Properties of sum-OF-DIGits Functions

Štefan Porubský
Institute of Computer Science, Czech Academy of Sciences, Prague
Online Number Theory Seminar Debrecen, June 16, 2023

BASIC DEFINITION

Given an integer $q \geq 2$, every non-negative integer can be expressed in the form of the q-ary digital expansion

$$
n=\sum_{j \geq 0} \varepsilon_{j} q^{j}
$$

where $0 \leq \varepsilon_{j}=\varepsilon_{q, j}(n)<q$ for every index $j \geq 0$.
The q-ary sum-of-digits function is defined by

$$
s_{q}(n)=\sum_{j \geq 0} \varepsilon_{j} .
$$

The sum is actually finite, where the q-ary digits ε_{j} vanish for $j>\ell=\ell(n)=\left\lfloor\log _{q} n\right\rfloor$.

If we rewrite the values of $s_{q}(n)$ in the same base q we obtain a bit unusual table

q	$s_{q}(n)$ for $n=100,101, \ldots, 115$
2	$11_{2}, 100_{2}, 100_{2}, 101_{2}, 11_{2}, 100_{2}, 100_{2}, 101_{2}, 100_{2}, 101_{2}, 101_{2}, 110_{2}, 11_{2}, 100_{2}, 100_{2}, 101_{2}$
3	$11_{1}, 12_{3}, 11_{3}, 12_{3}, 20_{3}, 12_{3}, 20_{3}, 21_{3}, 2_{3}, 10_{3}, 11_{3}, 10_{3}, 11_{3}, 12_{3}, 11_{3}, 12_{3}$
4	$10_{4}, 11_{4}, 12_{4}, 13_{4}, 11_{4}, 12_{4}, 13_{4}, 20_{4}, 12_{4}, 13_{4}, 20_{4}, 21_{4}, 10_{4}, 11_{4}, 12_{4}, 13_{4}$
5	$4_{5}, 10_{5}, 11_{5}, 12_{5}, 13_{5}, 10_{5}, 11_{5}, 12_{5}, 13_{5}, 14_{5}, 11_{5}, 12_{5}, 13_{5}, 14_{5}, 20_{5}, 12_{5}$
6	$14_{6}, 15_{6}, 11_{6}, 12_{6}, 13_{6}, 14_{6}, 15_{6}, 20_{6}, 3_{6}, 4_{6}, 5_{6}, 10_{6}, 11_{6}, 12_{6}, 4_{6}, 5_{6}$
7	$4_{7}, 5_{7}, 6_{7}, 10_{7}, 11_{7}, 3_{7}, 4_{7}, 5_{7}, 6_{7}, 10_{7}, 11_{7}, 12_{7}, 4_{7}, 5_{7}, 6_{7}, 10_{7}$
8	$11_{8}, 12_{8}, 13_{8}, 14_{8}, 6_{8}, 7_{8}, 10_{8}, 11_{8}, 12_{8}, 13_{8}, 14_{8}, 15_{8}, 7_{8}, 10_{8}, 11_{8}, 12_{8}$
9	$44_{9}, 59,6_{9}, 7_{9}, 89,10_{9}, 11_{9}, 12_{9}, 49,5_{9}, 6_{9}, 7_{9}, 8_{9}, 10_{9}, 11_{9}, 12_{9}$
10	$1,2,3,4,5,6,7,8,9,10,2,3,4,5,6,7$
11	$a_{11}, 10_{11}, 11_{11}, 12_{11}, 13_{11}, 14_{11}, 15_{11}, 16_{11}, 17_{11}, 18_{11}, a_{11}, 10_{11}, 11_{11}, 12_{11}, 13_{11}, 14_{11}$
16	$a_{16}, b_{16}, c_{16}, d_{16}, e_{16}, f_{16}, 10_{16}, 11_{16}, 12_{16}, 13_{16}, 14_{16}, 15_{16}, 7_{16}, 8_{16}, 9_{16}, a_{16}$

Serious study of properties of the sum-of-digits functions arose in connection with divisibility problems involving factorials and binomial coefficients. They also appear in other areas of mathematics, as for instance, in:

- algebraic topology (e.g. HIRSCH)
- algebraic number theory (e.g. Ore)
- computational algorithms
- combinatorics

It is probably their applicability the reason that many of the results have been proven again and again an unusual number of times.

$s_{q}(n)$ CONNECTIONS

Sum-of-digits sequences are connected to various aspects of mathematics (especially discrete one and combinatorics):

- to check the arithmetic operations of early computers
- quick divisibility tests
- Hamming weight
- Edgeworth ${ }^{1}$ (1888) suggested using sums of 50 digits taken from mathematical tables of logarithms as a form of random number generation
- recreational mathematics
- sum-product number in a given number base q is a natural number that is equal to the product of the sum of its digits and the product of its digits (in base 10 only $0,1,135,144$ OEIS A038369)
- the digital root (also repeated digital sum) of a positive integer given radix q is the (single digit) value obtained by an iterative process of summing its q-digits. Digital roots are used in Western numerology. For instance, the digital root (base 10) of every even perfect number >6 is 1 .

[^0]
Niven numbers

The 5th Annual Mathematics Conference at the Department of Mathematics of Miami University in 1977 was devoted to the number theory and the invited speaker was Ivan M. Niven. He mentioned a question which appeared in the children's pages of a certain newspaper: Find a whole number which is twice the sum of its digits. He suggested

- for professional mathematicians to find an asymptotic formula for the number of integers $n<N$ such that $s_{q}(n)$ divides n.

The name Niven numbers first appeared in an article by Kennedy et al. three years after his lecture.

Niven numbers are also called harshad numbers, a Sanskrit name (meaning giving joy in Sanskrit harsha, joy) originally defined by Indian recreational mathematician Dattatreya Ramchandra Kaprekar (1905-1986).

Small Niven numbers

q		
2	$4,6,8,10,12,16,18,20,21,24,32,34,36,40,42,48$	A 049445
3	$4,6,8,9,10,12,15,16,18,20,21,24,25,27,28,30,32$	A 064150
4	$6,8,9,12,16,18,20,21,24,28,30,32,33,35,36,40,42$	A 064438
5	$6,8,10,12,15,16,18,20,24,25,26,27,28,30,32,36$	A 064481
6	$10,12,15,18,20,24,25,30,36,40,42,44,45,48,50,55$	
7	$8,9,12,14,15,16,18,21,24,27,28,30,32,35,36,40,42$	
8	$14,16,21,24,28,32,35,40,42,48,49,56,64,66,70,72$	A 245802
9	$10,12,16,18,20,24,27,28,30,32,36,40,45,48,50,54$	
10	$12,18,20,21,24,27,30,36,40,42,45,48,50,54,60,63$	A 005349
11	$12,15,20,22,24,25,30,33,35,36,40,44,45,48,50,55$	
12	$22,24,33,36,44,48,55,60,66,72,77,84,88,96,99,108$	

Only 1, 2, 4, 6 are Niven numbers in every integer base $q>1$. The number 12 is a Niven number in all bases except octal.

Density of Niven numbers

Let $N_{q}(x)$ denote the number of Niven numbers $\leq x$ in base q. Kennedy et al. proved that $\lim _{x \rightarrow \infty} N_{10}(x) / x=0$, and that (1984) given any $t>0$ we have $N_{10}(x) \geq \log ^{t} x$.
Vardi proved that, given any $\varepsilon>0$ we have $N_{10}(x) \ll x /(\log x)^{1 / 2-\varepsilon}$ and that $N_{10}(x)>\alpha x /(\log x)^{11 / 2}$ for some $\alpha>0$ and infinitely many x.

De Koninck and Doyon proved that, given any fixed $\varepsilon>0$ we have

$$
x^{1-\varepsilon} \ll N_{10}(x) \ll \frac{x \log \log x}{\log x}
$$

and conjectured that even $N_{10}(x) \sim \frac{c x}{\log x}$ with $c=\frac{14}{27} \log 10 \doteq 1.1939$. The conjecture has been verified by De Koninck, Doyon and Kátai in the form

$$
N_{q}(x)=\left(\eta_{q}+o(1)\right) \frac{x}{\log x} \quad \text { with } \eta_{q}=\frac{2 \log q}{(q-1)^{2}} \sum_{j=1}^{q-1}(j, q-1) .
$$

Kennedy, R.E.: Digital sums, Niven numbers, and natural density, Crux Mathematicorum 8 (1982), 5, 129-133
Kennedy, R.E., Cooper, C.N.: On the natural density of the Niven numbers, The College Mathematics Journal 15 (1984), 4, 309-312
Cooper, C.N., Kennedy, R.E.: Chebyshev's inequality and natural density, Am. Math. Mon. 96 (1989), 2, 118-124
De Koninck, J.-M., Doyon, N.: On the number of Niven numbers up to x, Fibonacci Q. 41 (2003), 5, 431-440
De Koninck, J.-M., and Doyon, N., Kátai, I.: On the counting function for the Niven numbers, Acta Arith. 106 (2003), 3, 265-275
Vardi, I.: Computational recreations in Mathematica, Addison Wesley Publ. Comp., Redwood City, CA 1991 (pp. 28-30).

Another peculiar number connected with
 THE SUM-OF-DIGITS FUNCTIONS

The Canadian-American mathematician Albert "Tommy" Wilansky (1921-2017) of Lehigh University noticed that his brother-in-law Harold Smith, who is not a mathematician, observed that his phone number 493-7775 has the following remarkable property: sum of its digits is equal to the sum of the digits of primes in its prime factorization in the same base,

Another peculiar number connected with

THE SUM-OF-DIGITS FUNCTIONS

The Canadian-American mathematician Albert "Tommy" Wilansky (1921-2017) of Lehigh University noticed that his brother-in-law Harold Smith, who is not a mathematician, observed that his phone number 493-7775 has the following remarkable property: sum of its digits is equal to the sum of the digits of primes in its prime factorization in the same base, and called such numbers Smith numbers ($4937775=3 \cdot 5 \cdot 5 \cdot 65837$).

Another peculiar number connected with

THE SUM-OF-DIGITS FUNCTIONS

The Canadian-American mathematician Albert "Tommy" Wilansky (1921-2017) of Lehigh University noticed that his brother-in-law Harold Smith, who is not a mathematician, observed that his phone number 493-7775 has the following remarkable property: sum of its digits is equal to the sum of the digits of primes in its prime factorization in the same base, and called such numbers Smith numbers ($4937775=3 \cdot 5 \cdot 5 \cdot 65837$).

Smith numbers in base 10: 1, 6, 49, 376, $3294,29928,278411,2632758$, $25154060,241882509, \ldots$ (sequence A104170 in the OEIS).

Smith numbers can be constructed from factored repunits (cf. Hoffman)
McDaniel: There are infinitely many k-Smith numbers n, that is numbers satifying $s_{10}(n)=k \sum_{p^{\alpha} \| n} \alpha s_{10}(p)$.

Gardner, M.: Penrose tiles to trapdoor ciphers ... and the return of Dr. Matrix, Rev. ed., The Mathematical Association of America, Washington, DC 1997 (pp. 299-301).
Hoffman, P.: The man who loved only numbers: the story of Paul Erdős and the search for mathematical truth, Hyperion, New York 1998 (pp. 205-206).
McDaniel, W.L.: The existence of infinitely many k-Smith numbers, Fibonacci Q. 25 (1987), 1, 76-80
Wilansky, A.: Smith numbers, The Two-Year College Mathematics Journal 13 (1982), 21

Segments of Smith numbers

Two consecutive Smith numbers (for example, 728 and 729, or 2964 and 2965) are called Smith brothers. It is not known how many Smith brothers there are.

The starting elements of the smallest Smith n-tuple (meaning n consecutive Smith numbers) in base 10 for $n=1,2, \ldots$ are: $4,728,73615,4463535$, $15966114,2050918644,164736913905, \ldots$ (sequence A059754 in the OEIS).

Other types of Smith Numbers

Fibonacci numbers, which are also Smith numbers

$$
\begin{aligned}
F_{31} & =1346269=557 \cdot 2417 \\
F_{77} & =5527939700884757=13 \cdot 89 \cdot 988681 \cdot 4832521 \\
F_{231} & =844617150046923109759866426342507997914076076194 \\
& =2 \cdot 13 \cdot 89 \cdot 421 \cdot 19801 \cdot 988681 \cdot 4832521 \cdot 9164259601748159235188401
\end{aligned}
$$

Smith numbers, which are perfect squares, can be termed as Smith Square Numbers (A098839 OEIS).

The lowest 3×3 Smith magic Square $(C=822)$

94	382	346
526	274	22
202	166	454

Gardner, M.: Penrose tiles to trapdoor ciphers ... and the return of Dr. Matrix, Rev. ed., The Mathematical Association of America, Washington, DC 1997 (pp. 299-301).

