Counting integer polynomials with several roots of maximal modulus

Min Sha South China Normal University (Joint woth with Artūras Dubickas)

Number Theory Seminar, University of Debrecen 27/09/2024

Min Sha (SCNU) [Counting integer polynomials](#page-0-0)

メロメメ 倒 メメ きょくきょう

目

 299

Counting integer polynomials

- Counting integer polynomials with respect to some arithmetic properties and under some measures has a long history and is still active.
- Many mathematicians have done work in this topic. For example, the number theory research group in Debrecen.

Counting integer polynomials

• These arithmetic properties include: reducibility,

decomposability $(f(x) = g(h(x)))$,

signature of roots $(f(x))$ is of signature (r, s) if it has r real roots and 2s non-real roots),

moduli of roots,

degeneracy (a polynomial $f(x)$ is said to be degenerate if it has two roots whose quotient is a root of unity).

メロメ メ御 メメ ミメメ ミメ

Height, Mahler measure, house

• For a polynomial of degree $n > 1$:

$$
f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 = a_n \prod_{i=1}^n (x - \alpha_i) \in \mathbb{C}[x],
$$

its height is defined by

$$
H(f):=\max_{0\leq i\leq n}|a_i|,
$$

its Mahler measure is defined by

$$
M(f):=|a_n|\prod_{i=1}^n\max(1,|\alpha_i|),
$$

and the house of f or the inclusion radius of f is defined by

$$
r(f) := \max_{1 \leq i \leq n} |\alpha_i|,
$$

KILLER

つくい

A classical result

Let $\rho_n(m, H)$ be the number of monic polynomials

$$
f(x) = xn + a1xn-1 + \cdots + an \in \mathbb{Z}[x], \quad n \ge 2, \quad H(f) \le H,
$$

which are reducible in $\mathbb{Z}[x]$ with an irreducible factor of degree m. van der Waerden proved:

Theorem (van der Waerden, 1936)

For integers $n > 2$ and $m > 1$, we have

$$
H^{n-m}\ll \rho_m(n,H)\ll H^{n-m} \quad \text{if} \quad 1\leq m < n/2,
$$

 H^{n-m} log $H \ll \rho_m(n, H) \ll H^{n-m}$ log H if $m = n/2$.

In particular, when $n > 3$, the number of monic integer reducible polynomials of degree n and of height at most H is $\ll H^{n-1}$.

← 向下

COLLECT

 290

Motivation

- In this talk, we are interested in counting integer polynomials according to the moduli of their roots.
- **•** The motivation is from the Skolem Problem of linear recurrence sequences.
- The Skolem Problem asks whether such a sequence has a zero term.

4 0 8 1

 $2Q$

Linear recurrence sequences

• A linear recurrence sequence (LRS) over the rational numbers Q, denoted by $\{s_m\}_{m>0}$, of order $n \geq 2$:

 $s_{m+n} = a_{n-1}s_{m+n-1} + \cdots + a_1s_{m+1} + a_0s_m$, $m = 0, 1, 2, \ldots$

where $a_0, \ldots, a_{n-1} \in \mathbb{Q}$ and $a_0 \neq 0$. The *characteristic* polynomial of this sequence is

$$
f(x) = x^{n} - a_{n-1}x^{n-1} - \cdots - a_0 \in \mathbb{Q}[x].
$$

- **•** The famous *Skolem-Mahler-Lech Theorem* states that the set ${m : s_m = 0}$ is the union of a finite set and finitely many arithmetic progressions. (the zero set)
- However, the corresponding algorithmic question, called the Skolem Problem, which asks to determine whether a given LRS has a zero term, is still widely ope[n.](#page-6-0)

 290

Linear recurrence sequences

- So far, the decidability of the Skolem Problem is only known in some special cases, based on the relative order of the absolute values of the characteristic roots.
- In 1984, Mignotte, Shorey and Tijdeman showed that the Skolem Problem is decidable if the characteristic polynomial $f(x)$ has at most three dominant roots (counted without multiplicity).
- However, the Skolem Problem for LRS of order at least 5 is still not decidable.

Linear recurrence sequences

- It is of interest to count polynomials according to the number of dominant roots.
- **•** From this, one can see how often the Skolem Problem for a random LRS is decidable.

