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Basic definition

Given an integer q ≥ 2, every non-negative integer can be expressed in the form
of the q-ary digital expansion

n =
∑
j≥0

εjq
j ,

where 0 ≤ εj = εq,j(n) < q for every index j ≥ 0.

The q-ary sum-of-digits function is defined by

sq(n) =
∑
j≥0

εj .

The sum is actually finite, where the q-ary digits εj vanish for
j > ℓ = ℓ(n) = ⌊logq n⌋.
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If we rewrite the values of sq(n) in the same base q we obtain a bit unusual table

q sq(n) for n = 100, 101, . . . , 115

2 112, 1002, 1002, 1012, 112, 1002, 1002, 1012, 1002, 1012, 1012, 1102, 112, 1002, 1002, 1012
3 113, 123, 113, 123, 203, 123, 203, 213, 23, 103, 113, 103, 113, 123, 113, 123
4 104, 114, 124, 134, 114, 124, 134, 204, 124, 134, 204, 214, 104, 114, 124, 134
5 45, 105, 115, 125, 135, 105, 115, 125, 135, 145, 115, 125, 135, 145, 205, 125
6 146, 156, 116, 126, 136, 146, 156, 206, 36, 46, 56, 106, 116, 126, 46, 56
7 47, 57, 67, 107, 117, 37, 47, 57, 67, 107, 117, 127, 47, 57, 67, 107
8 118, 128, 138, 148, 68, 78, 108, 118, 128, 138, 148, 158, 78, 108, 118, 128
9 49, 59, 69, 79, 89, 109, 119, 129, 49, 59, 69, 79, 89, 109, 119, 129

10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 3, 4, 5, 6, 7
11 a11, 1011, 1111, 1211, 1311, 1411, 1511, 1611, 1711, 1811, a11, 1011, 1111, 1211, 1311, 1411
16 a16, b16, c16, d16, e16, f16, 1016, 1116, 1216, 1316, 1416, 1516, 716, 816, 916, a16
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Serious study of properties of the sum-of-digits functions arose in connection
with divisibility problems involving factorials and binomial coefficients. They also
appear in other areas of mathematics, as for instance, in:

algebraic topology (e.g. Hirsch)

algebraic number theory (e.g. Ore)

computational algorithms

combinatorics

It is probably their applicability the reason that many of the results have been
proven again and again an unusual number of times.

Hirsch, G.: On a property of the b-adic expression of integers, Am. Math. Mon. 74 (1967), 561–563

Ore, Ö.: Über den Zusammenhang zwischen den definierenden Gleichungen und der Idealtheorie in algebraischen Körpern I , Math. Ann. 96 (1926),
313–352
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sq(n) connections

Sum-of-digits sequences are connected to various aspects of mathematics
(especially discrete one and combinatorics):

to check the arithmetic operations of early computers

quick divisibility tests

Hamming weight

Edgeworth1 (1888) suggested using sums of 50 digits taken from
mathematical tables of logarithms as a form of random number generation
recreational mathematics

sum-product number in a given number base q is a natural number that is
equal to the product of the sum of its digits and the product of its digits (in
base 10 only 0, 1, 135, 144 OEIS A038369)
the digital root (also repeated digital sum) of a positive integer given
radix q is the (single digit) value obtained by an iterative process of
summing its q-digits. Digital roots are used in Western numerology. For
instance, the digital root (base 10) of every even perfect number > 6 is 1.

1Francis Ysidro Edgeworth (1845-1926) was an Anglo-Irish philosopher and political economist who made significant contributions to the methods
of statistics during the 1880s
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Niven numbers

The 5th Annual Mathematics Conference at the Department of Mathematics of
Miami University in 1977 was devoted to the number theory and the invited
speaker was Ivan M. Niven. He mentioned a question which appeared in the
children’s pages of a certain newspaper: Find a whole number which is twice the
sum of its digits. He suggested

for professional mathematicians to find an asymptotic formula for the
number of integers n < N such that sq(n) divides n.

The name Niven numbers first appeared in an article by Kennedy et al. three
years after his lecture.

Niven numbers are also called harshad numbers, a Sanskrit name (meaning
giving joy in Sanskrit harsha, joy) originally defined by Indian recreational
mathematician Dattatreya Ramchandra Kaprekar (1905-1986).

