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Set-up

Given a vector u = (u1, . . . , ud) ∈ Td, where

Td = (R/Z)d = d-dimensional unit torus,

we define our main object of study:

Weyl Sums: Sd(u;N) =
∑

1≤n≤N
e(u1n+ . . .+ udn

d),

where e(x) = exp(2πix), named after Hermann Weyl, who introduced,
investigated and foresaw their great value for mathematics in 1916.

As concrete examples of their capabilities, Hermann Weyl established:

in 1916: the uniformity of distribution modulo one of the fractional
parts of values of real polynomials;

in 1921: the subconvexity bound for the Riemann zeta-function, the
first non-trivial result towards the Lindelöf hypothesis.
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1 e(u1n + . . . + udn
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Weyl sums everywhere

Since then, lots of other applications have been found, including:

bounds on the zero-free region of ζ(s) and thus bounds for the error
term in the Prime Number Theorem;

additive problems such as the Waring problem;

bounds on very short character sums and thus on the L-functions
with highly composite moduli;

low-lying zeros of families of L-functions of elliptic curves;

various problems from the uniformity of distribution theory and
Diophantine approximations;

Large sieve inequalities for polynomial moduli;

...
Later we will also mention some surprising applications to PDE’s:
M. B. Erdogan & G. Shakan (2019).

Sd(u;N) =
∑N

1 e(u1n + . . . + udn
d) u = (x|y); Mk (Sd(x,y;N)) = supy |Sd(x,y;N)| 3 / 36



What do we know about Weyl sums?

Average values: Trivially, by the Parseval identity ,∫
Td

|Sd(u;N)|2du = N.

Bounds on higher moments

Jd,s(N) =

∫
Td

|Sd(u;N)|2sdu, s = 2, 3, . . . ,

are highly nontrivial if s > d, for s ≤ d the reasonably elementary method
of Mordell (1932) works.They are known under the collective name:

Vinogradov’s Mean Value Theorem{s} (VMVT)

I. M. Vinogradov (1935):

(i) obtained the first nontrivial bounds on Jd,s(N) with a “right saving”
(but for larger than really necessary values of s);

(ii) linked such average bounds to pointwise bounds on |Sd(u;N)|.
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After works of I. M. Vinogradov; Yu. V. Linnik; N. M. Korobov;
A. A. Karatsuba; K. Ford; R. C. Vaughan; T. Wooley; . . . , 85 years and
several dozens of papers later, we have the following:

Optimal VMVT — Bourgain, Demeter & Guth; Wooley (2016–2019)

For s = 2, 3, . . ., we have

N s +N2s−d(d+1)/2 � Jd,s(N)� N s+o(1) +N2s−d(d+1)/2.

This is due to

T. Wooley (2016) for d = 3;
J. Bourgain, C. Demeter & L. Guth (2016) for d ≥ 4;
T. Wooley (2019) for more general exponential sums with
e (u1ϕ1(n) + . . .+ udϕd(n)), ϕj ∈ Z[T ], j = 1, . . . , d.

Remark:

The upper bound is equivalent to the estimate

Jd,d(d+1)/2(N) ≤ Nd(d+1)/2+o(1)

for the critical value s = d(d+ 1)/2.

Sd(u;N) =
∑N

1 e(u1n + . . . + udn
d) u = (x|y); Mk (Sd(x,y;N)) = supy |Sd(x,y;N)| 5 / 36



Pointwise bounds: Here our knowledge is quite scarce.

Vinogradov’s Method + Optimal VMVT

Let u = (u1, . . . , ud) ∈ Td be such that for some ν with 2 ≤ ν ≤ d and
some integers a and q with gcd(a, q) = 1 we have

|uν − a/q| ≤ 1/q2.

Then
|Sd(u;N)| ≤ N1+o(1)

(
q−1 +N−1 + qN−ν

)1/d(d−1)
.

Nowadays we do not have any plausible approach to do better, eg, replace
1/d(d− 1)→ 1/d and drop N−1, as expected.

Remark:

It is obvious that any bound of this kind must depend on Diophantine
properties of the non-linear coefficients u2, . . . , ud.
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What is next?

Recall that for the Weyl sums:

We have a complete knowledge of their average values.

We know something but overall very little about their pointwise
behaviour.

Question:

Can we “interpolate” between these two types of results?

This question leads us to studying some very well-known notions of
Functional Analysis:

Maximal Operators and Restriction Bounds

for the Weyl sums Sd(u;N) (as functions of u).
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Recall:

Let u = (u1, . . . , ud) ∈ Td be such that for some ν with 2 ≤ ν ≤ d
and some positive integers a and q with gcd(a, q) = 1 we have

|uν − a/q| ≤ 1/q2.