ALCOHOL:

 $2Q$

Some notation

- Recall that for $f \in \mathbb{C}[x]$, $r(f)$ is the largest modulus of the roots of f. Then, the roots of f with modulus $r(f)$ are said to be of maximal modulus. (Alteratively, dominant root)
- \bullet $D_n(k, H)$: the number of monic integer polynomials of degree n and height at most H with exactly k dominant roots (counted with multiplicity).
- $D_n^*(k, H)$: the number of integer polynomials of degree *n* and height at most H with exactly k dominant roots (counted with multiplicity).

メロト メタト メミト メミト

∽≏ດ

- $\bullet U \ll V$ or, equivalently, $V \gg U$ for two positive quantities U, V (depending on k, n, H) means that $U \leq cV$ for some positive constant c which may depend on k and n but does not depend on H.
- $U \sim V$ means $\lim_{H\to\infty} U/V = 1$.

a Bara Ba

The case $k = 1$ about monic polynomials

Theorem (Dubickas and S., 2015)

For any integer $n \geq 2$, we have

 $D_n(1, H) \sim (2H)^n$,

that is,

$$
\lim_{H\to\infty}\frac{D_n(1,H)}{(2H)^n}=1.
$$

Recall that there are $(2H + 1)^n$ monic integer polynomials of degree n and with height at most H .

メロメ メ団 メメミメメミメ

The case $k = 1$ about non-monic polynomials

Theorem (Dubickas and S., 2015)

For any integer $n > 2$, we have

$$
0<\limsup_{H\to\infty}\frac{D_n^*(1,H)}{(2H)^{n+1}}<1.
$$

This implies

$$
H^{n+1} \ll D_n^*(1, H) \ll H^{n+1}.
$$

Recall that there are $2H(2H+1)^n$ integer polynomials of degree n and with height at most H .

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$

The case $k = 2$ about monic polynomials

Theorem (Dubickas and S., 2016)

For any integer $n > 2$, we have

$$
H^{n-1/2} \ll D_n(2, H) \ll H^{n-1/2};
$$

and

$$
\sum_{k=3}^n D_n(k,H) \ll H^{n-1}.
$$

K ロ ト K 御 ト K ヨ ト

É

|重き

 $2Q$

The case $k = 2$ about non-monic polynomials

Theorem (Dubickas and S., 2016)

For any integer $n > 2$, we have

$$
\lim_{H \to \infty} \frac{D_n^*(1, H) + D_n^*(2, H)}{(2H)^{n+1}} = 1,
$$

and

$$
\sum_{k=3}^n D_n^*(k,H) \ll H^n.
$$

This implies

 $H^{n+1} \ll D_n^*(2, H) \ll H^{n+1},$

メロト メタト メミト メミト

 $2Q$

Back to the motivation

• Recall that Mignotte, Shorey and Tijdeman showed that the Skolem Problem is decidable if the characteristic polynomial has at most three dominant roots (counted without multiplicity).

Recall

$$
\lim_{H \to \infty} \frac{D_n^*(1, H) + D_n^*(2, H)}{(2H)^{n+1}} = 1.
$$

• So, roughly speaking, for almost all LRS over $\mathbb O$, the Skolem Problem is decidable.

4 E 6 4 E 6

Question by Igor Shparlinski

- Igor: get a good bound on the number of integer polynomials of fixed degree and bounded height and with several dominant roots?
- Then, we come back to this topic.

 $2Q$

This talk

- We are interested in the size of the quantity $D_n(k, H)$ when $k > 3$. (that is, focusing on monic polynomials)
- The case of non-monic polynomials is somehow easier, because one can enlarge the leading coefficient to control the moduli of roots.

4 E N 4 E N

つくい

The case $k \geq 3$

Theorem (Dubickas and S., 2024)

For any integers $n \ge k \ge 3$ and $H \ge 1$, we have

$$
H^{\frac{n+1}{2}-k+\frac{5k^2-4k+7}{8n}} \ll D_n(k,H) \ll H^{n-\frac{k+1}{2}}
$$

for k odd, and

$$
H^{\frac{n+1}{2}-k+\frac{5k^2-2k+16}{8n}} \ll D_n(k,H) \ll H^{n-\frac{k-1}{2}}
$$

for k even.