Kaprekar, D.R.: Multidigital Numbers, Scripta Math. 21 (1955), 27
Kennedy, R.E., Goodman, T., Best, C.: Mathematical discovery and Niven numbers, The MATYC Journal 14 (1980), 1, 20-25
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Small Niven numbers

q
2 4, 6, 8, 10, 12, 16, 18, 20, 21, 24, 32, 34, 36, 40, 42, 48 A049445
3 4, 6, 8, 9, 10, 12, 15, 16, 18, 20, 21, 24, 25, 27, 28, 30, 32 A064150
4 6, 8, 9, 12, 16, 18, 20, 21, 24, 28, 30, 32, 33, 35, 36, 40, 42 A064438
5 6, 8, 10, 12, 15, 16, 18, 20, 24, 25, 26, 27, 28, 30, 32, 36 A064481
6 10, 12, 15, 18, 20, 24, 25, 30, 36, 40, 42, 44, 45, 48, 50, 55
7 8, 9, 12, 14, 15, 16, 18, 21, 24, 27, 28, 30, 32, 35, 36, 40, 42
8 14, 16, 21, 24, 28, 32, 35, 40, 42, 48, 49, 56, 64, 66, 70, 72 A245802
9 10, 12, 16, 18, 20, 24, 27, 28, 30, 32, 36, 40, 45, 48, 50, 54
10 12, 18, 20, 21, 24, 27, 30, 36, 40, 42, 45, 48, 50, 54, 60, 63 A005349
11 12, 15, 20, 22, 24, 25, 30, 33, 35, 36, 40, 44, 45, 48, 50, 55
12 22, 24, 33, 36, 44, 48, 55, 60, 66, 72, 77, 84, 88, 96, 99, 108

Only 1, 2, 4, 6 are Niven numbers in every integer base q > 1. The number 12
is a Niven number in all bases except octal.
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Density of Niven numbers

Let Nq(x) denote the number of Niven numbers ≤ x in base q. Kennedy et al. proved
that limx→∞N10(x)/x = 0, and that (1984) given any t > 0 we have N10(x) ≥ logt x .

Vardi proved that, given any ε > 0 we have N10(x) ≪ x/(log x)1/2−ε and that
N10(x) > αx/(log x)11/2 for some α > 0 and infinitely many x .

De Koninck and Doyon proved that, given any fixed ε > 0 we have

x1−ε ≪ N10(x) ≪
x log log x

log x

and conjectured that even N10(x) ∼ cx
log x with c = 14

27 log 10
.
= 1.1939. The conjecture

has been verified by De Koninck, Doyon and Kátai in the form

Nq(x) = (ηq + o(1))
x

log x
with ηq =

2 log q

(q − 1)2

q−1∑
j=1

(j , q − 1).

Kennedy, R.E.: Digital sums, Niven numbers, and natural density , Crux Mathematicorum 8 (1982), 5, 129-133
Kennedy, R.E., Cooper, C.N.: On the natural density of the Niven numbers, The College Mathematics Journal 15 (1984), 4, 309-312
Cooper, C.N., Kennedy, R.E.: Chebyshev’s inequality and natural density , Am. Math. Mon. 96 (1989), 2, 118-124
De Koninck, J.-M., Doyon, N.: On the number of Niven numbers up to x , Fibonacci Q. 41 (2003), 5, 431-440
De Koninck, J.-M., and Doyon, N., Kátai, I.: On the counting function for the Niven numbers, Acta Arith. 106 (2003), 3, 265-275
Vardi, I.: Computational recreations in Mathematica, Addison Wesley Publ. Comp., Redwood City, CA 1991 (pp. 28-30).
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Another peculiar number connected with

the sum-of-digits functions

The Canadian-American mathematician Albert “Tommy” Wilansky
(1921-2017) of Lehigh University noticed that his brother-in-law Harold
Smith, who is not a mathematician, observed that his phone number 493-7775
has the following remarkable property: sum of its digits is equal to the sum of the
digits of primes in its prime factorization in the same base, and called such
numbers Smith numbers (4 937 775 = 3 · 5 · 5 · 65837).

Smith numbers in base 10: 1, 6, 49, 376, 3 294, 29 928, 278 411, 2 632 758,
25 154 060, 241 882 509, ... (sequence A104170 in the OEIS).