Lucky Tickets

Problem: Every bus ticket has an eight digits identification number. A ticket is called a lucky one if the sum of the first three its digits equals with sum of its right triple of digits. For instance, tickets with numbers 123006 or 777993 , etc. are lucky ones. The question is: how many lucky tickets does exist?
a_{n} number of triples with sum n, a_{n}^{2} number of happy tickets with "sum" n
$A_{1}(s)=1+s+\cdots+s^{9}, \quad A_{3}(s)=\left(A_{1}(s)\right)^{3}$
solution gives the absolute term of $P(s)=A_{3}(s) A_{3}\left(s^{-1}\right)$
CAUCHY theorem implies \# of happy tickets $=\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2}\left(\frac{\sin 10 \phi}{\sin \phi}\right)^{6} \mathrm{~d} \phi$

Ландо (Lando), C.K. (S.K.): Лекции о производящих функциях. (Lectures on generating functions), Издание третье, исправленное (Third corrected edition), Издательство Московского центра непрерывного математического образования, Москва (Moscow) 2007

The generating functions

For $q \geq 2$ we have

$$
\begin{aligned}
\sum_{n \geq 0} s_{q}(n) z^{n} & =\frac{1}{1-z} \sum_{m \geq 0} \frac{z^{q^{m}}+2 z^{2 q^{m}}+\cdots+(q-1) z^{(q-1) q^{m}}}{1+z^{q^{m}}+z^{2 q^{m}}+\cdots+z^{(q-1) q^{m}}} \\
& =\frac{1}{1-z} \sum_{m \geq 0} \frac{z^{q^{m}}-q z^{q^{m+1}}+(q-1) z^{(q+1) q^{m}}}{\left(1-z^{q^{m}}\right)\left(1-z^{q^{m-1}}\right)}
\end{aligned}
$$

The generating functions

For $q \geq 2$ we have

$$
\begin{aligned}
\sum_{n \geq 0} s_{q}(n) z^{n} & =\frac{1}{1-z} \sum_{m \geq 0} \frac{z^{q^{m}}+2 z^{2 q^{m}}+\cdots+(q-1) z^{(q-1) q^{m}}}{1+z^{q^{m}}+z^{2 q^{m}}+\cdots+z^{(q-1) q^{m}}} \\
& =\frac{1}{1-z} \sum_{m \geq 0} \frac{z^{q^{m}}-q z^{q^{m+1}}+(q-1) z^{(q+1) q^{m}}}{\left(1-z^{q^{m}}\right)\left(1-z^{q^{m-1}}\right)}
\end{aligned}
$$

The generating function for the sum-of-digits function of n written in the factorial (Cantor integer) base is

$$
\frac{1}{1-z} \sum_{m \geq 0} \frac{z^{m!}+2 z^{m!}+\cdots+m z^{m \cdot m!}}{1+z^{m!}+z^{2 m!}+\cdots+z^{m \cdot m!}}
$$

The Generating functions

For $q \geq 2$ we have

$$
\begin{aligned}
\sum_{n \geq 0} s_{q}(n) z^{n} & =\frac{1}{1-z} \sum_{m \geq 0} \frac{z^{q^{m}}+2 z^{2 q^{m}}+\cdots+(q-1) z^{(q-1) q^{m}}}{1+z^{q^{m}}+z^{2 q^{m}}+\cdots+z^{(q-1) q^{m}}} \\
& =\frac{1}{1-z} \sum_{m \geq 0} \frac{z^{q^{m}}-q z^{q^{m+1}}+(q-1) z^{(q+1) q^{m}}}{\left(1-z^{q^{m}}\right)\left(1-z^{q^{m-1}}\right)}
\end{aligned}
$$

The generating function for the sum-of-digits function of n written in the factorial (Cantor integer) base is

$$
\frac{1}{1-z} \sum_{m \geq 0} \frac{z^{m!}+2 z^{m!}+\cdots+m z^{m \cdot m!}}{1+z^{m!}+z^{2 m!}+\cdots+z^{m \cdot m!}}
$$

The generating function for the sum-of-digits function of n written in the generalized factorial multi-radix base $k_{0}=1 \times k_{1} \times k_{2} \times \ldots$ with $\bar{k}_{j}=k_{0} k_{1} \ldots k_{j-1}$ is

$$
\frac{1}{1-z} \sum_{m \geq 0} \frac{z^{\bar{k}_{m}}+2 z^{\bar{k}_{m}}+\cdots+\left(k_{m}-1\right) z^{\left(k_{m}-1\right) \bar{k}_{m}}}{z^{\bar{k}_{m}}+z^{2 \bar{k}_{m}}+\cdots+z^{\left(k_{m}-1\right) \bar{k}_{m}}}
$$

DIgit sums And q-SERIES

If $B \geq 2$ (change of base notation), $z \in \mathbb{C}$ and $|q|<1$ then

$$
\begin{aligned}
\sum_{n=0}^{\infty} q^{n} z^{s_{B}(n)} & =\prod_{i=0}^{\infty} \frac{1-z^{B} q^{B^{i+1}}}{1-z q^{B^{i}}} \\
& =\frac{1}{1-z q}+\frac{z-z^{B}}{1-z^{B} q} \sum_{n=1}^{\infty} q^{B^{n}} \frac{\prod_{j=0}^{n-1}\left(1-z^{B} q^{B_{j}}\right)}{\prod_{j=0}^{\infty}\left(1-z q^{B^{j}}\right)}
\end{aligned}
$$

q-series generating function for $s_{B}(n)$ with $B \geq 2$ and $|q|<1$

$$
\sum_{n=1}^{\infty} s_{B}(n) q^{n}=\frac{q}{(1-q)^{2}}-\frac{B-1}{1-q} \sum_{i=1}^{\infty} \frac{q^{B^{i}}}{1-q^{B^{i}}}
$$

Lambert series generating function for $s_{B}(n)$ is the q-series generating function for $S_{B}(n)=\sum_{d \mid n} S_{B}(d)$

$$
\sum_{n=1}^{\infty} \frac{s_{B}(n) q^{n}}{1-q^{n}}=\sum_{n=1}^{\infty} S_{B}(n) q^{n}
$$

A Dirichlet convolution relation between Dirichlet series generating functions for $s_{B}(n)$ and $S_{B}(n)$

$$
\zeta(s) \sum_{n=1}^{\infty} \frac{s_{B}(n)}{n^{s}}=\sum_{n=1}^{\infty} \frac{S_{B}(n)}{n^{s}}
$$

(for the convergence of the series note that $1 \leq s_{B}(n) \leq s_{B^{\prime}}(n)<n$ for $B<B^{\prime}$)

Happy numbers

A happy number is a number defined by the following process:

- Starting with any positive integer, replace the number by the sum of the squares of its (decimal) digits.
- Repeat the process until the number equals 1 (where it will stay), or it loops endlessly in a cycle which does not include 1.
- Those numbers for which this process ends in 1 are happy.

It is known [Honsberger, Porges] that eventually all the terms in the sequence are 1 or eventually the sequence becomes periodic with the cycle $4 \rightarrow 16 \rightarrow 37 \rightarrow 58 \rightarrow 89 \rightarrow 145 \rightarrow 42 \rightarrow 20 \rightarrow 4$.
If $S_{e, q}\left(\sum_{j \geq 0} a_{j} q^{j}\right)=\sum_{j \geq 0} a_{j}^{e}$ and $S_{e, q}^{k}(n)=S_{e, q}\left(S_{e, q}^{k-1}(n)\right)=1$ for some $k \geq 0$ we say n is e-power q-happy number (Treviño et al. for fractional-base systems)

[^1]
What is A 'SERIOUS' PROBLEM?

HARDY: "A 'serious' theorem is a theorem which contains 'significant' ideas, and I suppose that I ought to try to analyse a little more closely the qualities which make a mathematical idea significant.

There are just four number (after 1) which are the sums of the cubes of their digits, vz.

$$
\begin{array}{ll}
153=1^{3}+5^{3}+3^{3} & 370=3^{3}+7^{3}+0^{3} \\
371=3^{3}+7^{3}+1^{3} & 407=4^{3}+0^{3}+7^{3} .
\end{array}
$$

These are odd facts, very suitable for puzzle columns and likely to amuse amateurs, but there is nothing in them which appeals much to a mathematician. The proofs are neither difficult nor interesting - merely a little tiresome. The theorems are not serious; and it is plain that one reason (though perhaps not the most important) is the extreme speciality of both the enunciations and the proofs, which are not capable of any significant generalization...."

What is A 'SERIOUS' PROBLEM?

Hasse \& Prichett: "This intriguing problem ...
Let $T(a)$ be a function defined on the rational integers which maps each positive rational integer a to the sum of the squares of its digits $s_{2, q}$. Proved that successive applications of T, commencing with any positive integer a, will always culminate in one of two possible cycles of integers ...

To discover the distinctive number-theoretic features of such problem it is far better to pose the question for all possible bases $q \geq 2$ and not to restrict consideration only to the special case $g=10 \ldots$ "

Hasse \& Prichett studied the fixed points of $s_{2, q}$ for any fixed $q \geq 2$ and developed an algorithm for finding all the fixed points of $s_{2, q}$ based on the factorisation $q^{2}+1$ over the ring $\mathbb{Q}[i]$. Their conjectural list $\{6,10,16,20,26,40\}$ of q when $s_{2, q}$ has exactly two cycles is not complete, and the finiteness of the set is open.

Let P be a positive integer-valued function on the positive integers \mathbb{N} and let

$$
F\left(\sum_{j \geq 0} a_{i} q^{i}\right)=\sum_{j \geq 0} P\left(a_{j}\right),
$$

where the a_{j} are the digits of n expressed in base $q \geq 2$. For sufficiently large n we have $F(n)<n$. StEWART gives an efficient algorithm for finding the smallest C such that $F(n)<n$ for $n>C$. He studies growth properties of $F(n)$ with special emphasis on the case $P(n)=n^{t}$.

Zentralblatt 0098.26202: In the case $P(n)=n^{t}$ many ingenious methods are developed to find C.

If $P(a)$ is always a non-negative integer he investigates the orbit- and cycle-numbers resulting from the iteration of $F(n)$ and the finiteness of these numbers is assured.

Already Ancient Greeks

Saint Hippolytus of Rome (Mount Athos)

A form of sums of digits known to ancient Greek mathematicians was described by the Roman bishop Hippolytus (170-235) in The Refutation of all Heresies, and more briefly by the Syrian Neoplatonist philosopher Iamblichus (c.245-c.325) in his commentary on the Introduction to Arithmetic of Nicomachus of Gerasa.

Iamblichus Of Chalcis

Refutation catalogues both pagan beliefs and 33 gnostic Christian systems deemed heretical by Hippolytus.

Hippolytus of Rome: The Refutation of all Heresies, in: Ante-Nicene Fathers, Vol. V (Roberts. A., Donaldson, J. Eds.), Scribner's Sons, New York 1919 (Book IV, Ch. 14, p. 30).
Heath, Th.: A History of Greek Mathematics, Vol. I: From Thales to Euclid, Oxford University Press, Oxford 1921 (p. 113-117).

Greek sums of digits via roots of numbers

There were two main systems of numerical notation in use in classical times in ancient Greece. Both were a decimal system.

- Attic numerals composed another system that came into use perhaps in the 7 th century BCE. They were acrophonic, derived (after the initial one) from the first letters of the names of the numbers represented.
- The second main system, used for all kinds of numerals, is that with which we are familiar, namely the alphabetic system.

Greek numerals		
$\mathcal{L}=1$	\| $=10$	$\mathrm{P}=100$
$B=2$	$K=20$	$C=200$
$\Gamma=3$	人 $=30$	$T=300$
$\Delta=4$	$\mathrm{M}=40$	$\mathcal{Y}=400$
$E=5$	$\mathrm{N}=50$	$\phi=500$
C,F=6	之 $=60$	$\chi=600$
Z = 7	$\bigcirc=70$	$\psi=700$
$\mathrm{H}=8$	$\Pi=80$	$\omega=800$
$\Theta=9$	Q =90	$\lambda=900$

10 the unit of the second course: the root od base of 20 are two monads (pythmen)
100 the unit of the third course: the root of 600 are six monads
1000 the unit of the fouth course: the root of 700 are 7 monads

Sum of digits $=$ sum of roots (monads)

Pythagorean calculus

Pythgoreans considered 10 as a unit of the second course, 100 as a unit of the third course, 1000 as a unit of fourth course, etc.

A IAmblichos proposition:

- Take the sum of three consecutive integers the greatest of which is divisible by 3 , e.g. $10,11,12$
- This sum consists of certain number of units, certain number of tens, certain number of hundreds, etc.In our case 3 units and 3 tens, i.e. 33
- Apply the procedure to the result, and so on.
- Iamblichos says: the final result will be number 6 .

In Refutation we can find a description of a method of foretelling future by means of a calculation with numbers based on the notion of the monads (pythmen). It actually reduces to what we know as gematria, a practice of assigning a numerical value to a name, word or phrase according to an alphanumerical cipher used for notation of numbers. In decimal systems it actually reduces to the rule known as 'casting out nines'.

Casting out nines - the Hindu Check

Important identity: $s_{q}(n) \equiv n(\bmod q-1), q \geq 2$
When the decimal system was first employed (5th to 9th century CE), mathematicians recognized the fascinating properties of 9 and developed a time-honored rule of casting out nines. Casting out nines is an elementary check of a multiplication which makes use of the congruence $10^{n} \equiv 1(\bmod 9)$.