This implies

$$
\sum_{k=3}^{n} D_n(k, H) \ll H^{n-3/2}.
$$
 (previously, $\ll H^{n-1}$)

Kロト K倒下

K 로어 K 로어

 $2Q$

€

How large are the lower bounds?

o Define

$$
e(n,k) = \begin{cases} \frac{n+1}{2} - k + \frac{5k^2 - 4k + 7}{8n} & \text{if } k \text{ is odd,} \\ \frac{n+1}{2} - k + \frac{5k^2 - 2k + 16}{8n} & \text{if } k \text{ is even} \end{cases}
$$

 \bullet Viewing the exponent $e(n, k)$ as a quadratic polynomial in k, we obtain

$$
e(n,k) \ge \begin{cases} \frac{n+1}{10} + \frac{31}{40n} & \text{if } k \text{ is odd,} \\ \frac{n+3}{10} + \frac{79}{40n} & \text{if } k \text{ is even.} \end{cases}
$$

 (1) (1)

化重新润滑剂

 $2Q$

€

Counting reducible and irreducible polynomials separately

- \bullet $I_n(k, H)$: the number of monic **irreducible** integer polynomials of degree n and height at most H and with exactly k dominant roots (counted with multiplicity).
- \bullet $R_n(k, H)$: the number of monic **reducible** integer polynomials of degree n and height at most H and with exactly k dominant roots (counted with multiplicity).
- **•** Clearly,

$$
D_n(k, H) = I_n(k, H) + R_n(k, H).
$$

メミメメ ヨメ

Counting irreducible polynomials

Theorem (Dubickas and S., 2024)

Let $n > 2$ and $H > 1$ be two integers. Then, for any odd integer k satisfying $1 \leq k \leq n$, we have

$$
I_n(k,H)\begin{cases}\sim (2H)^{n/k} & \text{if } k \mid n, \\ =0 & \text{if } k \nmid n;\end{cases}
$$

for any integer k with $1 \leq k \leq n$, we have

$$
I_n(k,H)\ll H^{n-(k-1)/2}.
$$

Finally, for even $n > 2$, we have

$$
I_n(n, H) \gg H^{\frac{n}{8} + \frac{2}{n} + \frac{1}{4}}.
$$

 α α

Counting reducible polynomials

Theorem (Dubickas and S., 2024)

For any integers $n > 3$ and k with $1 \leq k \leq n$, we have

 $R_n(k, H) \ll H^{n-(k+1)/2},$

and also in all those cases, except when $k = n$ is even,

 $R_n(k, H) \gg H^{e(n,k)}$.

Finally, in the case when $k = n$ is even, we have

 $R_n(n,H) \gg H^{\frac{n}{8} + \frac{2}{n} - \frac{1}{4}}.$

メロメ メ御 メメ ミメメ ミメー

つくい

The case $k = 3$

When $k=3$, we have $R_n(3,H) \ll H^{n-2}$, and

$$
I_n(3, H) \begin{cases} \sim (2H)^{n/3} & \text{if } 3 \mid n, \\ = 0 & \text{if } 3 \nmid n. \end{cases}
$$

From $D_n(3, H) = I_n(3, H) + R_n(3, H)$, we directly have:

Corollary

For any integer $H > 1$, we have

$$
D_n(3,H)\ll H^{n-2}.
$$

メロト メタト メミト メミト

 $2Q$

∍

Question

- What is the correct size of $D_n(3, H)$ when *n* is large?
- The key point is to estimate $R_n(3, H)$.

• For $n = 3, 4$, we get:

Theorem (Dubickas and S., 2024)

For any integer $H > 1$, we have

 $H \ll D_3(3, H) \ll H$, $H \log H \ll D_4(3, H) \ll H \log H$.