Then

|Sd(u;N)| ≤ N1+o(1)
(
q−1 +N−1 + qN−ν

)1/d(d−1)
.

Observation: The bound depends on approximations to only one of the
non-linear coefficients u2, . . . , ud, say, ud and for a.a. ud ∈ [0, 1] we can
choose q = N1+o(1) in the above.

Hence, we immediate derive

For a.a. ud ∈ [0, 1] and all (u1, . . . , ud−1) ∈ Td−1, we have

|Sd(u;N)| ≤ N1−1/d(d−1)+o(1), as N →∞.
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For a.a. ud ∈ [0, 1] and all (u1, . . . , ud−1) ∈ Td−1, we have

|Sd(u;N)| ≤ N1−1/d(d−1)+o(1), as N →∞.

Question:

Can we have stronger and/or more general statements?

Prototype Theorem

For a.a. components of u ∈ Td on prescribed k positions the following
holds: For all components on the remaining d− k positions, for all
N ∈ N, we have |Sd(u;N)| ≤ XXX (whatever we can prove for XXX).

This has been studied, with a chain of consecutive improvements, by:

L. Flaminio & G. Forni (2014);
T. Wooley (2016);
C. Chen & I.S. (2019).
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It is convenient to reformulate and generalise this question.

Given

a vector ϕ = (ϕ1, . . . , ϕd) ∈ Z[T ]d of d linearly independent with
constants polynomials,

a vector u = (u1, . . . , ud) ∈ Td,

we define

Tϕ(u;N) =

N∑
n=1

e (u1ϕ1(n) + . . .+ udϕd(n)) .

For ϕi(T ) = T i these are Weyl sums Sd(u;N). Decompose
u ∈ Td = Tk × Td−k as

u = (x|y) ∈ Tk × Td−k

and write
Tϕ(x,y;N) = Tϕ(u;N).

We emphasise that ϕ is a vector rather than a set — the order matters!
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Maximal Operators on Weyl Sums

Following L. Flaminio & G. Forni (2014), T. Wooley (2016), we are
interested in bounds on

Tϕ(x,y;N)

which hold for

a.a. x ∈ Tk and all y ∈ Td−k.

Equivalently, we are interested in bounds on

Maximal Operators: sup
y∈Td−k

|Tϕ(x,y;N)|

which hold for a.a. x ∈ Tk.
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Why do we expect supy∈Td−k
|Tϕ(x,y;N)| to be small?

The set of large Weyl sums is very sparse.

Figure: Almost all vertical lines miss red areas • of large Weyl sums in T2
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Some concrete results

L. Flaminio & G. Forni (2014);
T. Wooley (2016);
C. Chen & I.S. (2019):

For ϕ with a nontrivial Wronskian, for a.a. x ∈ Tk,

sup
y∈Td−k

|Tϕ(x,y;N)| 6 N1/2+γ+o(1), N →∞,

with some γ < 1/2.

To formulate concrete results we need the following important
parameter:

σk(ϕ) =

d∑
j=k+1

degϕj

= sum of degrees in the y-part over which we maximise.
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Wooley (2016)

For 1 ≤ k ≤ d− 1 we can take

γW =
2σk(ϕ) + d− k + 1

2d2 + 4d− 2k + 2
.

Using completing technique and a new self-improving argument:

Chen & Shparlinski (2019)

For 1 ≤ k ≤ d− 1 we can take

γCS =
2σk(ϕ) + d− k
2d2 + 4d− 2k

< γW .

Remark

This is nontrivial, ie, γCS < 1/2 iff

σk(ϕ) < d(d+ 1)/2,

which always holds in the classical case

{ϕ1(T ), . . . , ϕd(T )} = {T, . . . , T d}
but may fail otherwise, eg, take d = 2 and ϕ = (T, Tm), m ≥ 3.
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Remark

C. Chen & I.S. (2019): For

{ϕ1(T ), . . . , ϕd(T )} = {T, . . . , T d}

and k = d (ie, without sup) we can take γ = 0. This recovers the
well-known statement that for a.a. u ∈ Td,

|Sd(u;N)| ≤ N1/2+o(1), N →∞.

Question: (Should we always expect square-root cancellation?)

Can we can take γ = 0 for “generic enough” ϕ, eg, ϕ =
(
T, . . . , T d

)
?

