| \leqslant N^{1 / 2+\gamma+o(1)}, \quad N \rightarrow \infty
$$

with some $\gamma<1 / 2$.

To formulate concrete results we need the following important parameter:

$$
\begin{aligned}
\sigma_{k}(\varphi) & =\sum_{j=k+1}^{d} \operatorname{deg} \varphi_{j} \\
& =\text { sum of degrees in the } \mathbf{y} \text {-part over which we maximise. }
\end{aligned}
$$

Wooley (2016)

For $1 \leq k \leq d-1$ we can take

$$
\gamma_{W}=\frac{2 \sigma_{k}(\varphi)+d-k+1}{2 d^{2}+4 d-2 k+2} .
$$

Using completing technique and a new self-improving argument:

Chen \& Shparlinski (2019)

For $1 \leq k \leq d-1$ we can take

$$
\gamma_{C S}=\frac{2 \sigma_{k}(\boldsymbol{\varphi})+d-k}{2 d^{2}+4 d-2 k}<\gamma_{W} .
$$

Remark

This is nontrivial, ie, $\gamma_{C S}<1 / 2$ iff

$$
\sigma_{k}(\boldsymbol{\varphi})<d(d+1) / 2
$$

which always holds in the classical case

$$
\left\{\varphi_{1}(T), \ldots, \varphi_{d}(T)\right\}=\left\{T, \ldots, T^{d}\right\}
$$

but may fail otherwise, eg, take $d=2$ and $\varphi=\left(T, T^{m}\right), m \geq 3$.
$S_{d}(\mathbf{u} ; N)=\sum_{1}^{N} \mathbf{e}\left(u_{1} n+\ldots+u_{d} n^{d}\right) \quad \mathbf{u}=(\mathbf{x} \mid \mathbf{y})$

Remark

C. Chen \& I.S. (2019): For

$$
\left\{\varphi_{1}(T), \ldots, \varphi_{d}(T)\right\}=\left\{T, \ldots, T^{d}\right\}
$$

and $k=d$ (ie, without sup) we can take $\gamma=0$. This recovers the well-known statement that for a.a. $\mathbf{u} \in \mathrm{T}_{d}$,

$$
\left|S_{d}(\mathbf{u} ; N)\right| \leq N^{1 / 2+o(1)}, \quad N \rightarrow \infty .
$$

Question: (Should we always expect square-root cancellation?)
Can we can take $\gamma=0$ for "generic enough" φ, eg, $\varphi=\left(T, \ldots, T^{d}\right)$?

We believe this is false and in some cases we can prove that $\gamma \geq 1 / 4$.

Norms of Maximal Operators

Maximal Operators are well-known in Functional Analysis:

$$
\mathrm{M}_{k}: \quad F(\mathbf{x}, \mathbf{y}) \mapsto G(\mathbf{x})=\sup _{\mathbf{y} \in \mathrm{T}_{d-k}}|F(\mathbf{x}, \mathbf{y})|
$$

We have discussed bounds on $\mathrm{M}_{k}\left(T_{\varphi}(\mathbf{x}, \mathbf{y} ; N)\right)$ for $\underline{\text { a.a. } \mathbf{x}} \in \mathrm{T}_{k}$.
A variation of this is a question about bounds on the L^{ρ}-norm:

$$
\left\|\mathrm{M}_{k}\left(T_{\varphi}(\mathbf{x}, \mathbf{y} ; N)\right)\right\|_{\rho}=\left(\int_{\mathrm{T}_{k}} \mathrm{M}_{k}\left(T_{\varphi}(\mathbf{x}, \mathbf{y} ; N)\right)^{\rho} d \mathbf{x}\right)^{1 / \rho}
$$

To simplify the discussion from now on we always assume that $\varphi_{i}(T)=T^{i}, i=1, \ldots, d$, and thus we look at

$$
\mathrm{M}_{k}\left(S_{d}(\mathbf{x}, \mathbf{y} ; N)\right)=\sup _{\mathbf{y} \in \mathbf{T}_{d-k}}\left|S_{d}(\mathbf{x}, \mathbf{y} ; N)\right| .
$$

Baker, Chen \& Shparlinski (2021)

For any positive $\rho \geq d^{2}+2 d-k$, for $N \rightarrow \infty$, we have

$$
N^{1-k(k+1) / 2 \rho} \ll\left\|\mathrm{M}_{k}\left(S_{d}(\mathbf{x}, \mathbf{y} ; N)\right)\right\|_{\rho} \leq N^{1-k(k+1) / 2 \rho+o(1)} .
$$

Remark

The significance of the cut-off $d^{2}+2 d-k$ is in this interpretation:

$$
d^{2}+2 d-k=d(d+1)+d-k
$$

$=2 \times$ critical exponent in VMVT + dimension of \mathbf{y} in sup.