メロメ メ御 メメ ミメメ ミメ

 $2Q$

More general questions

- What is the correct size of $D_n(k, H)$ for any $k \geq 3$?
- Moreover, how about asymptotic formulas?

a maxim

 $2Q$

K 로)

Counting irreducible polynomials when k is odd

Theorem (Dubickas and S., 2024)

Let $n > 2$ and $H > 1$ be two integers. Then, for any odd integer k satisfying $1 \leq k \leq n$, we have

$$
I_n(k,H)\begin{cases}\n\sim (2H)^{n/k} & \text{if } k \mid n, \\
=0 & \text{if } k \nmid n.\n\end{cases}
$$

メロト メタト メミト メミト

つくい

Counting irreducible polynomials when k is odd

- Let $f(x)$ be an irreducible polynomial contributing to $I_n(k, H)$. Since k is odd, f has a real dominant root.
- The following result proved by Ferguson, which is a generalization of Boyd's result.

Theorem (Ferguson, 1997)

Suppose that an irreducible integer polynomial $f(x) \in \mathbb{Z}[x]$ has k roots, at least one real, of equal modulus. Then, $f(x) = g(x^k)$, where $g(x)$ is an irreducible integer polynomial.

In particular, $k \mid \text{deg } f$.

メロメ メ御 メメ ミメメ ミメー

Counting irreducible polynomials when k is odd

• Conversely, we have:

Lemma

Let $g(x)$ be a monic irreducible integer polynomial of positive degree such that $|g(0)|^{1/m} \not\in \mathbb{Q}$ for any integer $m>1$. Then, $g(x^k)$ is also irreducible in $\mathbb Z[x]$ for any integer $k\geq 1$.

This is a corollary of Capelli's lemma about the irreducibility of compositions of polynomials.

メロメ メ御 メメ ミメメ ミメー

∽≏ດ

Counting irreducible polynomials: the general case

Theorem (Dubickas and S., 2024)

Let $n \geq 2$ and $H \geq 1$ be two integers. Then, for any integer k with $1 \leq k \leq n$, we have

$$
I_n(k,H)\ll H^{n-(k-1)/2}.
$$

For even $n > 2$, we have

$$
I_n(n, H) \gg H^{\frac{n}{8} + \frac{2}{n} + \frac{1}{4}}.
$$

メロメ メ母メ メミメ メミメー

つくい

Counting irreducible polynomials: the general case

• Consider a monic integer polynomial contributing to $I_n(k, H)$

$$
f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0.
$$

• By definition, we obtain

$$
r(f)^k \leq M(f) \leq \sqrt{n+1}H(f) \leq \sqrt{n+1}H,
$$

which gives

$$
r(f)\ll H^{1/k}.
$$

From $|a_{n-i}| \leq {n \choose i}$ $\int\limits_{i}^{n} \textcolor{black}{) } r(f)^i$ for any integer i with $1 \leq i \leq n,$ we see that the vector

$$
(a_{n-1}, a_{n-2}, \ldots, a_{n-k})
$$

can take at most $\ll r(f)^{1+2+\cdots+k} \ll r(f)^{k(k+1)/2} \ll H^{(k+1)/2}$
values.

 \mathfrak{S}

Counting irreducible polynomials: the general case

• Since the vector

$$
(a_{n-k-1},a_{n-k-2},\ldots,a_0)
$$

takes at most $(2H+1)^{n-k} \ll H^{n-k}$ values, there are at most

$$
\ll H^{(k+1)/2+n-k} \ll H^{n-(k-1)/2}
$$

suitable monic polynomials f .

• In fact, we obtain

$$
D_n(k,H)\ll H^{n-(k-1)/2}.
$$

 Ω

Counting reducible polynomials

Theorem (Dubickas and S., 2024)

For any integers $n > 3$ and k with $1 \leq k \leq n$, we have

 $R_n(k, H) \ll H^{n-(k+1)/2},$

and also in all those cases, except when $k = n$ is even,

 $R_n(k, H) \gg H^{e(n,k)}$.

In the case when $k = n$ is even, we have $R_n(n, H) \gg H^{\frac{n}{8} + \frac{2}{n} - \frac{1}{4}}$.

$$
e(n,k) = \begin{cases} \frac{n+1}{2} - k + \frac{5k^2 - 4k + 7}{8n} & \text{if } k \text{ is odd,} \\ \frac{n+1}{2} - k + \frac{5k^2 - 2k + 16}{8n} & \text{if } k \text{ is even} \end{cases}
$$

Min Sha (SCNU) Counting integer polynomials

• Assume first that the integer k satisfying $2 \leq k \leq n$ is even. Set $\ell = k/2$. Fix an integer m in the range

$$
\frac{H^{2/n}}{5}\leq m\leq \frac{H^{2/n}}{4}.
$$

Consider a monic integer irreducible polynomial

$$
(x-\beta_1)\cdots(x-\beta_\ell)
$$

of degree ℓ with all ℓ real roots in the interval $[-2\sqrt{2}]$ $\overline{m}, 2$ √ m].