Smith numbers can be constructed from factored repunits (cf. Hoffman)

McDaniel: There are infinitely many k-Smith numbers n, that is numbers
satifying s10(n) = k

∑
pα||n αs10(p).

Gardner, M.: Penrose tiles to trapdoor ciphers . . . and the return of Dr. Matrix , Rev. ed., The Mathematical Association of America, Washington,
DC 1997 (pp. 299-301).
Hoffman, P.: The man who loved only numbers: the story of Paul Erdős and the search for mathematical truth, Hyperion, New York 1998 (pp.
205-206).
McDaniel, W.L.: The existence of infinitely many k-Smith numbers, Fibonacci Q. 25 (1987), 1, 76-80
Wilansky, A.: Smith numbers, The Two-Year College Mathematics Journal 13 (1982), 21
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Segments of Smith numbers

Two consecutive Smith numbers (for example, 728 and 729, or 2 964 and 2 965)
are called Smith brothers. It is not known how many Smith brothers there are.

The starting elements of the smallest Smith n-tuple (meaning n consecutive
Smith numbers) in base 10 for n = 1, 2, . . . are: 4, 728, 73 615, 4 463 535,
15 966 114, 2 050 918 644, 164 736 913 905, . . . (sequence A059754 in the OEIS).
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Other types of Smith Numbers

Fibonacci numbers, which are also Smith numbers

F31 = 1346 269 = 557 · 2417
F77 = 5527 939 700 884 757 = 13 · 89 · 988681 · 4832521
F231 = 844 617 150 046 923 109 759 866 426 342 507 997 914 076 076 194

= 2 · 13 · 89 · 421 · 19 801 · 988 681 · 4 832 521 · 9164 259 601 748 159 235 188 401

Smith numbers, which are perfect squares, can be termed as Smith Square
Numbers (A098839 OEIS).

Gupta, S.S.: Smith numbers, http://www.shyamsundergupta.com/smith.htm; Online; accessed June 6, 2023.
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The lowest 3× 3 Smith magic square (C = 822)

94 382 346
526 274 22
202 166 454

Gardner, M.: Penrose tiles to trapdoor ciphers . . . and the return of Dr. Matrix , Rev. ed., The Mathematical Association of America, Washington,
DC 1997 (pp. 299-301).
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Lucky tickets

Problem: Every bus ticket has an eight digits identification number. A ticket is
called a lucky one if the sum of the first three its digits equals with sum of its
right triple of digits. For instance, tickets with numbers 123006 or 777993, etc.
are lucky ones. The question is: how many lucky tickets does exist?

an number of triples with sum n, a2n number of happy tickets with “sum” n

A1(s) = 1 + s + · · ·+ s9, A3(s) = (A1(s))
3

solution gives the absolute term of P(s) = A3(s)A3(s
−1)

Cauchy theorem implies # of happy tickets= 1
π

∫ π/2

−π/2

(
sin 10ϕ
sinϕ

)6
dϕ

Lando (Lando), S.K. (S.K.): Lekcii o proizvod�wih funkci�h. (Lectures on generating functions), Izdanie tret~e,
ispravlennoe (Third corrected edition), Izdatel~stvo Moskovskogo centra nepreryvnogo matematiqeskogo
obrazovani�, Moskva (Moscow) 2007
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The generating functions

For q ≥ 2 we have∑
n≥0

sq(n)z
n =

1

1− z

∑
m≥0

zq
m
+ 2z2q

m
+ · · ·+ (q − 1)z(q−1)qm

1 + zqm + z2qm + · · ·+ z(q−1)qm

=
1

1− z

∑
m≥0

zq
m − qzq

m+1
+ (q − 1)z(q+1)qm

(1− zqm)(1− zqm−1)

The generating function for the sum-of-digits function of n written in the factorial
(Cantor integer) base is

1

1− z

∑
m≥0

zm! + 2zm! + · · ·+mzm·m!

1 + zm! + z2m! + · · ·+ zm·m!