We believe this is false and in some cases we can prove that γ ≥ 1/4.
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Norms of Maximal Operators

Maximal Operators are well-known in Functional Analysis:

Mk : F (x,y) 7→ G(x) = sup
y∈Td−k

|F (x,y)|

We have discussed bounds on Mk (Tϕ(x,y;N)) for a.a. x ∈ Tk.

A variation of this is a question about bounds on the Lρ-norm:

‖Mk (Tϕ(x,y;N))‖ρ =

(∫
Tk

Mk (Tϕ(x,y;N))ρ dx

)1/ρ

.

To simplify the discussion from now on we always assume that
ϕi(T ) = T i, i = 1, . . . , d, and thus we look at

Mk (Sd(x,y;N)) = sup
y∈Td−k

|Sd(x,y;N)| .

Sd(u;N) =
∑N

1 e(u1n + . . . + udn
d) u = (x|y); Mk (Sd(x,y;N)) = supy |Sd(x,y;N)| 16 / 36



Baker, Chen & Shparlinski (2021)

For any positive ρ ≥ d2 + 2d− k, for N →∞, we have

N1−k(k+1)/2ρ � ‖Mk (Sd(x,y;N))‖ρ ≤ N
1−k(k+1)/2ρ+o(1).

Remark

The significance of the cut-off d2 + 2d− k is in this interpretation:

d2 + 2d− k = d(d+ 1) + d− k
= 2× critical exponent in VMVT + dimension of y in sup.

Remark

By convexity, we can also have an upper bound for ρ < d2 + 2d− k and
recover the previous result of C. Chen & I.S. (2019).
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For d = 2, ie, for the maximal operator on Gauss sums

M1 (G(x, y)) = sup
y∈[0,1]

|G(x, y)| , where G(x, y) =

N∑
n=1

e(xn+ yn2),

R. Baker (2021), refining a result of A. Barron (2020), has given
matching upper and lower bounds:

Baker (2021)

We have
Na(ρ)(logN)b(ρ) � ‖M1 (G(x, y))‖ρ � Na(ρ)(logN)b(ρ),

where

a(ρ) =

{
3/4 for 1 ≤ ρ ≤ 4,

1− 1/ρ for ρ > 4,
b(ρ) =

{
1/ρ for ρ = 4,

0 for ρ ≥ 1, ρ 6= 4.

Question:

Can we extend this to any d ≥ 2 and control ‖Mk (Sd(x,y;N))‖ρ for any

ρ ≥ 1 rather than only for ρ ≥ d2 + 2d− k?
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Binomial Weyl Sums and PDE’s

Let Ωm be the smallest possible value of ϑ such that for any ϕ(T ) ∈ Z[T ]
of degree m and any τ ∈ R for a.a. x ∈ [0, 1] we have

sup
y∈[0,1]

∣∣∣∣∣
N∑
n=1

e (xϕ(n) + y(τϕ(n) + n))

∣∣∣∣∣ ≤ Nϑ+o(1).

This is exactly the previous scenario of maximal operators of L. Flaminio &
G. Forni (2014), T. Wooley (2016) and C. Chen & I.S. (2019).

Bad news: none of the previous bounds works;

Good news: but the methods do!

Remark

These sums look weird but their existence is justified by applications to
Schrödinger, Korteweg-de Vries, Airy and other classical PDE’s, see
M. B. Erdogan & G. Shakan (2019) — fractal dimension of solutions.
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M. B. Erdogan & G. Shakan (2019):

Ωm ≤ min

{
1− 1

2m + 1
, 1− 1

2m(m− 1) + 1

}
.

The results of C. Chen & I.S. (2019) on “dense” Weyl sums do not work
but the method does:

Chen & Shparlinski (2019)

We have
Ωm ≤ 1− 1

2s(m) + 1
,

where

s(2) = 3, s(3) = 5, s(4) = 8, s(5) = 12, s(6) = 18,

s(7) = 24, s(8) = 31, s(9) = 40, s(10) = 49,

while for m ≥ 11 we define r(m) =
⌊√

2m+ 2
⌋

s(m) = m(m− 1)/2 + r(m)−

{
0, 2m+ 2 ≥ r(m)2 + r(m),

1, otherwise.
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What is truth about Ωm?

J. Brandes, S. T. Parsell, C. Poulias, G. Shakan & R. C. Vaughan (2020):

Ω2 = Ω3 = 3/4.

J. Brandes & I.S. (2020): For any m ≥ 2, we have Ωm ≥ 3/4.

Question:

Is it true that for any m ≥ 2 we have Ωm = 3/4?