Casting out nines was transmitted to Europe by the Arabs, but was probably developed in the ancient India. The earliest known surviving work which describes how casting out nines can be used to check the results of arithmetical computations is the Mahâsiddhânta, written around 950 by the Indian mathematician and astronomer Aryabhata II. (c. 920 - c. 1000).

Leonardo of Pisa (Fibonacci) introduced this rule to Medieval Europe through his book Liber abaci (1202) as a check for arithmetic operations.

de Moivre and the sum-of-Digits

De Moivre's problem: In an urn there are g numbers $0,1,2, \ldots, g-1$. You carry out n draws one after the other, noting the number drawn each time, putting it back into the urn and mixing the contents of the urn. What is the probability that the sum of the digits drawn equals m ?

RohrBach: If $A_{n, m}^{(q)}=\operatorname{card}\left\{n: 0 \leq n \leq q^{n}, s_{q}(n)=m\right\}$ then an induction proof yields $A_{n, m}^{(q)}=\sum_{\nu=0}^{\infty}(-1)^{\nu}\binom{n}{\nu}\binom{m-q \nu+n-1}{n-1}$. The sum terminates when $m-q \nu<0$.

de Moivre and the sum-of-Digits

De Moivre's problem: In an urn there are g numbers $0,1,2, \ldots, g-1$. You carry out n draws one after the other, noting the number drawn each time, putting it back into the urn and mixing the contents of the urn. What is the probability that the sum of the digits drawn equals m ?

Rohrbach: If $A_{n, m}^{(q)}=\operatorname{card}\left\{n: 0 \leq n \leq q^{n}, s_{q}(n)=m\right\}$ then an induction proof yields $A_{n, m}^{(q)}=\sum_{\nu=0}^{\infty}(-1)^{\nu}\binom{n}{\nu}\binom{m-q \nu+n-1}{n-1}$. The sum terminates when $m-q \nu<0$.

CHEO \& YIEN: $\sum_{\substack{s_{q}(n)=m \\ n \leq x}} 1 \sim \frac{1}{m!} \cdot\left(\frac{\log x}{\log q}\right)^{m}$
A saddle-point estimate for $\operatorname{card}\left\{n \leq N: s_{q}(n)=m\right\}$ is given by Mauduit \& SÁRKÖZY

Cheo, P-H., Yien, S-Ch.: A problem on the k-adic representation of positive integers, (Chinese), Acta Math. Sin. 5 (1955), 4, 433-438 Mauduit, Ch., SÁrközy, A.: On the arithmetic structure of the integers whose sum of digits is fixed, Acta Arith. 81 (1997), 2, 145-73

Some fascinating identities ${ }_{1}$

Show that the sequence of increasingly complex fractions approaches a limit, and find that limit

Woods, D.R.: Elementary problem E2692, Amer. Mat. Monthly 48 (1978), 1, 48
Woods, D.R., David Robbins, D., Gustaf Gripenberg, G.: Solution of E2692, Amer. Mat. Monthly 86 (1979), 5, 394-395

Some fascinating identities $_{1}$

Show that the sequence of increasingly complex fractions approaches a limit, and find that limit

Some fascinating identities $_{1}$

If $k \geq 2$ is an integer and $1 \leq j \leq k-1$ then

$$
\prod_{i=0}^{\infty} \frac{1+c_{i}}{1+d_{i}}=k^{-1 / k}
$$

The c_{i} and d_{i} are such that $k i \leq c_{i}, d_{i}<k(i+1), s_{k}\left(c_{i}\right) \equiv j-1(\bmod k)$ and $\left.s_{k}\left(d_{i}\right) \equiv j(\bmod k)\right)$. For example, if $k=2$ and $j=1$ we obtain the following infinite product:

$$
\frac{1}{2} \cdot \frac{4}{3} \cdot \frac{6}{5} \cdot \frac{7}{8} \cdots=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}
$$

Some fascinating identities $_{1}$

If k is an even positive integer and c_{i} and d_{i} are such that $2 i \leq c_{i}, d_{i}<2(i+1)$, $s_{k}\left(c_{i}\right) \equiv 0(\bmod 2)$ and $\left.s_{k}\left(d_{i}\right) \equiv 1(\bmod 2)\right)$, then

$$
\prod_{i=0}^{\infty} \frac{1+c_{i}}{1+d_{i}}=\frac{\sqrt{k}}{k}
$$

For example, if $k=6$ we obtain the following infinite product:

$$
\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \frac{8}{7} \cdots=\frac{\sqrt{6}}{6}
$$

How independent are s_{q} 'S?

Remember the Hindu check $s_{q}(n) \equiv n(\bmod q-1), q \geq 2$.
If we understand the digits as random variables $x_{1}, x_{2}, \ldots, x_{n}$ which take independently the values $0,1, \ldots, q-1$, then it follows from the main principle of probability theory that the distribution of the new random variables

$$
p=x_{1}+x_{2}+\cdots+x_{n},
$$

as n increases, tends to a normal (Gaußian) distribution with the mean $(g-1) n / 2$ and variance $\left(g^{2}-1\right) n / 12$ and the probability function
$W_{n, m}^{(q)}=\frac{\exp \left(-\frac{6\left[m-\frac{1}{2}(q-1)\right]^{2}}{\left(q^{2}-1\right) n}\right)}{\sqrt{\frac{1}{6}\left(q^{2}-1\right) n}}$
The proof uses the generating function technique introduced by De Moivre employing the generating function $\left(1+x+\cdots+x^{q-1}\right)^{n}=\left(\frac{1-x^{q}}{1-x}\right)^{n}$.

How independent are s_{q} 'S?

S.ULAM has asked whether the number of $n<x$ for which $s_{10}(n) \equiv n \equiv 0$ $(\bmod 13)$ is asymptotically $x / 13^{2}$?
$N_{\mathrm{a}, \mathrm{c}, \mathrm{p}}(x)=\operatorname{card}\left\{n<x: n \equiv a(\bmod p)\right.$ and $\left.s_{q}(n) \equiv c(\bmod p)\right\}$
Let $a, c \in \mathbb{N}_{0}$ and p be a prime such that $p \nmid(q-1)$. Then

$$
\lim _{x \rightarrow \infty} \frac{N_{a, c, p}(x)}{x}=\frac{1}{p^{2}} .
$$

Fine remarks (without proof) that for distinct primes p, q, the residues of $n(\bmod p)$ and $s_{q}(n)(\bmod q)$ are asymptotically independent.

How independent are s_{q} 'S?

$V_{k}(x)=\operatorname{card}\left\{n: 0 \leq n<x, s_{q}(n)=k\right\}$
$V_{k}(x ; m, h)=\operatorname{card}\left\{n: 0 \leq n<x, s_{q}(n)=k, n \equiv h(\bmod m)\right\}$
There exist positive numbers $\ell_{1}, c_{0}, c_{1}, c_{2}$, all depending on q alone, such that if $x>1$ is a real number, m is a positive integer with $(m, q)=1, k, h, \ell$ are integers such that $\ell>\ell_{1}$, and $m<\exp \left(c_{0} \sqrt{\ell}\right)$, then, writing $d=(m, q-1)$, we have

$$
\left|V_{k}(x ; m, h)-\frac{d}{m} V_{k}(x)\right|<\frac{c_{1}}{m} V_{k}(x) \exp \left(-c_{2} \ell / \log m\right)
$$

for $k \equiv h(\bmod d)$ and

$$
V_{k}(x ; m, h)=0
$$

if $k \not \equiv h(\bmod d)$.

Some fascinating identities 2

SHALLIT: $\sum_{n=1}^{\infty} \frac{s_{q}(n)}{n(n+1)}=\frac{q}{q-1} \log q$,

$$
\sum_{n \geq 1} \frac{s_{2}(n)}{2 n(2 n+1)(2 n+2)}=-\frac{1}{2} \log \pi+\frac{\gamma}{2}+\frac{1}{2} \log 2
$$

Allouche \& Shallit $(q=2)$: If $\Re(s)>0$ then

$$
\sum_{n=1}^{\infty} s_{q}(n)\left(\frac{1}{n^{s}}-\frac{1}{(n+1)^{s}}\right)=\frac{q^{s}-q}{q^{s}-1} \zeta(s)
$$

If $a_{w, q}(n)$ denote the number of (possibly overlapping) occurrences of the word w in the q-ary expansion of n then
$\sum_{n=1}^{\infty} a_{w, q}(n)\left(\frac{1}{n^{s}}-\frac{1}{(n+1)^{s}}\right)$ is expressible in terms of Hurwitz zeta-functions

A variety of generalizations in:

ERDŐS - Kac BEHAVIOUR

If $\omega(n)$ denotes the number of prime divisors of n then (Erdős \& KAC)

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{card}\{n \leq x: \omega(n)<\log \log n+\lambda \sqrt{2 \log \log n}\}=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp \left(-u^{2}\right) \mathrm{d} u
$$

with λ an arbitrary real number.
Let $m \in \mathbb{N},(m, q-1)=1$ and $U_{r}(N)=\left\{n \leq N: s_{q}(n) \equiv r(\bmod m)\right\}$. Then

$$
\left.\lim _{N \rightarrow \infty} \frac{\operatorname{card}\left\{n \in U_{r}(N): \frac{\omega(n)-\log \log N}{\sqrt{\log \log N}}\right\}}{\operatorname{card}\left(U_{r}(N)\right)} \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} \exp \left(-u^{2} / 2\right)\right) \mathrm{d} u
$$

uniformly in X.

Erdős, P., Kac, M.: The Gaussian Law of Errors in the Theory of Additive Number Theoretic Functions, Amer. J. Math. 62 (1940), 1, 738-742 Mauduit, Ch., Sárközy, A.: On the arithmetic structure of the integers whose sum of digits is fixed, Acta Arith. 81 (1997), 2, 145-173

BUSH: $\frac{1}{x} \sum_{n \leq x)} s_{q}(n) \sim \frac{q-1}{2 \log q} \log x$ as $x \rightarrow \infty$
Bush thus proved a statement given in BowDEn's book (p. 68) for which the author had no general proof, namely that the average sum of the digits of integers is least when they are written in the binary scale. ${ }^{2}$

Bellman \& Shapiro: $\frac{1}{x} \sum_{n \leq x} s_{2}(n)=\frac{\log x}{2 \log 2}+O(\log \log x)$ and claimed that one of them improved the error term to $O(1)$, what is the best possible result. This was proved definitely by Mirsky.

Gadd \& Wong noticed a mistake in the proof of Bellman \& Shapiro thought their result is correct, and proved $\sum_{n \leq x} s_{q}(n)=\frac{\log x}{2 \log q}+O(\log \log x)$ for all integer bases $q \geq 2$.
FANG: $\sum_{n \leq x} s_{q}(n)=\frac{q-1}{2 \log q} x \log x+\theta(x) x$, where $-\frac{5 q-4}{8} \leq \theta(x) \leq \frac{q+1}{2}$

```
Bellman, R., Shapiro, H.N.: On a problem in additive number theory, Ann. Math. (2) 49 (1948), 333-340
Bowden, J.: Special topics in theoretical arithmetic, Garden City, New York 1936
Bush, L.E.: An asymptotic formula for the average sum of the digits of integers, Am. Math. Mon. 47 (1940), 154-156
FANG, Y.: A theorem on the \(k\)-adic representation of positive integers, Proc. Amer. Math. Soc. 130 (2002), 6, 1619-1622
Gadd, C., Wong, K.L.: A generalization to Bellman and Shapiro's method on the sum of digital sum functions, PUMP J. Undergrad. Res. 5 (2022), 176-187
Mirsky, L.: A theorem on representations of integers in the scale of \(r\), Scripta Math. 15 (1949), 11-12
```

[^2]$$
N=\sum_{j=1}^{t} a_{j} q^{n_{j}} \text { with } n_{1}>n_{2}>\ldots n_{t} \geq 0 \text { and } 1 \leq a_{j} \leq q-1
$$
$$
\sum_{n \leq N} s_{q}(n)=\underbrace{\frac{n_{1}(q-1)}{2} \sum_{j=1}^{t} a_{j} q^{n_{j}}}_{\frac{q-1}{2} \frac{N \log N}{\log q}}-
$$
$$
\underbrace{\frac{q-1}{2} \sum_{j=1}^{t}\left(n_{1}-n_{j}\right) a_{j} q^{n_{j}}+\frac{1}{2} \sum_{j=1}^{t} a_{j}\left(a_{j}-1\right) q^{n_{j}}+\sum_{j=1}^{t} a_{j}+\sum_{j=1}^{t}\left(\sum_{k=1}^{j-1} a_{k}\right) a_{j} q^{n_{j}}}_{O(x)}
$$

In 1975 Delange proved a prototype result without the error term

$$
\sum_{n \leq N} s_{q}(n)=\frac{q-1}{2} N \log _{q} N+N F\left(\log _{q} N\right)
$$

where $\log _{q}$ stands for the logarithm to base q and F is a 1-periodic, continuous and nowhere differentiable function explicitly given in three steps:

First, he defined the function g on \mathbb{R} by the formula

$$
g(x)=\int_{0}^{x}\left(\lfloor q t\rfloor-q\lfloor t\rfloor-\frac{q-1}{2}\right) \mathrm{d} t
$$

then the function

$$
h(x)=\sum_{r=0}^{\infty} \frac{g\left(q^{r} x\right)}{q^{r}}
$$

and finally

$$
F(x)=\frac{q-1}{2}(1+\lfloor x\rfloor-x)+q^{1+\lfloor x\rfloor-x} h\left(q^{1+\lfloor x\rfloor-x}\right) .
$$

Delange actually generalized an explicit result for the remainder term proved by Trollope for binary expansion:

$$
2^{m-1}\left(2 f(x)+(1+x) \log _{2}(1+x)-2 x\right)
$$

where the integer N is written in the form $N=2^{m}(1+x)$ with $0 \leq x<1$ and $f(x)=\sum_{i=0}^{\infty} \frac{g\left(2^{i} x\right)}{2^{i}}$ with

$$
g(x)= \begin{cases}\frac{1}{2} x, & \text { if } 0 \leq x \leq \frac{1}{2} \\ \frac{1}{2}(1-x), & \text { if } \frac{1}{2}<x \leq 1\end{cases}
$$

Trollope also proved the estimate for the error term

$$
2^{m-1}\left(\frac{5}{3} \log _{2} \frac{5}{3}-\frac{2}{3}\right)
$$

where constant cannot be reduced.