The generating function for the sum-of-digits function of n written in the generalized
factorial multi-radix base k0 = 1× k1 × k2 × . . . with k̄j = k0k1 . . . kj−1 is

1

1− z

∑
m≥0

z k̄m + 2z k̄m + · · ·+ (km − 1)z(km−1)k̄m

z k̄m + z2k̄m + · · ·+ z(km−1)k̄m

Adams-Watters, F.T., Ruskey, F.: Generating functions for the digital sum and other digit counting sequences, J. Integer Seq. 12 (2009), N0. 5,
Article ID 09.5.6, 9 p.
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Digit sums and q-series

If B ≥ 2 (change of base notation), z ∈ C and |q| < 1 then

∞∑
n=0

qnz sB(n) =
∞∏
i=0

1− zBqB i+1

1− zqB i

=
1

1− zq
+

z − zB

1− zBq

∞∑
n=1

qBn

∏n−1
j=0 (1− zBqBj )∏∞
j=0(1− zqB j )

q-series generating function for sB(n) with B ≥ 2 and |q| < 1

∞∑
n=1

sB(n)q
n =

q

(1− q)2
− B − 1

1− q

∞∑
i=1

qB i

1− qB i

Schneider, M., Schneider, R.: Digit sums and generating functions, Ramanujan J. 52 (2020), 2, 291-302
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Lambert series generating function for sB(n) is the q-series generating function
for SB(n) =

∑
d |n sB(d)

∞∑
n=1

sB(n)q
n

1− qn
=

∞∑
n=1

SB(n)q
n

A Dirichlet convolution relation between Dirichlet series generating functions for
sB(n) and SB(n)

ζ(s)
∞∑
n=1

sB(n)

ns
=

∞∑
n=1

SB(n)

ns

(for the convergence of the series note that 1 ≤ sB(n) ≤ sB′(n) < n for B < B ′)

Schneider, M., Schneider, R.: Digit sums and generating functions, Ramanujan J. 52 (2020), 2, 291-302
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Happy numbers

A happy number is a number defined by the following process:

Starting with any positive integer, replace the number by the sum of the
squares of its (decimal) digits.

Repeat the process until the number equals 1 (where it will stay), or it loops
endlessly in a cycle which does not include 1.

Those numbers for which this process ends in 1 are happy.

It is known [Honsberger, Porges] that eventually all the terms in the
sequence are 1 or eventually the sequence becomes periodic with the cycle
4 → 16 → 37 → 58 → 89 → 145 → 42 → 20 → 4.

If Se,q

(∑
j≥0 ajq

j
)
=
∑

j≥0 a
e
j and Sk

e,q(n) = Se,q(S
k−1
e,q (n)) = 1 for some k ≥ 0

we say n is e-power q-happy number (Treviño et al. for fractional-base
systems)

Honsberger, R.: Ingenuity in mathematics, New Mathematical Library. 23, 6th printing, Mathematical Association of America, Washington, DC.
1998 (pp. 74, 83–84).
Porges, A.: A set of eight numbers, Am. Math. Mon. 52 (1945), 379-382
Sánchez Garza, M., Treviño, E.: On a sequence related to the factoradic representation of an integer , J. Integer Seq. 24 (2021), 8, article
21.8.5, 13
Treviño, E., and Zhylinski, M.: On generalizing happy numbers to fractional-base number systems, Involve 12 (2019), 7, 1143-1151
Grundman, H.G., Hall-Seelig, L.L.: Happy numbers, happy functions, and their variations: a survey , La Matematica 1 (2022), 2, 404-430
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What is a ‘serious’ problem?

Hardy: “A ‘serious’ theorem is a theorem which contains ‘significant’ ideas, and
I suppose that I ought to try to analyse a little more closely the qualities which
make a mathematical idea significant.

. . .

There are just four number (after 1) which are the sums of the cubes of their
digits, vz.

153 = 13 + 53 + 33 370 = 33 + 73 + 03

371 = 33 + 73 + 13 407 = 43 + 03 + 73.

These are odd facts, very suitable for puzzle columns and likely to amuse
amateurs, but there is nothing in them which appeals much to a mathematician.
The proofs are neither difficult nor interesting — merely a little tiresome. The
theorems are not serious; and it is plain that one reason (though perhaps not the
most important) is the extreme speciality of both the enunciations and the
proofs, which are not capable of any significant generalization.. . . ”
Hardy, G.H: A Mathematician’s Apology , Cambridge University Press, Cambridge 1967 (pp. 103-105).
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What is a ‘serious’ problem?

Hasse & Prichett: “This intriguing problem . . .

