On the number of binary quartic number fields

Ari Shnidman

Hebrew University of Jerusalem
November 3, 2023

Overview

(1) Motivation
(2) Main theorems
(3) Monogenic cubic fields

4 Binary quartic fields

Overview

(1) Motivation
(2) Main theorems
(3) Monogenic cubic fields

4 Binary quartic fields

Enumerating number fields

Conjecture (Malle)

As $X \rightarrow \infty$, the number of degree d number fields of discriminant less than X is $\sim c_{d} X$.
Known when $d \leq 5$ (Davenport-Heilbronn for $d=3$ and Bhargava for $d=4,5$).
Idea: parameterize rings of integers \mathcal{O}_{K} as geometric objects.

- $d=3: \operatorname{Spec} \mathcal{O}_{K}=\{f(x, y)=0\} \subset \mathbb{P}_{\mathbb{Z}}^{1}$ (Delone-Faddeev)
- $d=4: \operatorname{Spec} \mathcal{O}_{K}=\left\{q_{1}(x, y, z)=0\right\} \cap\left\{q_{2}(x, y, z)=0\right\} \subset \mathbb{P}_{\mathbb{Z}}^{2}$ (Bhargava).
- $d=5: \operatorname{Spec} \mathcal{O}_{K}=\bigcap_{i=1}^{5}\left\{q_{i}(x, y, z, w)=0\right\} \subset \mathbb{P}_{\mathbb{Z}}^{3}$ (Bhargava).

Then count number of (isomorphism classes of such) objects with bounded discriminant using the geometry-of-numbers and the averaging method.

Analogy with curves

- $\operatorname{Spec} \mathcal{O}_{K}$ is a one-dimensional scheme.
- We can try to classify number fields as we do curves in algebraic geometry.
- The moduli space \mathcal{M}_{g} is of general type for g large, so its rational points should be supported on a proper closed subvariety.
- Open question (for g large): are 100% of curves of genus g hyperelliptic?

This suggests that for number fields, we should:
(1) Determine the different models for $\operatorname{Spec} \mathcal{O}_{K}$ (as closed subschemes of $\mathbb{P}_{\mathbb{Z}}^{n}$).
(2) Determine their asymptotics.

Binary quartic rings

Definition

A number field K is binary if $\operatorname{Spec} \mathcal{O}_{K} \simeq\{f(x, y)=0\} \subset \mathbb{P}_{\mathbb{Z}}^{1}$ for some $f \in \mathbb{Z}[x, y]$.
In this case, if $f=\sum a_{i} x^{n-i} y^{i}$, then \mathcal{O}_{K} has \mathbb{Z}-basis

$$
1, a_{0} \theta, a_{0} \theta^{2}+a_{1} \theta, \ldots, \sum_{i=0}^{n-2} a_{i} \theta^{n-1-i}
$$

where θ is a root of $f(x, 1)$.

Example

If $a_{0}= \pm 1$, then $\mathcal{O}_{K}=\mathbb{Z}[\theta]$ is monogenic. Equivalently: $\operatorname{Spec} \mathcal{O}_{K} \rightarrow \mathbb{A}_{\mathbb{Z}}^{1}$.

Conjectures

Conjecture (Folklore)

For $d \geq 3,100 \%$ of degree d number fields are not monogenic, ordered by discriminant.

Conjecture (Bhargava-Shankar-Wang)

The number of monogenic degree d number fields of discriminant $<X$ is $\sim \alpha_{d} X^{\frac{1}{2}+\frac{1}{d}}$.

Conjecture (Bhargava-Shankar-Wang)

The number of binary degree d number fields of discriminant $<X$ is $\sim \beta_{d} X^{\frac{1}{2}+\frac{1}{d-1}}$.

Conjecture

For $d \geq 4,100 \%$ of degree d number fields are not binary, ordered by discriminant.

Main theorems

Theorem (Alpöge-Bhargava-S)

A positive proportion of quartic number fields of any fixed signature are not binary (despite having no local obstruction).

The proof will use the following:

Theorem (Alpöge-Bhargava-S)

A positive proportion of cubic number fields of any fixed signature are not monogenic (despite having no local obstruction).

Index form obstruction

Let K be a number field of degree d. The index form

$$
\mathcal{O}_{K} / \mathbb{Z} \longrightarrow \bigwedge^{d} \mathcal{O}_{K}
$$

defined by

$$
r \mapsto 1 \wedge r \wedge \ldots \wedge r^{d-1}
$$

is a homogeneous form $f_{K}\left(x_{1}, \ldots, x_{d-1}\right)$ of degree $\binom{d}{2}$ in $d-1$ variables.

Lemma

K is monogenic if and only if $f_{K}\left(x_{1}, \ldots, x_{d-1}\right)$ represents 1 or -1 over \mathbb{Z}.

Definition

We say K is locally unobstructed to being monogenic if either f_{K} represents 1 over \mathbb{Z}_{p} for all primes p, or f_{K} represents -1 over \mathbb{Z}_{p} for all primes p.

Overview

(1) Motivation
(2) Main theorems
(3) Monogenic cubic fields
4. Binary quartic fields

Main theorem for cubic fields

Theorem (Alpöge-Bhargava-S)

A positive proportion of cubic fields are not monogenic despite having no obstruction to being monogenic.

- So a positive proportion of cubic fields are not monogenic for truly global reasons.
- Akhtari-Bhargava proved the analogous theorem for cubic rings.
- I'll present a proof which is somewhat different from the arXiv/submitted version.