Flajolet and Ramshaw showed that, Delange's proof method for computing the sum of all of the digits used when the first n nonnegative integers are expressed in base q, can be adapted to some 'unusual' number systems as Gray code or balanced ternary and its generalization or even can also be adapted to count the occurrences of each digit separately.

GRAY CODE

Binary Code

Wikipedia
In Gray code each number from $\left\{0,1, \ldots, 2^{N}-1\right\}$ is represented as the sequence of integers as a binary string of length N in an order in which the adjacent integers have Gray code representations differing in only one bit position (OEIS A014550).

In essence, a Gray code takes a binary sequence and shuffles it to a new form sequence with the mentioned adjacency property.

Binary	000	001	010	011	100	101	110	111
Gray	000	001	011	010	110	111	101	100

Gray code and sum-of-Digits function

Let $\gamma(n)$ denote the number of 1-bits in the standard Gray code representation of n. There exists a continuous, nowhere differentiable function $G: \mathbb{R} \rightarrow \mathbb{R}$, periodic with period 1 , such that

$$
\sum_{n \leq N} \gamma(n)=\frac{N \log _{2} N}{2}+N G\left(\log _{2} n\right)
$$

The Fourier series representation $G(x)=\sum_{k} g_{k} \exp (2 k \pi i x)$ converges absolutely and its coefficients g_{k} are given explicitly:

$$
\begin{aligned}
& g_{0}=2 \log _{2} \Gamma\left(\frac{1}{4}\right)-\log _{2} \pi-\frac{1}{2 \log _{2} 2}-\frac{5}{4} \\
& g_{k}=\frac{2 \zeta\left(\chi_{k}, \frac{1}{4}\right)}{\left(\log _{2} 2\right) \chi_{k}\left(1+\chi_{k}\right)}, \quad \chi_{k}=\frac{2 k \pi \mathrm{i}}{\log _{2} 2}, \quad \zeta(z, \alpha)=\sum_{j \geq 0}(j+\alpha)^{-z} .
\end{aligned}
$$

Gardner, M.: Mathematical games, Scientific American 227 (1972), 2, , 106-109
Flajolet, P. and Ramshaw, L.: A note on Gray code and odd-even merge, SIAM J. Comput. 9 (1980), 142-158
Larcher, G., Tichy, R.F.: A note on Gray code and odd-even merge, Discrete Appl. Math. 18 (1987), 309-313

Balanced (q, r)-ARY NUMBER SYSTEMS

A balanced ternary number system is a numeral system that comprises digits $-1,0$, and 1 .

$$
\begin{aligned}
& 464_{10}=1 \cdot 3^{5}+2 \cdot 3^{4}+2 \cdot 3^{3}+1 \cdot 3+2 \cdot 1=122012_{3} . \\
& 464_{10}=1 \cdot 3^{6}-1 \cdot 3^{5}-1 \cdot 3^{3}+1 \cdot 3^{2}-1 \cdot 3-1 \cdot 1=R_{1} L_{1} 0 L_{1} R_{1} L_{1} L_{1}
\end{aligned}
$$

Most famous application: The weight problem of Bachet de Méziriac when the weight can be placed in either pan of the balance.

Balanced (q, r)-ARY Number Systems

Balanced q-ary number system:

- If q is odd, say $q=2 r+1, r=1,2,3, \ldots$, one can express any natural number N in base (q, r) in terms of symbols
$-r,-r+1, \ldots, 0,1, \ldots, r-1, r$ in symbols $0, L_{i}, R_{i}, i=1,2, \ldots, r$
- If q is even, say $q=2 r, r=1,2,3, \ldots$, one can express any natural number N in base (q, r) in terms of symbols $-r+1, \ldots, 0,1, \ldots, r-1$ in symbols $0, L_{i}, R_{i}, i=1,2, \ldots, r-1$ and for $-r$ with L_{r} (or for $r=m$ with R_{r}).

Balanced (q, r)-ARY NUMBER SYSTEMS

More generally, digits need not be 'centered' around 0 . We can take q consecutive integers including 0 as digits. Denote by (q, r) number system, where q denotes the base and $r, 0 \leq r \leq q-1$, denotes the number of negative digits $-r, 1-r, \ldots, \ldots, q-1-r$.

- balanced ternary system is the $(3,1)$ system
- q-ary number system is $(q, 0)$ system

The number of d-DIGits in The (q, r) positional NUMBER SYSTEM

Let q and r be integers satisfying $q \geq 2$ and $0 \leq r \leq q-2$. Let the (q, r) number system be the positional number system with base q and digits $-r, 1-r, q-1-r$, and let d be a non-zero digit in this system. Let $\rho(n)$ denote the number of times that the digit d is used when n is expressed in the (q, r) number system, and let $F(\rho, n)$ denote the appropriately truncated summation of ρ, in particular,

$$
F(d, n)=\left(1-\frac{r}{q-1}\right) \rho(0)+\rho(1)+\rho(2)+\cdots+\rho(n-1)+\frac{r}{q-1} \rho(n)
$$

Then, there exists a continuous, nowhere differentiable function $P: \mathbb{R} \rightarrow \mathbb{R}$, periodic with period 1 , such that

$$
F(d, n)=\frac{n \log _{q} n}{q}+n P\left(\log _{q} n\right) \text { for } n \geq 1
$$

The Fourier series $P(x)=\sum_{k} p_{k} \exp (2 k \pi i x)$ converges absolutely, and the coefficients p_{k} are given expolicitely.

The Zeckendorf Sum-OF-DIGITs function

The Zeckendorf decomposition of a natural number n is the unique expression of n as a sum of Fibonacci numbers with non-consecutive indices and with each index greater than 1 :

$$
\begin{gathered}
309018=196418+75025+28657+6765+1597+377+144+34+1= \\
F_{27}+F_{25}+F_{23}+F_{17}+F_{14}+F_{12}+F_{9}+F_{1}=(10101001001001010010000001)_{\text {Zeck }}
\end{gathered}
$$

Let n be a positive integer. Define $s_{\text {Zeck }}(n)$ as the sum (number) 1's in the Zeckendorf decomposition of the natural number n. We have (Coquet \& van den Bosch)

$$
\sum_{n<x} s_{\text {Zeck }}(n)=\frac{3-\beta}{5 \log \beta} x \log x+x G\left(\frac{\log x}{\log \beta}\right)+O(\log x)
$$

(G is a real valued continuous, nowhere differentiable function of period 1 and $\beta=(1+\sqrt{5}) / 2)$

k-ZECKENDORF REPRESENTATION

The k-Zeckendorf representation of a positive integer n is defined as the sum of the k-generalized Fibonacci numbers $n=\sum_{i \geq k} \varepsilon_{i} F_{i}^{(k)}$, where $\varepsilon_{i} \in\{0,1\}$ and for all $i \geq k$ we have $\varepsilon_{i} \varepsilon_{i+1} \cdots \varepsilon_{i+k-1}=0$.

The k-generalized Fibonacci sequence for $k=2,3,4,5,6,7,8$ can be found in OEIS as sequences A000045, A000073, A000078, A001591, A001592, A122189, and A079262, respectively.

Given this representation of a number n we say the k-ZECKEndorf digital sum of n is $s_{k \text {-Zeck }}(n)=\sum_{i \geq k} \varepsilon_{i}$ and if $s_{k \text {-Zeck }}(n) \mid n$ then n is called a k-Zeckendorf Niven number.
For instance, every $F_{i}^{(k)}$ is a k-Zeckendorf Niven number or 8 and 12 are 3-Zeckendorf Niven numbers.

The asymptotic density of the k-Zeckendorf Niven numbers is zero.

Expansions and Linear recurrences

Let $\mathcal{G}=\left(G_{k}\right)_{k \geq 0}$ be a linear recurring sequence

$$
G_{k+d}=a_{1} G_{k+d-1}+\cdots+a_{d} G_{k}
$$

EXPANSIONS AND LINEAR RECURRENCES

Let $\mathcal{G}=\left(G_{k}\right)_{k \geq 0}$ be a linear recurring sequence

$$
G_{k+d}=a_{1} G_{k+d-1}+\cdots+a_{d} G_{k}
$$

with

- integral coefficients $a_{1} \geq a_{2} \geq \cdots \geq a_{d}>0$, and
- integral initial values $1=G_{0}, \ldots, G_{d-1}$ satisfying $a_{1}>1$ (for $d=1$) and for $d \geq 2 G_{k} \geq a_{1} G_{k-1}+\cdots+a_{n} G_{0}+1$ for $n=1, \ldots, d-1$.

Expansions and Linear recurrences

Let $\mathcal{G}=\left(G_{k}\right)_{k \geq 0}$ be a linear recurring sequence

$$
G_{k+d}=a_{1} G_{k+d-1}+\cdots+a_{d} G_{k}
$$

Then every positive integer n can be represented in a unique way by $\sum_{j} \varepsilon_{j}(n) G_{j}$, where the G-ary digits $\varepsilon_{j}(n)$ are integers with $0 \leq \varepsilon_{j}<a_{1}$ satisfying some additional conditions (cf. Theorem 1 of Ретнő \& Tichy).

Then for the sum-of-digits function $s_{\mathcal{G}}(n)=\sum \varepsilon_{j}(n)$ with respect to the given linear recurrence \mathcal{G} we have

$$
\sum_{n<N} s_{\mathcal{G}}(n)=c_{\mathcal{G}} N \log N+N \cdot F\left(\frac{\log N}{\log \alpha}\right)+O(\log N),
$$

where α is the dominating root of the characteristic polynomial of $\mathcal{G}, c_{\mathcal{G}}$ a suitable constant, and F is a bounded periodic function of period 1 (not necessary continuous, for more details Sec. 4 of Pethő \& Tichy).

NON-INTEGER BASE OF NUMERATION

A positional numeral system with a non-integer number $\beta>1$ as the radix. If

$$
x=\beta^{n} d_{n}+\cdots+\beta^{2} d_{2}+\beta d_{1}+d_{0}+\beta^{-1} d_{-1}+\beta^{-2} d_{-2}+\cdots+\beta^{-m} d_{-m}
$$

then

$$
x=\left(d_{2} d_{1} d_{0} \cdot d_{-1} d_{-2} \ldots d_{-m}\right)_{\beta}
$$

For instance, base $\sqrt{2}$ behaves in a very similar way to base 2 . Every integer can be expressed in base $\sqrt{2}$ without the need of a decimal point (just put a zero digit in between every binary digit):

$$
(5118)_{10}=(1001111111110)_{2}=(1000001010101010101010100)_{\sqrt{2}} .
$$

Golden mean representations

Base $\varphi=(1+\sqrt{5} / 2)$ was introduced by BERGMAN. A positive integer n written in base φ has the form $n=\sum_{j=0}^{\infty} \varepsilon_{j} \varphi^{j}$, with digits $\varepsilon_{j} \in\{0,1\}$, and where $\varepsilon_{j} \varepsilon_{j+1}=11$ is not allowed. Ignoring leading and trailing 0 's, the base phi representation of a number n is unique.