Let T (a) be a function defined on the rational integers which maps each positive
rational integer a to the sum of the squares of its digits s2,q. Proved that
successive applications of T , commencing with any positive integer a, will always
culminate in one of two possible cycles of integers . . .

To discover the distinctive number-theoretic features of such problem it is far
better to pose the question for all possible bases q ≥ 2 and not to restrict
consideration only to the special case g = 10. . . . ”

Hasse & Prichett studied the fixed points of s2,q for any fixed q ≥ 2 and
developed an algorithm for finding all the fixed points of s2,q based on the
factorisation q2 + 1 over the ring Q[i]. Their conjectural list
{6, 10, 16, 20, 26, 40} of q when s2,q has exactly two cycles is not complete, and
the finiteness of the set is open.

Hasse, H., Prichett, G.: A conjecture on digital cycles, J. Reine Angew. Math. 298 (1978), 8-15
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Let P be a positive integer-valued function on the positive integers N and let

F

(∑
j≥0

aiq
i

)
=
∑
j≥0

P(aj),

where the aj are the digits of n expressed in base q ≥ 2. For sufficiently large n
we have F (n) < n. Stewart gives an efficient algorithm for finding the smallest
C such that F (n) < n for n > C . He studies growth properties of F (n) with
special emphasis on the case P(n) = nt .

Zentralblatt 0098.26202: In the case P(n) = nt many ingenious methods are
developed to find C .

If P(a) is always a non-negative integer he investigates the orbit- and
cycle-numbers resulting from the iteration of F (n) and the finiteness of these
numbers is assured.

Stewart, B.M.: Sums of functions of digits, Can. J. Math. 12 (1960), 374-389
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Already Ancient Greeks

Saint Hippolytus of Rome
(Mount Athos)

A form of sums of digits known to anci-
ent Greek mathematicians was described by
the Roman bishop Hippolytus (170–235)
in The Refutation of all Heresies, and more
briefly by the Syrian Neoplatonist philosopher
Iamblichus (c.245–c.325) in his commen-
tary on the Introduction to Arithmetic of Ni-
comachus of Gerasa.

Iamblichus Of Chalcis

Refutation catalogues both pagan beliefs and 33 gnostic Christian systems
deemed heretical by Hippolytus.

Hippolytus of Rome: The Refutation of all Heresies, in: Ante-Nicene Fathers, Vol. V (Roberts. A., Donaldson, J. Eds.), Scribner’s Sons, New York
1919 (Book IV, Ch. 14, p. 30).
Heath, Th.: A History of Greek Mathematics, Vol. I: From Thales to Euclid, Oxford University Press, Oxford 1921 (p. 113-117).
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Greek sums of digits via roots of numbers

There were two main systems of numerical notation in use in classical times in
ancient Greece. Both were a decimal system.

Attic numerals composed another system that came into use perhaps in the
7th century BCE. They were acrophonic, derived (after the initial one)
from the first letters of the names of the numbers represented.

The second main system, used for all kinds of numerals, is that with which
we are familiar, namely the alphabetic system.

10 the unit of the second course: the root od base of
20 are two monads (pythmen)
100 the unit of the third course: the root of 600 are six
monads
1000 the unit of the fouth course: the root of 700 are
7 monads

Sum of digits = sum of roots (monads)

21



Pythagorean calculus

Pythgoreans considered 10 as a unit of the second course, 100 as a unit of the
third course, 1000 as a unit of fourth course, etc.

A Iamblichos proposition:

Take the sum of three consecutive integers the greatest of which is divisible
by 3, e.g. 10, 11, 12

This sum consists of certain number of units, certain number of tens,
certain number of hundreds, etc.In our case 3 units and 3 tens, i.e. 33

Apply the procedure to the result, and so on.

Iamblichos says: the final result will be number 6.

In Refutation we can find a description of a method of foretelling future by
means of a calculation with numbers based on the notion of the monads
(pythmen). It actually reduces to what we know as gematria, a practice of
assigning a numerical value to a name, word or phrase according to an
alphanumerical cipher used for notation of numbers. In decimal systems it
actually reduces to the rule known as ‘casting out nines’.

22



Casting out nines – the Hindu Check

Important identity: sq(n) ≡ n (mod q − 1), q ≥ 2

When the decimal system was first employed (5th to 9th century CE), mathematicians
recognized the fascinating properties of 9 and developed a time-honored rule of casting
out nines. Casting out nines is an elementary check of a multiplication which makes
use of the congruence 10n ≡ 1 (mod 9).