Remark

By convexity, we can also have an upper bound for $\rho<d^{2}+2 d-k$ and recover the previous result of C. Chen \& I.S. (2019).

For $d=2$, ie, for the maximal operator on Gauss sums

$$
M_{1}(G(x, y))=\sup _{y \in[0,1]}|G(x, y)|, \quad \text { where } \quad G(x, y)=\sum_{n=1}^{N} \mathbf{e}\left(x n+y n^{2}\right)
$$

R. Baker (2021), refining a result of A. Barron (2020), has given matching upper and lower bounds:

Baker (2021)

We have

$$
N^{a(\rho)}(\log N)^{b(\rho)} \ll\left\|M_{1}(G(x, y))\right\|_{\rho} \ll N^{a(\rho)}(\log N)^{b(\rho)}
$$

where

$$
a(\rho)=\left\{\begin{array}{ll}
3 / 4 & \text { for } 1 \leq \rho \leq 4, \\
1-1 / \rho & \text { for } \rho>4,
\end{array} \quad b(\rho)= \begin{cases}1 / \rho & \text { for } \rho=4 \\
0 & \text { for } \rho \geq 1, \rho \neq 4\end{cases}\right.
$$

Question:

Can we extend this to any $d \geq 2$ and control $\left\|\mathrm{M}_{k}\left(S_{d}(\mathbf{x}, \mathbf{y} ; N)\right)\right\|_{\rho}$ for any $\rho \geq 1$ rather than only for $\rho \geq d^{2}+2 d-k$?
$S_{d}(\mathbf{u} ; N)=\sum_{1}^{N} \mathbf{e}\left(u_{1} n+\ldots+u_{d} n^{d}\right) \quad \mathbf{u}=(\mathbf{x} \mid \mathbf{y}) ; \quad \mathrm{M}_{k}\left(S_{d}(\mathbf{x}, \mathbf{y} ; N)\right)=\sup _{\mathbf{y}}\left|S_{d}(\mathbf{x}, \mathbf{y} ; N)\right|$

Binomial Weyl Sums and PDE's

Let Ω_{m} be the smallest possible value of ϑ such that for any $\varphi(T) \in \mathbb{Z}[T]$ of degree m and any $\tau \in \mathbb{R}$ for a.a. $x \in[0,1]$ we have

$$
\sup _{y \in[0,1]}\left|\sum_{n=1}^{N} \mathbf{e}(x \varphi(n)+y(\tau \varphi(n)+n))\right| \leq N^{\vartheta+o(1)}
$$

This is exactly the previous scenario of maximal operators of L. Flaminio \& G. Forni (2014), T. Wooley (2016) and C. Chen \& I.S. (2019).

- Bad news: none of the previous bounds works;
- Good news: but the methods do!

Remark

These sums look weird but their existence is justified by applications to Schrödinger, Korteweg-de Vries, Airy and other classical PDE's, see M. B. Erdogan \& G. Shakan (2019) - fractal dimension of solutions.
M. B. Erdogan \& G. Shakan (2019):

$$
\Omega_{m} \leq \min \left\{1-\frac{1}{2^{m}+1}, 1-\frac{1}{2 m(m-1)+1}\right\}
$$

The results of C. Chen \& I.S. (2019) on "dense" Weyl sums do not work but the method does:

Chen \& Shparlinski (2019)

We have

where

$$
\Omega_{m} \leq 1-\frac{1}{2 s(m)+1}
$$

$$
\begin{gathered}
s(2)=3, \quad s(3)=5, \quad s(4)=8, \quad s(5)=12, \quad s(6)=18 \\
s(7)=24, \quad s(8)=31, \quad s(9)=40, \quad s(10)=49
\end{gathered}
$$

while for $m \geq 11$ we define $r(m)=\lfloor\sqrt{2 m+2}\rfloor$

$$
s(m)=m(m-1) / 2+r(m)- \begin{cases}0, & 2 m+2 \geq r(m)^{2}+r(m) \\ 1, & \text { otherwise }\end{cases}
$$

What is truth about Ω_{m} ?

J. Brandes, S. T. Parsell, C. Poulias, G. Shakan \& R. C. Vaughan (2020):

$$
\Omega_{2}=\Omega_{3}=3 / 4
$$

J. Brandes \& I.S. (2020): For any $m \geq 2$, we have $\Omega_{m} \geq 3 / 4$.

Question:

Is it true that for any $m \geq 2$ we have $\Omega_{m}=3 / 4$?