Golden mean representations

Base $\varphi=(1+\sqrt{5} / 2)$ was introduced by BERGMAN. A positive integer n written in base φ has the form $n=\sum_{j=0}^{\infty} \varepsilon_{j} \varphi^{j}$, with digits $\varepsilon_{j} \in\{0,1\}$, and where $\varepsilon_{j} \varepsilon_{j+1}=11$ is not allowed. Ignoring leading and trailing 0 's, the base phi representation of a number n is unique. For instance

$$
\begin{aligned}
1000000= & \varphi^{28}+\varphi^{26}+\varphi^{20}+\varphi^{16}+\varphi^{13}+\varphi^{8}+\varphi^{4}+\varphi^{0}+ \\
& \varphi^{-4}+\varphi^{-9}+\varphi^{-11}+\varphi^{-14}+\varphi^{-16}+\varphi^{-20}+\varphi^{-26}+\varphi^{-28}=
\end{aligned}
$$

$$
(10100000100010100101000010001.0001000100001001000100000101)_{\varphi}
$$

Golden mean representations

Base $\varphi=(1+\sqrt{5} / 2)$ was introduced by Bergman. A positive integer n written in base φ has the form $n=\sum_{j=0}^{\infty} \varepsilon_{j} \varphi^{j}$, with digits $\varepsilon_{j} \in\{0,1\}$, and where $\varepsilon_{j} \varepsilon_{j+1}=11$ is not allowed. Ignoring leading and trailing 0 's, the base phi representation of a number n is unique.
If $s_{\varphi}(n)=\sum_{j} \varepsilon_{j}$, then $\left(s_{\varphi}(n)\right)_{n \geq 0}=0,1,2,2,3,3,3,2,3,4,4,5,4,4,4,5,4,4, \ldots$
If L_{n} is the LUCAS sequence: $L_{0}=2, L_{1}=1, L_{i}=L_{i-1}+L_{i-2}$ for $i \geq 2$ then (Cooper \& Kennedy)

$$
\begin{aligned}
\sum_{k \leq L_{n}} s_{\varphi}(k) & =\frac{3}{2}-\frac{3}{2}(-1)^{n}+\frac{1-\sqrt{5}}{2}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\frac{1+\sqrt{5}}{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n}+ \\
& +\frac{5-\sqrt{5}}{2}\left(\frac{1+\sqrt{5}}{2}\right)^{n}(n+1)++\frac{5+\sqrt{5}}{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n}(n+1)
\end{aligned}
$$

Bergman, G.: A number system with an irrational base, Math. Mag. 31 (1957), 98-110
Cooper, C.N., Kennedy, R.E.: The first moment of the number of 1's function in the beta-expansion of the positive integers, Journal of Institute of Mathematics \& Computer Sciences 14 (2001), 69-77
Dekking, F.M.: The sum of digits functions of the Zeckendorf and the base phi expansions, Theor. Comput. Sci. 859 (2021), 70-79

Complex integer bases

The notion of congruence can be applied to any ring of algebraic integers $\mathbb{Z}[\beta]$ in an algebraic number field, modulo the element β in the ring. This ring $\mathbb{Z}[\beta]$ is isomorphic to the quotient ring $\mathbb{Z}[x] /(m(x))$, where $m(x)$ is the minimum polynomial of β.

Sylvester a.k.a. Lanavicensis: If β is a non-zero algebraic integer of norm $|\beta|=N$, then a complete residue system of elements of $\mathbb{Z}[\beta]$ modulo β contains $|N|$ elements and

$$
\frac{\mathbb{Z}[\beta]}{\beta} \approx \mathbb{Z}_{N} .
$$

KÁtai \& Szabó: Let β be a Gaussian integer of norm N and let $D=\{0,1,2, \ldots, N-1\}$. Then β is a valid base for the complex numbers using the digit set D if and only if $\beta=-a \pm i$ for some positive integer a.

Complex integer bases

The only complex integer bases in $\mathbb{Z}[i]$, which give rise to a unique unite digital representation of the Gaussian integers using a 'connected' set of digits from the natural numbers (in our instance we have the digits $\left(0, \ldots, a^{2}\right)$), is based on GaUSSian integers $a+i$ with $a \in \mathbb{N}$. Let

$$
z=\sum_{k=0}^{K} \varepsilon_{k}(-a+i)^{k}, \quad \varepsilon_{k} \neq 0, \quad s_{-a+\mathrm{i}}(z)=\sum_{k=0}^{K} \varepsilon_{k}
$$

For instance, $-3+3 i=(11010)_{-1+i}$

$$
\sum_{|-2+\mathrm{i}|<N} s_{-a+\mathrm{i}}(z)=2 \pi N \log _{5} N+N \Phi\left(\log _{5} N\right)+O(\sqrt{N} \cdot \log N)
$$

(the proof could be extended to the general case)

SUM-OF-DIGITS FUNCTION ALONG THE REAL LINE

The summatory function $S(N)$ of the sum-of-digits function in base $q=-a+i$, where $a=1$ or $a \geq 2$ and even, of the first N positive integers satisfies

$$
\frac{a^{2}}{2} \leq \liminf _{N \rightarrow \infty} \frac{S(N)}{N \log _{a^{2}+1} N} \leq \limsup _{N \rightarrow \infty} \frac{S(N)}{N \log _{a^{2}+1} N} \leq \frac{3 a^{2}}{2}
$$

Grabner, P.J., Kirschenhofer, P., Prodinger, H.: The sum-of-digits function for complex bases, J. Lond. Math. Soc., II. Ser. 57 (1998), 1, 20-40

Legendre's formulae \& Kummer's theorem

A.-M. Legendre: ... En général, si on a $N=\theta^{n}$, le nombre de fracteurs θ compris dans le produit $1,2,3, \ldots, N$ sera

$$
x=\frac{N-1}{\theta-1}
$$

Et si on fait, comme on peut toujours la supposer,

$$
N=A \theta^{m}+B \theta^{n}+C \theta^{r}+\text { etc. },
$$

les coefficiens A, B, C, etc. étant plus petits que θ, il résulters

$$
x=\frac{N-A-B-C-\text { etc. }}{\theta-1}
$$

Legendre's formulae \& Kummer's theorem

Let $\nu_{p}(n)$ be the exponent of the largest power of prime p that divides n, then

$$
\nu_{p}(n!)=\frac{n-s_{p}(n)}{p-1}
$$

Legendre's formulae \& Kummer's theorem

Let $\nu_{p}(n)$ be the exponent of the largest power of prime p that divides n, then

$$
\nu_{p}(n!)=\frac{n-s_{p}(n)}{p-1}
$$

Kummer:

$$
\nu_{p}\left(\binom{n}{m}\right)=\frac{s_{p}(m)+s_{p}(n-m)-s_{p}(n)}{p-1}
$$

Kummer's algorithm: the exact power of prime p that divides the binomial coefficient $\binom{n}{m}$ is given by the number of 'carries' when we add m and $n-m$ in base p.

Example: $3^{3} \left\lvert\,\binom{ 189}{78}\right.$ and $78=(2220)_{3}, 189-78=111=(11010)_{3}$

If $n=\left(n_{k} n_{k-1} \ldots n_{0}\right)_{q}$ and $m=\left(m_{k} m_{k-1} \ldots m_{0}\right)_{q}$ with $n \geq m$, the base q carries when adding m and $n-m$ are defined by $\epsilon_{-1}^{n, m, q}=0$ and for $i \geq 0$,

$$
\epsilon_{i}^{n, m, q}=\left\{\begin{array}{ll}
1, & \text { if } m_{i}>n_{i} \\
1 & \text { if } m_{i}=n_{i} \\
0, & \text { otherwise }
\end{array} \text { and } \epsilon_{i-1}^{n, m, q}=1\right.
$$

If $\kappa_{q}(m, n)=\nu_{p}\left(\binom{n}{m}\right)=\sum_{i=0}^{k} \epsilon_{i}$ then

$$
s_{q}(m)+s_{q}(n-m)-s_{q}(n)=(q-1) \kappa_{q}(n, m)
$$

Define generally $c_{q}\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ as the sum of all carries produced in computing $a_{1}+\cdots+a_{r}$ by the traditional addition algorithm. Then

$$
s_{q}\left(\sum_{i=1}^{r} a_{i}\right)=\sum_{i=1}^{r} s_{q}\left(a_{i}\right)-(q-1) c_{q}\left(a_{1}, \ldots, a_{r}\right) .
$$

A FACTORIAL EXCURSION

Every positive integer n can be uniquely written in the factorial base (Cantor) representation

$$
n=n_{1} \cdot 1!+n_{2} \cdot 2!+\cdots+n_{k} \cdot k!=\left(n_{k} \cdots n_{2} n_{k}\right)!
$$

BALL et al. introduce three different analogs of generalized integral binomial coefficients and prove three different analogs, involving generalized factorial base representations, of Kummer's theorem.

Ball, T., Edgar, T., Juda, D.: Dominance orders, generalized binomial coefficients, and Kummer's theorem, Math. Mag. 87 (2014), 2, 135-143 Ball, T., Beckford, J., Dalenberg, P., Edgar, T. Rajabi, T.: Some combinatorics of factorial base representations, J. Integer Seq. 23 (2020), No.3, Article 20.3.3, 29 p.

Cantor type Representation

Let $Q=\left(q_{n}\right)_{n \geq 0}$ be a sequence of positive integers with $q_{0}=1$ and $q_{i}>1$ for all $i \geq 1$. Given an $n \in \mathbb{N}$ we have uniquely

$$
n=\sum_{j \geq 0} a_{Q, j}(n) q_{0} \cdots q_{j} \quad \text { with } 0 \leq a_{Q, j}(n)<q_{j+1}
$$

If $1=q_{0}<q_{1} \leq q_{2} \leq \ldots$ and $s_{Q}(n)=\sum_{j=1}^{k} a_{Q, j}(n)$ then

$$
\begin{aligned}
& \sum_{n=0}^{m-1} s_{Q}(n)=\frac{m}{2} \sum_{j=1}^{q^{*}(m)}\left(q_{j}-1\right)+\frac{m P(m)}{2}+\frac{m q_{q^{*}(m)}\{P(m)\}^{2}}{2 P(m)}-\frac{m}{2} \\
& \quad-\frac{m H(P(m))}{P(m)}-\frac{m\{P(m)\}}{2 P(m)}+\frac{m q_{q^{*}(m-1)-1}\left\{P(m) q_{q^{*}(m)}\right\}^{2}}{2 q_{q^{*}(m)} P(m)}+O\left(\frac{m}{q_{q^{*}(m)}}\right),
\end{aligned}
$$

where $q^{*}(m)=i$ denotes the uniquely determined integers ≥ 0 such that $q_{i} \leq m<q_{i+1}, P(m)=m / q_{q^{*}(m)}, H(x)=\int_{0}^{x}(\{v\}-1) \mathrm{d} v$ and $\{\cdot\}$ is the fractional part.

LOWER BOUNDS FOR $s_{q}(n)$

For a wide variety of integer sequences $\left(a_{n}\right)_{n}$ of controlled growth arising from number theory and combinatorics it was shown that $s_{q}\left(a_{n}\right)$ is at least $c_{q} \log n$, where c_{q} is a constant depending on the base q and on the sequence. For example:

Let $\left(a_{n}\right)_{n}$ be sequence of positive integers with asymptotic behaviour

$$
a_{n}=e^{f(n)}\left(1+O\left(n^{-\alpha}\right)\right), \quad \text { with } f^{\prime \prime} \asymp \frac{1}{x},
$$

for some $\alpha>0$ and a two times differentiable function f. For any base $q \geq 2$, the inequality

$$
s_{q}\left(a_{n}\right)>\frac{\beta \log n}{10 \log q}, \quad \beta=\min \left\{\alpha, \frac{2}{3}\right\}
$$

holds on a set of positive integers n of asymptotic density 1 .

LOWER BOUNDS FOR $s_{q}(n)$

For a wide variety of integer sequences $\left(a_{n}\right)_{n}$ of controlled growth arising from number theory and combinatorics it was shown that $s_{q}\left(a_{n}\right)$ is at least $c_{q} \log n$, where c_{q} is a constant depending on the base q and on the sequence. For example:
for special cases we know improvements
LUCA (2002): the number of non-zero digits $I_{q}\left(a_{n}\right)$ in the base q representation of $a_{n}=n!$ or $a_{n}=\operatorname{Icm}[1,2, \ldots, n]$ grows at least as fast as a constant, depending on base the q, times $\log n$:

$$
\left(I_{q}\left(a_{n}\right)+1\right) \log q+\log \left(I_{q}\left(a_{n}\right)\right) \geq \log (n+1)
$$

SANNA (2015): let $a_{n}=n!$ or $a_{n}=\operatorname{Icm}[1,2, \ldots, n]$ then

$$
s_{q}(n)>C_{q} \log n \log \log \log n \quad \text { for } n>e^{e}
$$

Digits on prescribed positions

Let $C(n, r, d)$ be the number of 1 bits in the binary representation of n that are in positions that are congruent to $r(\bmod d)$, the positions are indexed starting at 0 on the right. Then

$$
\sum_{n \geq 0} C(n, r, d) z^{n}=\sum_{m \geq 0} \frac{z^{2 r d m}}{1+z^{2 r+d m}}, \quad d \geq 0,0 \leq r<d
$$

For instance, the generating function for the number of 1's in even positions in the binary expansion of n is given by

$$
\frac{1}{1-z} \sum_{m=0}^{\infty} \frac{z^{4^{m}}}{1+z^{4^{m}}}
$$

Adams-Watters, F.T., Ruskey, F.: Generating functions for the digital sum and other digit counting sequences, J. Integer Seq. 12 (2009), N0. 5, Article ID 09.5.6, 9 p.