Remark

For m = 4 the upper bound Ω4 ≤ 16/17, due to C. Chen & I.S. (2019), is
already very far.

Question:

What about sums with two nonlinear polynomials, eg,

sup
y∈[0,1]

∣∣∣∣∣
N∑
n=1

e
(
xϕ(n) + y(τϕ(n) + n2)

)∣∣∣∣∣?
Sd(u;N) =
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Local Mean Value Theorems for Weyl Sums

Let µ be a measure supported on some set V ⊆ Td, thus µ (V) = 1. Our
goal here is to estimate the following mean values on V:

VMVT Restricted to V:

∫
V
|Sd(u;N)|ρdµ(u).

The set V can be some

• algebraic structure, eg, an algebraic variety;

• analytic structure, eg, a smooth curve or a surface defined by analytic
functions;

• geometric structure, eg, a linear space or an intersection of spheres,
balls and convex bodies;

• combinatorial structure, eg, a sets with a small sumset and a
generalised arithmetic progression.

Warning: When V shrinks, eg, becomes a small box,
we are approaching the scenario of pointwise bounds.
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Small boxes

Cξ,δ = [ξ1, ξ1 + δ]× · · · × [ξd, ξd + δ].

In fact, this case has applications to most of the other cases and to several
other problems. For example, C. Chen, B. Kerr, J. Maynard & I.S. (2020),
established the optimal for δ � N−1/2 bound∫

Cξ,δ
|Sd(u;N)|4du� δdN2 + δd−2N1+o(1)

and used it in studying the Lebesque measure of the set of Weyl sums
with exactly square root cancellation, ie, with

cN1/2 ≤ |Sd(u;N)| ≤ CN1/2.

Also, various bounds can be found in
C. Chen & I.S. (2019),
C. Demeter & B. Langowski (2021),
C. Chen, J. Brandes & I.S. (2023).
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The worst local MVT

For s > 0, we define

Is,d(δ;N) = sup
ξ∈Td

∫
Cξ,δ
|Sd(u;N)|2sdu.

There is a huge zoo of bounds and conjectures. Here are some plots where
we set

δ = N−τ and κs,d(τ) = lim sup
N→∞

log Is,d(N
−τ ;N)

logN
,
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The lowest plot wins κ2,2(τ)
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Figure: d = s = 2, D-L = C. Demeter & B. Langowski (2021), W = Wooley
(2023), B-C-S = C. Chen, J. Brandes & I.S. (2023)
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The lowest plot wins: κ3,3(τ)
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Figure: d = s = 3, D-L = C. Demeter & B. Langowski (2021), W = Wooley
(2023), B-C-S = C. Chen, J. Brandes & I.S. (2023)
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The lowest plot wins: κ2,3(τ)
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Figure: d = 3, s = 2, D-L = C. Demeter & B. Langowski (2021), W =
Wooley (2023), B-C-S = C. Chen, J. Brandes & I.S. (2023)
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Ideas behind the proofs

In C. Chen, J. Brandes & I.S. (2023) we improve some results of
C. Demeter & B. Langowski (2021) on Is,d(δ;N) using a combination of
two different approaches:

Results of R. Baker (1981) on the structure of large Weyl sums.

Bounds on complete rational exponential sums∣∣∣∣∣
q∑

x=1

e(F (x)/q)

∣∣∣∣∣ ≤ qo(1)
d∏
i=2

q
1−1/i
i , F ∈ Z[X], degF = d

which depend on the arithmetic structure of q = q2 . . . qd with
gcd(qi, qj) = 1 for 2 ≤ i < j ≤ d, such that

(i) q2 is cube-free,
(ii) qi is i-th power-full but (i+ 1)-th power-free when 3 ≤ i ≤ d− 1,

(iii) qd is d-th power-full.

Results on the ”inhomogeneous” VMVT: due to J. Brandes &
K. Hughes (2021) and T. Wooley (2022)
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Structure of large Weyl sums

We make use of the following result (refined major arcs):

Baker (1981)

We fix some ε > 0 and suppose that for a real

A > N1−1/2d(d−1)+ε

we have
|Sd(u;N)| ≥ A.

Then there exist integers q, r1, . . . , rd such that

1 ≤ q ≤
(
NA−1

)d
N ε, gcd(q, r1, . . . , rd) = 1

and ∣∣∣∣uj − rj
q

∣∣∣∣ ≤ q−1 (NA−1)dN−j+ε, j = 1, . . . , d.
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Inhomogeneous VMVT

The classical form of the VMVT gives a precise bound on the number of
solutions to the system of equations

xi1 + . . .+ xis = xis+1 + . . .+ xi2s, i = 1, . . . , d,

1 ≤ x1, . . . , x2s ≤ N.