• How many are these polynomials?

 \mathcal{A} and \mathcal{A} . In the set of \mathbb{R}^n is

Theorem (Akiyama and Pethő, 2014)

Let $s \geq 0$ and $n \geq 1$ be two integers satisfying $s \leq n/2$. Then, there are constants $v_1(s, n) > 0$ and $v_2(s, n) > 0$ such that for each $B > 0$ the number $J_n(s, B)$ of monic irreducible integer polynomials f of degree n with $r(f) < B$ and with exactly 2s non-real roots satisfies

$$
\left|J_n(s,B)-v_1(s,n)B^{n(n+1)/2}\right|\leq v_2(s,n)B^{n(n+1)/2-1}
$$

• By the above theorem, there are $\gg m^{\ell(\ell+1)/4}$ of such polynomials $(x - \beta_1) \cdots (x - \beta_\ell)$.

.

へのへ

メロメ メ御 メメ ヨメ メヨメー

For each of the above polynomials with all roots in the open i or each or the
interval $(-2\sqrt{2})$ $\overline{m}, 2$ √ $\overline{m})$, we set

$$
g(x)=(x^2-\beta_1x+m)\cdots(x^2-\beta_\ell x+m)\in\mathbb{Z}[x].
$$

From $\beta_i^2 - 4m < 0$, we see that each such polynomial g has all its $2\ell = k$ roots of modulus \sqrt{m} .

 \bullet Consider monic polynomials f of the form

$$
f(x)=g(x)h(x),
$$

where g is as the above and $h \in \mathbb{Z}[x]$ is a monic polynomial of degree $n-k$ that has its all $n-k$ roots of modulus $\leq \sqrt{m}/2.$

- $g(x)$ is irreducible.
- If $k < n$, such polynomials f contribute to $R_n(k, H)$.
- If $k = n$, then such polynomials f contribute to $I_n(n, H)$.
- If $k = n \geq 4$, set $\ell = (n-2)/2$, and then apply similar arguments, and obtain a lower bound for $R_n(n, H)$.

医骨盆 医骨盆

• Now, k is odd. Set $\ell = (k-1)/2$. This time we argue with integer m in the range

$$
\frac{H^{1/n}}{3}\leq m\leq \frac{H^{1/n}}{2}.
$$

Consider a monic integer irreducible polynomial

$$
(x-\beta_1)\cdots(x-\beta_\ell)
$$

of degree ℓ with all ℓ real roots in the interval $(-2m, 2m)$.

K 御 ▶ K 唐 ▶ K 唐 ▶

Counting reducible polynomials: k is odd

Set

$$
g(x) = (x - m)(x2 - \beta_1x + m2) \dots (x2 - \beta_\ell x + m2) \in \mathbb{Z}[x].
$$

By $\beta_i^2 - 4m^2 < 0$, $i = 1, \ldots, \ell$, we see that the polynomial g has all its $k = 2\ell + 1$ roots of modulus m, with m being the only real root among them. Note that if $k = 1$, we have $g(x) = x - m$.

 \bullet Consider monic polynomials f of the form

$$
f(x)=g(x)h(x),
$$

where g is as the above and $h \in \mathbb{Z}[x]$ is a monic polynomial of degree $n - k$ that has its all $n - k$ roots of modulus $\leq m/2$.

御 ▶ イヨ ▶ イヨ ▶ │ ヨ

 Ω

- $g(x)$ is reducible, $g(x)/(x m)$ is irreducible.
- Such polynomials f contribute to $R_n(k, H)$. Counting these polynomals gives a lower bound for $R_n(k, H)$.

メミメ メミメ

 $2Q$

Thank you for your attention!

Min Sha (SCNU) [Counting integer polynomials](#page-0-0)

メロメメ 御 メメ ミメメ ミメ

È

 299