Power sums of digital sums

Motivation: Glaisher ($\S 14$) has shown that the number of odd binomial coefficients $\binom{n}{j}$, where $0 \leq j \leq n$, is $2^{s_{2}(n)}$. Consequently, the number of odd numbers in the first k rows of Pascal's triangle is
$\sum_{n=0}^{k-1} 2^{s_{2}(n)}=\sum_{j=0}^{\infty}\left(\sum_{n=0}^{k-1} s_{2}(n)^{k}\right) \frac{(\log 2)^{j}}{j!}$.
Stolarsky:
$\frac{1}{x} \sum_{n<x} s_{2}(n)^{k}=\left(\frac{\log x}{\log 2}\right)^{k}+\left\{\begin{array}{l}O\left((\log x)^{k-1}\right), k \text { non-negative integer } \\ \left.O\left((\log x)^{k-1 / 2} \sqrt{\log \log x}\right)\right), k \geq 0 .\end{array}\right.$
Coquet extended the first estimate to arbitrary real k proving:
$\sum_{n<N} s_{2}(n)^{k}=$
$N\left(\frac{\log N}{2 \log 2}\right)^{k}+N\left(\frac{\log N}{2 \log 2}\right)^{k-1}\left(k F\left(\frac{\log N}{\log 2}\right)+\frac{k(k-1)}{4}\right)+O\left(N\left(\frac{\log N}{\log 2}\right)^{k-2}\right)$
with a function $F: \mathbb{R} \rightarrow \mathbb{R}$ of period 1 , continuous, nowhere differentiable, and the implicit constant depending only on k.

Coquet, J.: Power sums of digital sums, J. Number Theory 22 (1986), 161-176
Glaisher, J. W. L.: On the residue of a binomial-theorem coefficient with respect to a prime modulus, Quart. J. 30 (1899), 150-156
Stolarsky, K.B.: Power and exponential sums of digital sums related to binomial coefficient parity, SIAM J. Appl. Math. 32 (1977), 717-730

Digit sums over prime bases

$s_{q}(n)$ is, on average, not too dependent on the primality of q FISSUM:

$$
\sum_{\substack{p \leq N \\ p \text { prime }}} s_{p}(n)=\left(1-\frac{\pi^{2}}{12}\right) \frac{N^{2}}{\log N}+C \frac{N^{2}}{\log ^{2} N}+o\left(\frac{N^{2}}{\log ^{2} N}\right), \quad C \doteq 0.1199
$$

Fissum, R.: Digit sums and the number of prime factors of the factorial $n!=1 \cdot 2 \cdot n$, (Bachelor's project in BMAT), Norwegian University of Science and Technology, Tromdheim, Gjøvik May 2020 (Prop. 2.12).

Digit sums over complex primes

Mauduit \& Rivat answering a question by Gel'fond proved that the sum of digits of prime numbers written in a basis $q \geq 2$ is equidistributed in arithmetic progressions (except for some well known degenerate cases): if $q \geq 2$ and $m \geq 2$ and there exists $\sigma_{q, m}$ such that for every $a \in \mathbb{Z}$ we have
$\operatorname{card}\left\{p \leq x: s_{q}(p) \equiv a \quad(\bmod m)\right\}=\frac{(m, q-1)}{m} \pi(x, a,(m, q-1))+O\left(x^{1-\sigma_{q, m}}\right)$
Drmota, Rivat \& Stoll extended this result to Gaussian primes from some fixed residue class lying in full disc and basis $-a \pm \mathrm{i}$.

Morgenbesser extended further this result to Gaussian primes from some fixed residue class lying in angular regions and basis $-a \pm i$.

Functional generalisations

Bellman \& Shapiro in connection with function $s_{2}(n)$ proposed to investigate arithmetic functions $w(n)$, called by them dyadically additive, satisfying the relation $w(m+n)=w(m)+w(n)$, whenever m and n have no summand in common when written as sums of distinct powers of two.

[^3]
Functional generalisations

Bellman \& Shapiro in connection with function $s_{2}(n)$ proposed to investigate arithmetic functions $w(n)$, called by them dyadically additive, satisfying the relation $w(m+n)=w(m)+w(n)$, whenever m and n have no summand in common when written as sums of distinct powers of two.

During his visit to Paris in October 1966 (cf. Mendès France), A.O. GEL'FOND defined the notion of the q-additive function: Given an integer $q \geq 2$, an arithmetic function $f: \mathbb{N}_{0} \rightarrow \mathbb{R}$ is called q-additive if for every $r, a \in \mathbb{N}$ and $b \in \mathbb{N}_{0}$ we have $f\left(q^{r} a+b\right)=f\left(q^{r} a\right)+f(b)$ whenever $0 \leq b<q^{r}$.

Bellman, R., Shapiro, H.N.: On a problem in additive number theory, Ann. Math. (2) 49 (1948), 333-340
Gelfond, A.O.: Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith. 13 (1968), 259-265
Mahler, K.: The spectrum of an array and its application to the study of the translation properties of a simple class of arithmetical functions. II: On the translation properties of a simple class of arithmetical functions, J. Math. Phys., Mass. Inst. Techn. 6 (1927), 158-163 (Reprinted in Publ. MIT Ser. II 62 No. 118 (1927)).
Mendès France, M.: Les suites ŕ spectre vide et la répartition modulo 1, J. Number Theory 5 (1973), 1-15

Functional generalisations

Bellman \& Shapiro in connection with function $s_{2}(n)$ proposed to investigate arithmetic functions $w(n)$, called by them dyadically additive, satisfying the relation $w(m+n)=w(m)+w(n)$, whenever m and n have no summand in common when written as sums of distinct powers of two.

During his visit to Paris in October 1966 (cf. Mendès France), A.O. GEL'FOND defined the notion of the q-additive function: Given an integer $q \geq 2$, an arithmetic function $f: \mathbb{N}_{0} \rightarrow \mathbb{R}$ is called q-additive if for every $r, a \in \mathbb{N}$ and $b \in \mathbb{N}_{0}$ we have $f\left(q^{r} a+b\right)=f\left(q^{r} a\right)+f(b)$ whenever $0 \leq b<q^{r}$.

In the written form, in his last but one research paper (GELFOND) he only defined the notion of the additive function as a function satisfying the relations $f(n)=f(a)+f(b)$ if $n=a+b$ and $a<2^{\ell}, b=2^{\ell} c$, where $a, b, c, n \in \mathbb{N}$.
As examples of such additive functions he gives the identity function, the sum-of-digits functions s_{q} and their linear combinations.

[^4]
Functional generalisations

Bellman \& Shapiro in connection with function $s_{2}(n)$ proposed to investigate arithmetic functions $w(n)$, called by them dyadically additive, satisfying the relation $w(m+n)=w(m)+w(n)$, whenever m and n have no summand in common when written as sums of distinct powers of two.

During his visit to Paris in October 1966 (cf. Mendès France), A.O. GEL'FOND defined the notion of the q-additive function: Given an integer $q \geq 2$, an arithmetic function $f: \mathbb{N}_{0} \rightarrow \mathbb{R}$ is called q-additive if for every $r, a \in \mathbb{N}$ and $b \in \mathbb{N}_{0}$ we have $f\left(q^{r} a+b\right)=f\left(q^{r} a\right)+f(b)$ whenever $0 \leq b<q^{r}$.

Traces of the concept of the q-additive function can also be found in (MAHLER).

[^5]
Functional generalisations

Bellman \& Shapiro in connection with function $s_{2}(n)$ proposed to investigate arithmetic functions $w(n)$, called by them dyadically additive, satisfying the relation $w(m+n)=w(m)+w(n)$, whenever m and n have no summand in common when written as sums of distinct powers of two.

During his visit to Paris in October 1966 (cf. Mendès France), A.O. GEL'FOND defined the notion of the q-additive function: Given an integer $q \geq 2$, an arithmetic function $f: \mathbb{N}_{0} \rightarrow \mathbb{R}$ is called q-additive if for every $r, a \in \mathbb{N}$ and $b \in \mathbb{N}_{0}$ we have $f\left(q^{r} a+b\right)=f\left(q^{r} a\right)+f(b)$ whenever $0 \leq b<q^{r}$.

A later extension of this definition says that a function $f: \mathbb{N}_{0} \rightarrow \mathbb{R}$ is said to be strongly q-additive if $f\left(q^{r} a+b\right)=f(a)+f(b)$ whenever $0 \leq b<q^{r}$.

[^6]
Joint work with

L.Mišík, Ostrava

O.Strauch, Bratislava

Uniform Distribution mod 1

Sequence of d-dimensional vectors $\vec{x}_{n}, n=0,1,2, \ldots$, in \mathbb{R}^{d} is said to be uniformly distributed mod 1 (shortly u.d. mod1) if for all intervals $[\vec{a}, \vec{b}] \subseteq[0,1)^{d}$ we have

$$
\lim _{N \rightarrow \infty} \frac{A\left([\vec{a}, \vec{b}) ; N ; \vec{x}_{n} \bmod 1\right)}{N}=\prod_{j=1}^{d}\left(b_{j}-a_{j}\right)
$$

where $\vec{a}=\left(a_{1}, \ldots, a_{d}\right)$ and $\vec{b}=\left(b_{1}, \ldots, b_{d}\right)$.
Here, $A\left(I ; N ; \vec{x}_{n}\right)$ denotes the number of elements, out of the first N elements of the sequence $\vec{x}_{n}, n=0,1,2, \ldots$, that lies in set $I \subseteq \mathbb{R}^{d}$.

Almost uniform distribution mod 1

If there exists an increasing sequence of positive integers $\mathfrak{N}=\left\{N_{1}<N_{1}<N_{3}<\ldots\right\}$ such that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \frac{A\left([\overrightarrow{0}, \vec{x}) ; N_{j} ; \vec{x}_{n} \bmod 1\right)}{N_{j}}=\prod_{j=1}^{d} x^{(j)} \tag{1}
\end{equation*}
$$

for all $\vec{x} \in[0,1)^{d}$ then the sequence $\vec{x}_{n}, n=0,1,2, \ldots$, is called \mathfrak{N}-almost uniformly distributed $\bmod 1($ or \mathfrak{N}-almost u. d. mod1).

Almost uniform distribution mod 1

If there exists an increasing sequence of positive integers $\mathfrak{N}=\left\{N_{1}<N_{1}<N_{3}<\ldots\right\}$ such that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \frac{A\left([\overrightarrow{0}, \vec{x}) ; N_{j} ; \vec{x}_{n} \bmod 1\right)}{N_{j}}=\prod_{j=1}^{d} x^{(j)} \tag{1}
\end{equation*}
$$

for all $\vec{x} \in[0,1)^{d}$ then the sequence $\vec{x}_{n}, n=0,1,2, \ldots$, is called \mathfrak{N}-almost uniformly distributed $\bmod 1($ or \mathfrak{N}-almost u. d. mod1).
$\frac{n}{2^{1+\left\lfloor\log _{2} n\right\rfloor}}$ - almost u.d. but not u.d.

Almost uniform distribution mod 1

If there exists an increasing sequence of positive integers $\mathfrak{N}=\left\{N_{1}<N_{1}<N_{3}<\ldots\right\}$ such that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \frac{A\left([\overrightarrow{0}, \vec{x}) ; N_{j} ; \vec{x}_{n} \bmod 1\right)}{N_{j}}=\prod_{j=1}^{d} x^{(j)} \tag{1}
\end{equation*}
$$

for all $\vec{x} \in[0,1)^{d}$ then the sequence $\vec{x}_{n}, n=0,1,2, \ldots$, is called \mathfrak{N}-almost uniformly distributed mod1 (or \mathfrak{N}-almost u. d. mod1).
$\frac{n}{2^{1+\left[\log _{2} n\right\rfloor}}$ - almost u.d. but not u.d.
$\log p_{n}, p_{n}$ the nth prime - not almost u.d.

Let d be a positive integer and let $s_{q}^{(d)}(n)=\sum_{j=0}^{\infty} n_{j}^{d}$ denote the sum of the d th powers of the q-adic digits of the positive integer n. If $\theta \in \mathbb{R}$ then sequences of the form $\theta s_{q}^{(d)}(n)$ with n running over \mathbb{N}_{0} or over the set of prime numbers were studied by several authors.

s_{q} AND U.D.

Mendès France proved that sequence $\theta s_{q}(n), n=0,1,2, \ldots$, is u.d. mod 1 if and only if θ is irrational.

This result was later reproved by Coquet, who proved that for every $k \in \mathbb{N}$ the sequence $\theta s_{q}^{(k)}(n), n=0,1,2, \ldots$, is u.d. $\bmod 1$ if and only if θ is irrational.
Mauduit \& Rivat proved that $\theta s_{q}^{(1)}(n)$ is u.d. $\bmod 1$ when θ is irrational and n runs through the prime numbers only.

Tichy \& Turnwald proved estimates for the discrepancy of the sequence $\alpha s_{q}^{(d)}(n)$, $n=0,1,2, \ldots$, for irrational α of finite approximation type η.