Any such bound implies the same bound for the inhomogeneous system

xi1 + . . .+ xis = xis+1 + . . .+ xi2s + hi, i = 1, . . . , d,

1 ≤ x1, . . . , x2s ≤ N.

However, if (h1, . . . , hd) 6= 0 then we can hope for a better bound because
the case {x1, . . . , xs} = {xs+1, . . . , x2s} does not contribute anymore.

R. Baker, M. Munsch & IS (2021):
Besides the above application to the VMVT over a small cube such
bounds also relevant to large sieve estimates over polynomial moduli.

J. Brandes & K. Hughes (2021) and T. Wooley (2022) give such better
bounds, but the truth is not clear yet.
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The existence of large complete rational sums

Our lower bounds rest on the following estimate for the complete sums

Sϕ(q; a, c) =

q∑
x=1

e ((ax+ cϕ(x)) /q)

with ϕ(X) = adX
d + . . .+ a1X.

Brandes & Shparlinski (2020)

Let p be a prime satisfying p > (2k)4 with p - ad, and let c ∈ Z with p - c.
Then there exists a ∈ Z with p - (a+ c) such that

|Sϕ(p; a, a+ c)| ≥ 0.3p1/2.

The proof is based on the bound of E. Bombieri (1966) for exponential
sums along an algebraic curve over Fp.

We combine it with an approximation formula of R. C. Vaughan (1997)
and a result of R. J. Duffin & A. C. Schaeffer (1941) on approximation of
almost all real numbers by fractions with prime denominators.
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Further Extensions and Generalisation

Question:

Extend the range of sets of polynomials ϕ = (ϕ1, . . . , ϕd) ∈ Z[T ]d which
admit non-trivial bounds on maximal operators.

Remark:

We need good versions of VMVT with ϕ. One interesting example is
provided by Bourgain (2017):

∫ ∫
(x,y)∈T2

∣∣∣∣∣
N∑
n=1

e(xn2 + yn4)

∣∣∣∣∣
10

dxdy ≤ N17/3+o(1).
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Question:

What are ”correct” multidimensional analogues for the sums

N1∑
n1=1

. . .

Nm∑
ns=1

e (u1ϕ1(n1, . . . , ns) + . . .+ udϕd(n1, . . . , ns))

with (ϕ1, . . . , ϕd) ∈ Z[T1, . . . , Ts]
d?

Remark:

Some versions of the VMVT are known, S. Parsell, S. Prendiville &
T. Wooley (2013), S. Guo & R. Zhang (2019), S Guo (2020), but not in
the same generality as in the one-dimensional case; many other tools are
also missing.
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Definition

The discrepancy of γn = (γ1,n, . . . , γd,n) ∈ Td, n = 1, . . . , N is defined as

DN = sup
B⊆Td

|#{1 ≤ n ≤ N : γn ∈ B} − vol(B)N |

where B = [α1, β1]× . . .× [αd, βd] ⊆ Td is a box of volume
vol(B) = (β1 − α1) . . . (βd − αd).

For ϕ = (ϕ1, . . . , ϕd) ∈ Z[T ]d and u = (u1, . . . , ud) ∈ Td, let Dϕ(u;N)
be the discrepancy of

({u1ϕ1(n)}, . . . {udϕd(n)}) , n = 1, . . . , N.

As before, we decompose u = (x|y) ∈ Tk × Td−k and write

Dϕ(x,y;N) = Dϕ(u;N).

Sd(u;N) =
∑N

1 e(u1n + . . . + udn
d) u = (x|y); Mk (Sd(x,y;N)) = supy |Sd(x,y;N)| 34 / 36



Question:

Estimate
Mk (Dϕ(x,y;N)) = sup

y∈Td−k
|Dϕ(x,y;N)| .

for a.a. x ∈ Tk and on average with respect to the Lρ-norm:

‖Mk (Dϕ(x,y;N))‖ρ =

(∫
Tk

Mk (Dϕ(x,y;N))ρ dx

)1/ρ

.

Remark:

By the Koksma–Szüsz inequality, we can express Dϕ(u;N) via certain
linear combinations of Weyl sums. The previous methods should work
with some modifications and adjustments.
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Thank you!!

Questions and especially Answers
are very Weylcome
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