Remark

For $m=4$ the upper bound $\Omega_{4} \leq 16 / 17$, due to C. Chen \& I.S. (2019), is already very far.

Question:

What about sums with two nonlinear polynomials, eg,

$$
\sup _{y \in[0,1]}\left|\sum_{n=1}^{N} \mathbf{e}\left(x \varphi(n)+y\left(\tau \varphi(n)+n^{2}\right)\right)\right| ?
$$

Local Mean Value Theorems for Weyl Sums

Let μ be a measure supported on some set $\mathcal{V} \subseteq \mathrm{T}_{d}$, thus $\mu(\mathcal{V})=1$. Our goal here is to estimate the following mean values on \mathcal{V} :

VMVT Restricted to \mathcal{V} : $\quad \int_{\mathcal{V}}\left|S_{d}(\mathbf{u} ; N)\right|^{\rho} \mathrm{d} \mu(\mathbf{u})$.
The set \mathcal{V} can be some

- algebraic structure, eg, an algebraic variety;
- analytic structure, eg, a smooth curve or a surface defined by analytic functions;
- geometric structure, eg, a linear space or an intersection of spheres, balls and convex bodies;
- combinatorial structure, eg, a sets with a small sumset and a generalised arithmetic progression.

Warning: When \mathcal{V} shrinks, eg, becomes a small box, we are approaching the scenario of pointwise bounds.

Small boxes

$$
\mathcal{C}_{\xi, \delta}=\left[\xi_{1}, \xi_{1}+\delta\right] \times \cdots \times\left[\xi_{d}, \xi_{d}+\delta\right] .
$$

In fact, this case has applications to most of the other cases and to several other problems. For example, C. Chen, B. Kerr, J. Maynard \& I.S. (2020), established the optimal for $\delta \gg N^{-1 / 2}$ bound

$$
\int_{\mathcal{C}_{\xi, \delta}}\left|S_{d}(\mathbf{u} ; N)\right|^{4} \mathrm{~d} \mathbf{u} \ll \delta^{d} N^{2}+\delta^{d-2} N^{1+o(1)}
$$

and used it in studying the Lebesque measure of the set of Weyl sums with exactly square root cancellation, ie, with

$$
c N^{1 / 2} \leq\left|S_{d}(\mathbf{u} ; N)\right| \leq C N^{1 / 2}
$$

Also, various bounds can be found in
C. Chen \& I.S. (2019),
C. Demeter \& B. Langowski (2021),
C. Chen, J. Brandes \& I.S. (2023).

The worst local MVT

For $s>0$, we define

$$
I_{s, d}(\delta ; N)=\sup _{\xi \in \mathrm{T}_{d}} \int_{\mathcal{C}_{\xi, \delta}}\left|S_{d}(\mathbf{u} ; N)\right|^{2 s} \mathrm{~d} \mathbf{u}
$$

There is a huge zoo of bounds and conjectures. Here are some plots where we set

$$
\delta=N^{-\tau} \quad \text { and } \quad \kappa_{s, d}(\tau)=\limsup _{N \rightarrow \infty} \frac{\log I_{s, d}\left(N^{-\tau} ; N\right)}{\log N}
$$

The lowest plot wins $\kappa_{2,2}(\tau)$

Figure: $d=s=2, \quad \mathrm{D}-\mathrm{L}=C$. Demeter \& B. Langowski (2021), $\quad \mathrm{W}=$ Wooley

The lowest plot wins: $\kappa_{3,3}(\tau)$

Figure: $d=s=3, \quad \mathrm{D}-\mathrm{L}=C$. Demeter \& B. Langowski (2021), $\quad \mathrm{W}=$ Wooley (2023), $\quad \mathrm{B}-\mathrm{C}-\mathrm{S}=\mathrm{C}$. Chen, J. Brandes \& I.S. (2023)

The lowest plot wins: $\kappa_{2,3}(\tau)$

Figure: $d=3, s=2, \quad \mathrm{D}-\mathrm{L}=C$. Demeter \& B. Langowski (2021), $\quad \mathrm{W}=$ Wooley (2023), B-C-S = C. Chen, J. Brandes \& I.S. (2023)

Ideas behind the proofs

In C. Chen, J. Brandes \& I.S. (2023) we improve some results of
C. Demeter \& B. Langowski (2021) on $I_{s, d}(\delta ; N)$ using a combination of two different approaches:

- Results of R. Baker (1981) on the structure of large Weyl sums.
- Bounds on complete rational exponential sums

$$
\left|\sum_{x=1}^{q} \mathbf{e}(F(x) / q)\right| \leq q^{o(1)} \prod_{i=2}^{d} q_{i}^{1-1 / i}, \quad F \in \mathbb{Z}[X], \operatorname{deg} F=d
$$

which depend on the arithmetic structure of $q=q_{2} \ldots q_{d}$ with $\operatorname{gcd}\left(q_{i}, q_{j}\right)=1$ for $2 \leq i<j \leq d$, such that
(i) q_{2} is cube-free,
(ii) q_{i} is i-th power-full but $(i+1)$-th power-free when $3 \leq i \leq d-1$,
(iii) q_{d} is d-th power-full.

- Results on the "inhomogeneous" VMVT: due to J. Brandes \& K. Hughes (2021) and T. Wooley (2022)

Structure of large Weyl sums

We make use of the following result (refined major arcs):

Baker (1981)

We fix some $\varepsilon>0$ and suppose that for a real

$$
A>N^{1-1 / 2 d(d-1)+\varepsilon}
$$

we have

$$
\left|S_{d}(\mathbf{u} ; N)\right| \geq A
$$

Then there exist integers q, r_{1}, \ldots, r_{d} such that

$$
1 \leq q \leq\left(N A^{-1}\right)^{d} N^{\varepsilon}, \quad \operatorname{gcd}\left(q, r_{1}, \ldots, r_{d}\right)=1
$$

and

$$
\left|u_{j}-\frac{r_{j}}{q}\right| \leq q^{-1}\left(N A^{-1}\right)^{d} N^{-j+\varepsilon}, \quad j=1, \ldots, d .
$$

Inhomogeneous VMVT

The classical form of the VMVT gives a precise bound on the number of solutions to the system of equations

$$
\begin{aligned}
x_{1}^{i}+\ldots+x_{s}^{i} & =x_{s+1}^{i}+\ldots+x_{2 s}^{i}, \quad i=1, \ldots, d \\
1 & \leq x_{1}, \ldots, x_{2 s} \leq N
\end{aligned}
$$

Any such bound implies the same bound for the inhomogeneous system

$$
\begin{aligned}
x_{1}^{i}+\ldots+x_{s}^{i} & =x_{s+1}^{i}+\ldots+x_{2 s}^{i}+h_{i}, \quad i=1, \ldots, d \\
1 & \leq x_{1}, \ldots, x_{2 s} \leq N
\end{aligned}
$$

However, if $\left(h_{1}, \ldots, h_{d}\right) \neq \mathbf{0}$ then we can hope for a better bound because the case $\left\{x_{1}, \ldots, x_{s}\right\}=\left\{x_{s+1}, \ldots, x_{2 s}\right\}$ does not contribute anymore.
R. Baker, M. Munsch \& IS (2021):

Besides the above application to the VMVT over a small cube such bounds also relevant to large sieve estimates over polynomial moduli.
J. Brandes \& K. Hughes (2021) and T. Wooley (2022) give such better bounds, but the truth is not clear yet.
$S_{d}(\mathbf{u} ; N)=\sum_{1}^{N} \mathbf{e}\left(u_{1} n+\ldots+u_{d} n^{d}\right) \quad \mathbf{u}=(\mathbf{x} \mid \mathbf{y}) ; \quad \mathrm{M}_{k}\left(S_{d}(\mathbf{x}, \mathbf{y} ; N)\right)=\sup _{\mathbf{y}}\left|S_{d}(\mathbf{x}, \mathbf{y} ; N)\right|$

The existence of large complete rational sums

Our lower bounds rest on the following estimate for the complete sums

$$
S_{\varphi}(q ; a, c)=\sum_{x=1}^{q} \mathbf{e}((a x+c \varphi(x)) / q)
$$

with $\varphi(X)=a_{d} X^{d}+\ldots+a_{1} X$.

Brandes \& Shparlinski (2020)

Let p be a prime satisfying $p>(2 k)^{4}$ with $p \nmid a_{d}$, and let $c \in \mathbb{Z}$ with $p \nmid c$. Then there exists $a \in \mathbb{Z}$ with $p \nmid(a+c)$ such that

$$
\left|S_{\varphi}(p ; a, a+c)\right| \geq 0.3 p^{1 / 2}
$$

The proof is based on the bound of E. Bombieri (1966) for exponential sums along an algebraic curve over \mathbb{F}_{p}.