Drmota \& Rivat \& Stoll proved that sequence ($\alpha s_{-a \pm i}(p)$), running over Gaussian primes p is uniformly distributed modulo 1 if and only if $\alpha \in \mathbb{R} / \mathbb{Q}$ if $-a \pm \mathrm{i}$ is prime and $a \geq 28$. Morgenbesser extended this result to circular sector.
Simultaneously he removed the conditional assuptions.

[^7]
WEIGHTED q-ARY SUM-OF-DIGITS FUNCTION

Let

$$
\gamma=\left(\gamma_{0}, \gamma_{1}, \gamma_{3}, \ldots\right)
$$

denote a sequence of real numbers, $q \geq 2$ a positive integer, and $\Sigma_{q}=\{0,1, \ldots, q-1\}$ the set of q-ary digits.

WEIGHTED q-ARY SUM-OF-DIGITS FUNCTION

Let

$$
\gamma=\left(\gamma_{0}, \gamma_{1}, \gamma_{3}, \ldots\right)
$$

denote a sequence of real numbers, $q \geq 2$ a positive integer, and $\Sigma_{q}=\{0,1, \ldots, q-1\}$ the set of q-ary digits. For a non-negative integer n with base q representation

$$
n=n_{0}+n_{1} q+n_{2} q^{2}+\cdots+n_{\ell} q^{\ell}, \quad n_{j} \in \Sigma_{q}, n_{\ell} \neq 0
$$

where $\ell=\left\lfloor\log _{q} n\right\rfloor$,

WEIGHTED q-ARY SUM-OF-DIGITS FUNCTION

Let

$$
\gamma=\left(\gamma_{0}, \gamma_{1}, \gamma_{3}, \ldots\right)
$$

denote a sequence of real numbers, $q \geq 2$ a positive integer, and $\Sigma_{q}=\{0,1, \ldots, q-1\}$ the set of q-ary digits. For a non-negative integer n with base q representation

$$
n=n_{0}+n_{1} q+n_{2} q^{2}+\cdots+n_{\ell} q^{\ell}, \quad n_{j} \in \Sigma_{q}, n_{\ell} \neq 0
$$

where $\ell=\left\lfloor\log _{q} n\right\rfloor$, the weighted \boldsymbol{q}-ary sum-of-digits function is defined by the relation

$$
s_{q, \gamma}(n)=\gamma_{0} n_{0}+\gamma_{1} n_{1}+\gamma_{2} n_{2}+\ldots \gamma_{\ell} n_{\ell} .
$$

WEIGHTED q-ARY SUM-OF-DIGITS FUNCTION

Let

$$
\gamma=\left(\gamma_{0}, \gamma_{1}, \gamma_{3}, \ldots\right)
$$

denote a sequence of real numbers, $q \geq 2$ a positive integer, and $\Sigma_{q}=\{0,1, \ldots, q-1\}$ the set of q-ary digits. For a non-negative integer n with base q representation

$$
n=n_{0}+n_{1} q+n_{2} q^{2}+\cdots+n_{\ell} q^{\ell}, \quad n_{j} \in \Sigma_{q}, n_{\ell} \neq 0
$$

where $\ell=\left\lfloor\log _{q} n\right\rfloor$, the weighted \boldsymbol{q}-ary sum-of-digits function is defined by the relation

$$
s_{q, \gamma}(n)=\gamma_{0} n_{0}+\gamma_{1} n_{1}+\gamma_{2} n_{2}+\ldots \gamma_{\ell} n_{\ell}
$$

q-adic van der Corput sequence $=s_{q, \gamma}(n), n \in \mathbb{N}_{0}$, where $\gamma_{i}=q^{-i-1}$ for all $i \in \mathbb{N}_{0}$.

van der Corput sequence

For a non-negative integer n with base $q, q \geq 2, q \in \mathbb{N}$, representation

$$
\begin{equation*}
n=n_{0}+n_{1} q+n_{2} q^{2}+\cdots+n_{\ell} q^{\ell}, \quad n_{j} \in \Sigma_{q}, n_{\ell} \neq 0 \tag{2}
\end{equation*}
$$

where $\ell=\left\lfloor\log _{q} n\right\rfloor$,

van der Corput sequence

For a non-negative integer n with base $q, q \geq 2, q \in \mathbb{N}$, representation

$$
\begin{equation*}
n=n_{0}+n_{1} q+n_{2} q^{2}+\cdots+n_{\ell} q^{\ell}, \quad n_{j} \in \Sigma_{q}, n_{\ell} \neq 0 \tag{2}
\end{equation*}
$$

where $\ell=\left\lfloor\log _{q} n\right\rfloor$, define

$$
\phi_{q}(n)=\frac{n_{0}}{q}+\frac{n_{1}}{q^{2}}+\frac{n_{2}}{q^{3}}+\ldots \frac{n_{k}}{q^{k+1}} .
$$

van der Corput sequence

For a non-negative integer n with base $q, q \geq 2, q \in \mathbb{N}$, representation

$$
\begin{equation*}
n=n_{0}+n_{1} q+n_{2} q^{2}+\cdots+n_{\ell} q^{\ell}, \quad n_{j} \in \Sigma_{q}, n_{\ell} \neq 0 \tag{2}
\end{equation*}
$$

where $\ell=\left\lfloor\log _{q} n\right\rfloor$, define

$$
\phi_{q}(n)=\frac{n_{0}}{q}+\frac{n_{1}}{q^{2}}+\frac{n_{2}}{q^{3}}+\ldots \frac{n_{k}}{q^{k+1}} .
$$

van der Corput sequence

$$
\phi_{q}(n), \quad n=0,1,2 \ldots,
$$

is an example of the simplest one-dimensional low-discrepancy sequence over the unit interval.

van der Corput sequence

For a non-negative integer n with base $q, q \geq 2, q \in \mathbb{N}$, representation

$$
\begin{equation*}
n=n_{0}+n_{1} q+n_{2} q^{2}+\cdots+n_{\ell} q^{\ell}, \quad n_{j} \in \Sigma_{q}, n_{\ell} \neq 0 \tag{2}
\end{equation*}
$$

where $\ell=\left\lfloor\log _{q} n\right\rfloor$, define

$$
\phi_{q}(n)=\frac{n_{0}}{q}+\frac{n_{1}}{q^{2}}+\frac{n_{2}}{q^{3}}+\ldots \frac{n_{k}}{q^{k+1}} .
$$

van der Corput sequence

$$
\phi_{q}(n), \quad n=0,1,2 \ldots,
$$

is an example of the simplest one-dimensional low-discrepancy sequence over the unit interval. Simultaneously, it can be interpreted as an example of a weighted q-ary sum-of-digits function.

Halton sequence

If $q_{i}, i \in\{1, \ldots, d\}$, are pairwise coprime bases, the d-dimensional Halton sequence is defined by

$$
\left(\phi_{q_{1}}(n), \phi_{q_{2}}(n), \ldots, \phi_{q_{d}}(n)\right), \quad n=0,1,2 \ldots
$$

Halton sequence

If $q_{i}, i \in\{1, \ldots, d\}$, are pairwise coprime bases, the d-dimensional Halton sequence is defined by

$$
\left(\phi_{q_{1}}(n), \phi_{q_{2}}(n), \ldots, \phi_{q_{d}}(n)\right), \quad n=0,1,2 \ldots
$$

$$
d=1 \leftrightarrow \text { van der Corput }
$$

d-DIMENSIONAL GENERALIZATION WITH $d>1$

Let $\left(q_{1}, q_{2}, \ldots, q_{d}\right)$ be a d-tuple of positive integers ≥ 2 and

$$
\Gamma=\left(\begin{array}{c}
\gamma^{(1)} \\
\gamma^{(2)} \\
\vdots \\
\gamma^{(d)}
\end{array}\right)=\left(\begin{array}{cccc}
\gamma_{0}^{(1)} & \gamma_{1}^{(1)} & \gamma_{2}^{(1)} & \ldots \\
\gamma_{0}^{(2)} & \gamma_{1}^{(2)} & \gamma_{2}^{(2)} & \ldots \\
\vdots & \vdots & \vdots & \ddots \\
\gamma_{0}^{(d)} & \gamma_{1}^{(d)} & \gamma_{2}^{(d)} & \ldots
\end{array}\right)=\left(\vec{\gamma}_{0}^{\top}, \vec{\gamma}_{1}^{T}, \vec{\gamma}_{2}^{T}, \ldots\right)
$$

be a $d \times \infty$-matrix with real entries with $\vec{\gamma}_{j}=\left(\gamma_{j}^{(1)}, \gamma_{j}^{(2)}, \ldots, \gamma_{j}^{(d)}\right)$ transposed in the j th column.

d-DIMENSIONAL GENERALIZATION WITH $d>1$

Let $\left(q_{1}, q_{2}, \ldots, q_{d}\right)$ be a d-tuple of positive integers ≥ 2 and

$$
\Gamma=\left(\begin{array}{c}
\gamma^{(1)} \\
\gamma^{(2)} \\
\vdots \\
\gamma^{(d)}
\end{array}\right)=\left(\begin{array}{cccc}
\gamma_{0}^{(1)} & \gamma_{1}^{(1)} & \gamma_{2}^{(1)} & \ldots \\
\gamma_{0}^{(2)} & \gamma_{1}^{(2)} & \gamma_{2}^{(2)} & \ldots \\
\vdots & \vdots & \vdots & \ddots \\
\gamma_{0}^{(d)} & \gamma_{1}^{(d)} & \gamma_{2}^{(d)} & \ldots
\end{array}\right)=\left(\vec{\gamma}_{0}^{T}, \vec{\gamma}_{1}^{T}, \vec{\gamma}_{2}^{T}, \ldots\right)
$$

be a $d \times \infty$-matrix with real entries with $\vec{\gamma}_{j}=\left(\gamma_{j}^{(1)}, \gamma_{j}^{(2)}, \ldots, \gamma_{j}^{(d)}\right)$ transposed in the j th column. For every $n \in \mathbb{N}_{0}$ define

$$
s_{q_{1}, \ldots, q_{d}, \Gamma}(n)=\left(s_{q_{1}, \gamma^{(1)}}(n), s_{q_{2}, \gamma^{(2)}}(n), \ldots, s_{q_{d}, \gamma^{(d)}}(n)\right),
$$

PiLLICHSHAMMER's PROBLEM

Pillichshammer proposed the following general problem:
Let q_{1}, \ldots, q_{d} be a d-tuple of pairwise coprime integers ≥ 2. What properties of the weight sequences forming Γ guarantee the uniform distribution mod 1 of the sequence

$$
s_{q_{1}, \ldots, q_{d}, \Gamma}(n)=\left(s_{q_{1}, \gamma^{(1)}}(n), s_{q_{2}, \gamma^{(2)}}(n), \ldots, s_{q_{d}, \gamma^{(d)}}(n)\right), \quad n=0,1,2, \ldots ?
$$

Partial answer

Pillichshammer proved:
Let the base $q \in \mathbb{N}$ be at least 2 . The sequence

$$
s_{q, \Gamma}(n)=\left(s_{q, \gamma^{(1)}}(n), s_{q, \gamma^{(2)}}(n), \ldots, s_{q, \gamma^{(d)}}(n)\right)
$$

is u.d. $\bmod 1$ if and only if for every integral vector $\vec{h} \in \mathbb{Z}^{d} \backslash\{\overrightarrow{0}\}$ one of the following conditions is fulfilled: either

$$
\sum_{\substack{k=0 \\\left\langle\vec{h}, \vec{\gamma}_{k}\right\rangle q \notin \mathbb{Z}}}^{\infty}\left\|\left\langle\vec{h}_{,} \vec{\gamma}_{k}\right\rangle\right\|^{2}=\infty
$$

or, there exists a non-negative integer k with

$$
\left\langle\vec{h}, \vec{\gamma}_{k}\right\rangle \notin \mathbb{Z} \quad \text { and } \quad\left\langle\vec{h}, \vec{\gamma}_{k}\right\rangle q \in \mathbb{Z}
$$

Partial answer

Pillichshammer proved:

Let the base $q \in \mathbb{N}$ be at least 2 . The sequence

$$
s_{q, \Gamma}(n)=\left(s_{q, \gamma^{(1)}}(n), s_{q, \gamma^{(2)}}(n), \ldots, s_{q, \gamma^{(d)}}(n)\right)
$$

is u.d. $\bmod 1$ if and only if for every integral vector $\vec{h} \in \mathbb{Z}^{d} \backslash\{\overrightarrow{0}\}$ one of the following conditions is fulfilled: either

$$
\sum_{\substack{k=0 \\\left\langle\vec{h}, \vec{\gamma}_{k}\right\rangle q \notin \mathbb{Z}}}^{\infty}\left\|\left\langle\vec{h}, \vec{\gamma}_{k}\right\rangle\right\|^{2}=\infty
$$

or, there exists a non-negative integer k with

$$
\left\langle\vec{h}, \vec{\gamma}_{k}\right\rangle \notin \mathbb{Z} \quad \text { and } \quad\left\langle\vec{h}, \vec{\gamma}_{k}\right\rangle q \in \mathbb{Z}
$$

van der Corput sequence satisfies the second condition of this criterion with k taken as the maximal exponent such that q^{k+1} divides h.