Outline of proof

A ring generator of \mathcal{O}_{K} has minimal polynomial $f(t)=t^{3}+a t+b$ of discriminant $D=\operatorname{Disc}(K)$, hence gives an (almost) integral point P_{K} on the curve $-27 y^{2}=4 x^{3}+D$. It gives an integral point on the isomorphic curve

$$
E_{D}: y^{2}=x^{3}-432 D
$$

Consider the set $E_{D}(\mathbb{Z})_{\max }$ of all such points and the map

$$
\Psi_{D}: E_{D}(\mathbb{Z})_{\max } \rightarrow E_{D}(\mathbb{Q}) / 2 E_{D}(\mathbb{Q})
$$

The proof has three steps:
(1) Show that the average size of $E_{D}(\mathbb{Q}) / 2 E_{D}(\mathbb{Q})$ is at most 3 .
(2) Show that the fibers of Ψ_{D} are uniformly bounded.
(3) Impose congruence conditions on D such that for half of such D, there are 2^{100} cubic fields of discriminant D.

Step 1: $\operatorname{avg}_{D} E_{D}(\mathbb{Q}) / 2 E_{D}(\mathbb{Q}) \leq 3$

- Ph.D. theses of Ruth and Alpöge.
- More precisely, they prove $\operatorname{avg}_{D} \# \operatorname{Sel}_{2}\left(E_{D}\right)=3$.
- The idea is to combine geometry-of-numbers (following Bhargava-Shankar) with the circle method.
- Crucial fact: this result is insensitive to congruence conditions on D.

Step 2: the fibers of ψ_{D} are uniformly bounded

Each point $P=\left(x_{0}, y_{0}\right) \in E_{D}(\mathbb{Z})$ in $E_{D}(Z)$ gives rise (by 2-descent) to a quartic polynomial

$$
F_{P}(x)=x^{4}-6 x_{0} x^{2}+8 y_{0} x-3 x_{0}
$$

Hence a quartic ring $Q_{P}=\mathbb{Z}[x] /\left(F_{P}\right)$ and a quartic algebra $W_{P}=\mathbb{Q}[x] /\left(F_{P}\right)$.

- $\Psi_{D}(P)=\Psi_{D}\left(P^{\prime}\right)$ if and only if $W_{P} \simeq W_{P^{\prime}}$
- If so, then $Q_{P} \simeq Q_{P^{\prime}}$ if and only if F_{P} and $F_{P^{\prime}}$ are $\mathrm{GL}_{2}(\mathbb{Z})$-equivalent.
- At most 14 distinct points P^{\prime} can exist such that $Q_{P^{\prime}} \simeq Q_{P}$ (Akhtari).
- Problem: there are roughly $2^{\omega(D)}$ choices for the ring Q_{P} inside W_{P}.
- We show that if $P \in E_{D}(\mathbb{Z})_{\max }$, then there is (essentially) just one possibility.

Step 3: Producing many cubic fields

Let $n=2 \cdot 3 \cdot 5 \cdot 7 \cdots \cdots 541$ be the 101-th primorial.

- We impose the following congruence conditions: take

$$
D \in\left\{-27 d n^{2}: d \text { fundamental and }\left(\frac{d}{p}\right)=1 \text { for all } p \mid n\right\}
$$

- Bhargava-Varma show that $\mathrm{Cl}(\mathbb{Q}(\sqrt{d}))[3]=0$ for at least half of such D.
- For positive such D, we give an explicit bijection

$$
\left\{\text { cubic fields of discriminant }-27 d n^{2}\right\} \longleftrightarrow\{\mathbb{Z}[\sqrt{d}] \text {-ideals of norm } n\} / \sim
$$

It follows that there are 2^{100} cubic fields of discriminant D.

- For negative such D, use class field theory!

Overview

(1) Motivation
(2) Main theorems
(3) Monogenic cubic fields

4 Binary quartic fields

Monogenic quartic fields

Theorem (Alpöge-Bhargava-S)

A positive proportion of quartic fields are not binary despite having no local obstruction to being monogenic.

- We will use the previous result and the cubic resolvent construction.
- If \mathcal{O}_{K} corresponds to the pair $\left(q_{1}(X, Y, Z), q_{2}(X, Y, Z)\right)$ with corresponding symmetric matrices $\left(A_{1}, A_{2}\right)$, then the cubic resolvent ring R corresponds to the binary cubic form $f(x, y)=\operatorname{det}\left(A_{1} x-A_{2} y\right)$.

Binary quartics and monogenic cubics

Theorem (Wood)

\mathcal{O}_{K} is binary if and only if R is monogenic.

Proof.
 \mathcal{O}_{K} is binary if and only if $\operatorname{Spec} \mathcal{O}_{K}$ embeds in a rational normal curve of degree 2, i.e. a smooth conic over \mathbb{Z}. This means we can take A_{1} to have determinant ± 1. This is equivalent to saying that $f(x, y)$ represents 1 which is equivalent to saying that R is monogenic.

Outline of proof

(1) Use our family $\{K\}$ of non-monogenic cubic fields. For each K, consider the quartic field L_{u} in the Galois closure of $K(\sqrt{u})$, where u is a non-square unit.
(2) Arrange for L_{u} to be locally unobstructed, using Fess's formula:

$$
f_{K}\left(x^{2}, x y, y^{2}\right)=F_{p}(x, y)^{3}
$$

(3) Prove that the L_{u} that arise have all three possible signatures (using another result of Bhargava-Varma).

Thank you!