We combine it with an approximation formula of R. C. Vaughan (1997) and a result of R. J. Duffin \& A. C. Schaeffer (1941) on approximation of almost all real numbers by fractions with prime denominators.

Further Extensions and Generalisation

Question:

Extend the range of sets of polynomials $\varphi=\left(\varphi_{1}, \ldots, \varphi_{d}\right) \in \mathbb{Z}[T]^{d}$ which admit non-trivial bounds on maximal operators.

Remark:

We need good versions of VMVT with φ. One interesting example is provided by Bourgain (2017):

$$
\int_{(x, y) \in \mathrm{T}_{2}}\left|\sum_{n=1}^{N} \mathbf{e}\left(x n^{2}+y n^{4}\right)\right|^{10} d x d y \leq N^{17 / 3+o(1)}
$$

Question:

What are "correct" multidimensional analogues for the sums

$$
\begin{aligned}
& \sum_{n_{1}=1}^{N_{1}} \ldots \sum_{n_{s}=1}^{N_{m}} \mathbf{e}\left(u_{1} \varphi_{1}\left(n_{1}, \ldots, n_{s}\right)+\ldots+u_{d} \varphi_{d}\left(n_{1}, \ldots, n_{s}\right)\right) \\
& \text { with }\left(\varphi_{1}, \ldots, \varphi_{d}\right) \in \mathbb{Z}\left[T_{1}, \ldots, T_{s}\right]^{d} \text { ? }
\end{aligned}
$$

Remark:

Some versions of the VMVT are known, S. Parsell, S. Prendiville \& T. Wooley (2013), S. Guo \& R. Zhang (2019), S Guo (2020), but not in the same generality as in the one-dimensional case; many other tools are also missing.

Definition

The discrepancy of $\gamma_{n}=\left(\gamma_{1, n}, \ldots, \gamma_{d, n}\right) \in \mathrm{T}_{d}, n=1, \ldots, N$ is defined as

$$
D_{N}=\sup _{\mathfrak{B} \subseteq \uparrow_{d}}\left|\#\left\{1 \leq n \leq N: \gamma_{n} \in \mathfrak{B}\right\}-\operatorname{vol}(\mathfrak{B}) N\right|
$$

where $\mathfrak{B}=\left[\alpha_{1}, \beta_{1}\right] \times \ldots \times\left[\alpha_{d}, \beta_{d}\right] \subseteq \mathrm{T}_{d}$ is a box of volume $\operatorname{vol}(\mathfrak{B})=\left(\beta_{1}-\alpha_{1}\right) \ldots\left(\beta_{d}-\alpha_{d}\right)$.

For $\varphi=\left(\varphi_{1}, \ldots, \varphi_{d}\right) \in \mathbb{Z}[T]^{d}$ and $\mathbf{u}=\left(u_{1}, \ldots, u_{d}\right) \in \mathrm{T}_{d}$, let $D_{\varphi}(\mathbf{u} ; N)$ be the discrepancy of

$$
\left(\left\{u_{1} \varphi_{1}(n)\right\}, \ldots\left\{u_{d} \varphi_{d}(n)\right\}\right), \quad n=1, \ldots, N .
$$

As before, we decompose $\mathbf{u}=(\mathbf{x} \mid \mathbf{y}) \in \mathrm{T}_{k} \times \mathrm{T}_{d-k}$ and write

$$
D_{\varphi}(\mathbf{x}, \mathbf{y} ; N)=D_{\varphi}(\mathbf{u} ; N)
$$

Question:

Estimate

$$
\mathrm{M}_{k}\left(D_{\varphi}(\mathbf{x}, \mathbf{y} ; N)\right)=\sup _{\mathbf{y} \in \mathrm{T}_{d-k}}\left|D_{\varphi}(\mathbf{x}, \mathbf{y} ; N)\right|
$$

for a.a. $\mathbf{x} \in \mathrm{T}_{k}$ and on average with respect to the L^{ρ}-norm:

$$
\left\|\mathrm{M}_{k}\left(D_{\varphi}(\mathbf{x}, \mathbf{y} ; N)\right)\right\|_{\rho}=\left(\int_{\mathrm{T}_{k}} \mathrm{M}_{k}\left(D_{\varphi}(\mathbf{x}, \mathbf{y} ; N)\right)^{\rho} d \mathbf{x}\right)^{1 / \rho}
$$

Remark:

By the Koksma-Szüsz inequality, we can express $D_{\varphi}(\mathbf{u} ; N)$ via certain linear combinations of Weyl sums. The previous methods should work with some modifications and adjustments.

Thank you!!

Questions and especially Answers are very Wey/come