Hofer proved a sufficient condition on the weight sequences which gives a partial answer to Pillichshammer's question which requires the divergence of the series

$$
\sum_{i=0}^{\infty}\left\|h\left(\gamma_{2 i+1}^{(j)}-q_{j} \gamma_{2 i}^{(i)}\right)\right\|^{2}
$$

for each dimension $j \in\{1, \ldots, d\}$ and every non-zero integer h.
Drawback: this sufficient condition is not necessary and it does not cover some prototype classes of u.d. sequences as d-dimensional Kronecker sequences.

Trigonometric criterion

Let $q \geq 2$ be an integer and Γ be the $d \times \infty$-matrix of real weights defined above. Then the sequence $s_{q, \Gamma}(n), n=0,1,2, \ldots$, is u.d. mod 1 if and only if for every integral vector $\vec{h} \in \mathbb{Z}^{d} \backslash\{\overrightarrow{0}\}$ we have

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \prod_{\substack{j=0 \\\left\langle\vec{h}, \vec{\gamma}_{j}\right\rangle \notin \mathbb{Z}}}^{N-1} \frac{\sin \pi\left\|q\left\langle\vec{h}, \vec{\gamma}_{j}\right\rangle\right\|}{q \sin \pi\left\|\left\langle\vec{h}, \vec{\gamma}_{j}\right\rangle\right\|}=0 . \tag{P}
\end{equation*}
$$

Trigonometric criterion

Let $q \geq 2$ be an integer and Γ be the $d \times \infty$-matrix of real weights defined above. Then the sequence $s_{q, \Gamma}(n), n=0,1,2, \ldots$, is u.d. mod 1 if and only if for every integral vector $\vec{h} \in \mathbb{Z}^{d} \backslash\{\overrightarrow{0}\}$ we have

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \prod_{\substack{j=0 \\\left\langle\vec{h}, \vec{\gamma}_{j}\right\rangle \notin \mathbb{Z}}}^{N-1} \frac{\left|\sin \pi q\left\langle\vec{h}, \vec{\gamma}_{j}\right\rangle\right|}{q\left|\sin \pi\left\langle\vec{h}, \vec{\gamma}_{j}\right\rangle\right|}=0 \tag{P}
\end{equation*}
$$

A DISCREPANCY ESTIMATE

Let $q \geq 2, N, M$ be positive integers such that $q^{N} \leq M<q^{N+1}$. Let Γ be the $d \times \infty$-matrix of real weights as above. Then for the discrepancy of the sequence

$$
s_{q, \Gamma}(n) \quad \bmod 1, \quad n=0,1,2, \ldots, M-1
$$

we have

$$
\begin{aligned}
D_{M}\left(s_{q, \Gamma}(n) \bmod 1\right) \leq & C_{d}\left(\frac{1}{H}+\sum_{\substack{0<\|\vec{h}\|_{\infty} \leq H}} \frac{1}{r(\vec{h})} \times\right. \\
& \left.\times\left(\sum_{j=1}^{k} q^{-j+2} \prod_{\substack{t=0 \\
\left\langle\vec{h}, \vec{\gamma}_{t}\right\rangle \notin \mathbb{Z}}}^{N-j} \frac{\left|\sin \pi q\left\langle\vec{h}, \vec{\gamma}_{t}\right\rangle\right|}{q\left|\sin \pi\left\langle\vec{h}, \vec{\gamma}_{t}\right\rangle\right|}+O\left(\frac{1}{q^{k-1}}\right)\right)\right)
\end{aligned}
$$

for every integer k satisfying $1 \leq k \leq N$.

DISTRIBUTION FUNCTIONS OF $s_{q, \gamma}(n) \bmod 1$

Distribution function $g(x)$ is called a distribution function of sequence x_{n}, $n=1,2, \ldots$, if there exists an increasing sequence of positive integers N_{1}, N_{2}, \ldots such that

$$
\lim _{k \rightarrow \infty} \frac{A\left([0, x), N_{k}, x_{n}\right)}{N_{k}}=g(x) \text { a.e. on }[0,1) \text {. }
$$

Distribution function $g(x)$ is called an asymptotic distribution function of the sequence $x_{n}, n=1,2, \ldots$, if $\lim _{N \rightarrow \infty} F_{N}(x)=g(x)$ a.e. on $[0,1]$. Sequence x_{n}, $n=1,2, \ldots$, is u.d. in $[0,1]$ if and only if $g(x)=x$ is its asymptotic distribution function.

There holds:
If function $g(x)=x, x \in[0,1]$, is a distribution function of the sequence $s_{q, \gamma}(n) \bmod 1, n=0,1,2, \ldots$, then this sequence is u.d., i.e. $g(x)=x$ is its asymptotic d.f.

A new property of the van der Corput SEQUENCE

$$
\begin{gather*}
(q-1) \sum_{j=0}^{\infty} \gamma_{j}=S \tag{S1}\\
\gamma_{0} \geq \gamma_{1} \geq \gamma_{2} \geq \cdots>0 . \tag{S2}
\end{gather*}
$$

A new property of the van der Corput SEQUENCE

$$
\begin{gather*}
(q-1) \sum_{j=0}^{\infty} \gamma_{j}=S \tag{S1}\\
\gamma_{0} \geq \gamma_{1} \geq \gamma_{2} \geq \cdots>0 . \tag{S2}
\end{gather*}
$$

If there exists $\lambda=0,1,2, \ldots$ such that

$$
(q-1)\left(\gamma_{\lambda+2}+\gamma_{\lambda+3}+\ldots\right)<\gamma_{\lambda+1} .
$$

Then the interval

$$
J=\left((q-1) \sum_{j=0}^{\infty} \gamma_{j}-\gamma_{\lambda+1},(q-1) \sum_{j=0}^{\lambda+1} \gamma_{j}\right)
$$

(of positive length) does not contain an element of the form $s_{q, \gamma}(n)$.

A new property of the van der Corput SEQUENCE

$$
\begin{gather*}
(q-1) \sum_{j=0}^{\infty} \gamma_{j}=S \tag{S1}\\
\gamma_{0} \geq \gamma_{1} \geq \gamma_{2} \geq \cdots>0 . \tag{S2}
\end{gather*}
$$

If there exists $\lambda=0,1,2, \ldots$ such that

$$
(q-1)\left(\gamma_{\lambda+2}+\gamma_{\lambda+3}+\ldots\right)>\gamma_{\lambda+1}
$$

then sequence $s_{q, \gamma}(n), n=0,1,2, \ldots$, is not u.d. in the interval $[0, S]$.

A new property of the van der Corput SEQUENCE

$$
\begin{gather*}
(q-1) \sum_{j=0}^{\infty} \gamma_{j}=S \tag{S1}\\
\gamma_{0} \geq \gamma_{1} \geq \gamma_{2} \geq \cdots>0 \tag{S2}
\end{gather*}
$$

Let γ be a sequence of positive real numbers such that for every $\lambda=0,1,2, \ldots$ we have

$$
(q-1)\left(\gamma_{\lambda+2}+\gamma_{\lambda+3}+\ldots\right)=\gamma_{\lambda+1} .
$$

If γ satisfies conditions (S1) and (S2), and $S=1$ then sequence $s_{q, \gamma}(n)$, $n=0,1,2, \ldots$, is the q-adic van der Corput sequence.

A new property of the van der Corput

SEQUENCE

$$
\begin{gather*}
(q-1) \sum_{j=0}^{\infty} \gamma_{j}=S \tag{S1}\\
\gamma_{0} \geq \gamma_{1} \geq \gamma_{2} \geq \cdots>0 . \tag{S2}
\end{gather*}
$$

Let γ be a sequence of positive real numbers such that for every $\lambda=0,1,2, \ldots$ we have

$$
(q-1)\left(\gamma_{\lambda+2}+\gamma_{\lambda+3}+\ldots\right)=\gamma_{\lambda+1} .
$$

If γ satisfies conditions (S1) and (S2), and $S=1$ then sequence $s_{q, \gamma}(n)$, $n=0,1,2, \ldots$, is the q-adic van der Corput sequence.
Consequently, if γ satisfies conditions (S1), (S2), and $S=1$ then every uniformly distributed γ-weighted q-adic sum-of-digits function $s_{q, \gamma}(n)$, $n=0,1,2, \ldots$, is the q-adic van der Corput sequence.

Thank you for your kind attention.

[^0]: ${ }^{1}$ Francis Ysidro Edgeworth (1845-1926) was an Anglo-Irish philosopher and political economist who made significant contributions to the methods of statistics during the 1880s

[^1]: Honsberger, R.: Ingenuity in mathematics, New Mathematical Library. 23, 6th printing, Mathematical Association of America, Washington, DC. 1998 (pp. 74, 83-84).
 Porges, A.: A set of eight numbers, Am. Math. Mon. 52 (1945), 379-382
 Sánchez Garza, M., Treviño, E.: On a sequence related to the factoradic representation of an integer, J. Integer Seq. 24 (2021), 8, article 21.8.5, 13

 Treviño, E., And Zhylinski, M.: On generalizing happy numbers to fractional-base number systems, Involve 12 (2019), 7, 1143-1151 Grundman, H.G., Hall-Seelig, L.L.: Happy numbers, happy functions, and their variations: a survey, La Matematica 1 (2022), 2, 404-430

[^2]: ${ }^{2}$ BowDen on pages 17-81 devoted to scales of numeration wished to abolish the "tyranny of ten" (p. 81) and proposes, among other things, to have a 16 -hour day (p.77).

[^3]: Bellman, R., Shapiro, H.N.: On a problem in additive number theory, Ann. Math. (2) 49 (1948), 333-340
 Gelfond, A.O.: Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith. 13 (1968), 259-265
 MAHLER, K.: The spectrum of an array and its application to the study of the translation properties of a simple class of arithmetical functions. II: On the translation properties of a simple class of arithmetical functions, J. Math. Phys., Mass. Inst. Techn. 6 (1927), 158-163 (Reprinted in Publ. MIT Ser. II 62 No. 118 (1927)).
 Mendès France, M.: Les suites ŕ spectre vide et la répartition modulo 1, J. Number Theory 5 (1973), 1-15

[^4]: Bellman, R., Shapiro, H.N.: On a problem in additive number theory, Ann. Math. (2) 49 (1948), 333-340
 Gelfond, A.O.: Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith. 13 (1968), 259-265
 MAhLER, K.: The spectrum of an array and its application to the study of the translation properties of a simple class of arithmetical functions. II: On the translation properties of a simple class of arithmetical functions, J. Math. Phys., Mass. Inst. Techn. 6 (1927), 158-163 (Reprinted in Publ. MIT Ser. II 62 No. 118 (1927)).
 Mendès France, M.: Les suites ŕ spectre vide et la répartition modulo 1, J. Number Theory 5 (1973), 1-15

[^5]: Bellman, R., Shapiro, H.N.: On a problem in additive number theory, Ann. Math. (2) 49 (1948), 333-340
 Gelfond, A.O.: Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith. 13 (1968), 259-265
 MAHLER, K.: The spectrum of an array and its application to the study of the translation properties of a simple class of arithmetical functions. II: On the translation properties of a simple class of arithmetical functions, J. Math. Phys., Mass. Inst. Techn. 6 (1927), 158-163 (Reprinted in Publ. MIT Ser. II 62 No. 118 (1927)).
 Mendès France, M.: Les suites ŕ spectre vide et la répartition modulo 1, J. Number Theory 5 (1973), 1-15

[^6]: Bellman, R., Shapiro, H.N.: On a problem in additive number theory, Ann. Math. (2) 49 (1948), 333-340
 Gelfond, A.O.: Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith. 13 (1968), 259-265
 MAHLER, K.: The spectrum of an array and its application to the study of the translation properties of a simple class of arithmetical functions. II: On the translation properties of a simple class of arithmetical functions, J. Math. Phys., Mass. Inst. Techn. 6 (1927), 158-163 (Reprinted in Publ. MIT Ser. II 62 No. 118 (1927)).
 Mendès France, M.: Les suites ŕ spectre vide et la répartition modulo 1, J. Number Theory 5 (1973), 1-15

[^7]: M. Mendès France: Nombres normaux applications aux fonctions pseudoaleatoires, J. Anal. Math. 20 (1967), 1-56 Coquet, J.: Sur certaines suites uniformement équireparties modulo 1, Acta Arith. 36 (1980), 157-162 Drmota, M., Rivat, J., Stoll, Th.: The sum of digits of primes in $\mathbb{Z}[i]$, Monatsh. Math. 155 (2008), 3-4, 317-347 Morgenbesser, J.F.: The sum of digits of Gaussian primes, Ramanujan J. 27 (2012), 1, 43-70
 Tichy, R.F., Turnwald, G.: On the discrepancy of some special sequences, J. Number Theory 26 (1987), 68-78
 Mauduit, Ch., Rivat, J.: Sur un problème de Gelfond: la somme des chiffres des nombres premiers, Ann. Math. 171 (2010), 1591-1646