Casting out nines was transmitted to Europe by the Arabs, but was probably
developed in the ancient India. The earliest known surviving work which describes how
casting out nines can be used to check the results of arithmetical computations is the
Mahâsiddhânta, written around 950 by the Indian mathematician and astronomer
Aryabhata II. (c. 920 - c. 1000).

Leonardo of Pisa (Fibonacci) introduced this rule to Medieval Europe through
his book Liber abaci (1202) as a check for arithmetic operations.
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de Moivre and the sum-of-digits
De Moivre’s problem: In an urn there are g numbers 0, 1, 2, . . . , g − 1. You carry out
n draws one after the other, noting the number drawn each time, putting it back into
the urn and mixing the contents of the urn. What is the probability that the sum of
the digits drawn equals m?

Rohrbach: If A
(q)
n,m = card{n : 0 ≤ n ≤ qn, sq(n) = m} then an induction proof yields

A
(q)
n,m =

∞∑
ν=0

(−1)ν
(n
ν

)(m−qν+n−1
n−1

)
. The sum terminates when m − qν < 0.

Czuber, E.: Wahrscheinlichkeitsrechnung und ihre Anwendung auf Fehlerausgleichung, Statistik und Lebensversicherung , B.G. Teubner, Leipzig,
Berlin 1914
Rohrbach, H.: Die Anzahl der Zahlen mit vorgegebener Quersumme, Math. Nachr. 1 (1948), 357-364
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de Moivre and the sum-of-digits
De Moivre’s problem: In an urn there are g numbers 0, 1, 2, . . . , g − 1. You carry out
n draws one after the other, noting the number drawn each time, putting it back into
the urn and mixing the contents of the urn. What is the probability that the sum of
the digits drawn equals m?

Rohrbach: If A
(q)
n,m = card{n : 0 ≤ n ≤ qn, sq(n) = m} then an induction proof yields

A
(q)
n,m =

∞∑
ν=0

(−1)ν
(n
ν

)(m−qν+n−1
n−1

)
. The sum terminates when m − qν < 0.

Cheo & Yien:
∑

sq(n)=m
n≤x

1 ∼ 1
m! ·

(
log x
log q

)m
A saddle-point estimate for card{n ≤ N : sq(n) = m} is given by Mauduit &
Sárközy

Cheo, P-H., Yien, S-Ch.: A problem on the k-adic representation of positive integers, (Chinese), Acta Math. Sin. 5 (1955), 4, 433-438
Mauduit, Ch., Sárközy, A.: On the arithmetic structure of the integers whose sum of digits is fixed , Acta Arith. 81 (1997), 2, 145–73
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Some fascinating identities1

Show that the sequence of increasingly complex fractions approaches a limit, and
find that limit

1

2
,
1
2
3
4

,

1
2
3
4
5
6
7
8

,

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

, . . .

Woods, D.R.: Elementary problem E2692 , Amer. Mat. Monthly 48 (1978), 1, 48
Woods, D.R., David Robbins, D., Gustaf Gripenberg, G.: Solution of E2692 , Amer. Mat. Monthly 86 (1979), 5, 394-395

25



Some fascinating identities1

Show that the sequence of increasingly complex fractions approaches a limit, and
find that limit

x

x + 1
,

x
x+1
x+2
x+3

,

x
x+1
x+2
x+3

x+4
x+5
x+6
x+7

,

x
x+1
x+2
x+3
x+4
x+5
x+6
x+7

x+8
x+9
x+10
x+11
x+12
x+13
x+14
x+15

, . . .

Woods, D.R.: Elementary problem E2692 , Amer. Mat. Monthly 48 (1978), 1, 48
Woods, D.R., David Robbins, D., Gustaf Gripenberg, G.: Solution of E2692 , Amer. Mat. Monthly 86 (1979), 5, 394-395
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Some fascinating identities1

If k ≥ 2 is an integer and 1 ≤ j ≤ k − 1 then

∞∏
i=0

1 + ci
1 + di

= k−1/k

The ci and di are such that ki ≤ ci , di < k(i + 1), sk(ci) ≡ j − 1 (mod k) and
sk(di) ≡ j (mod k)). For example, if k = 2 and j = 1 we obtain the following
infinite product:

1

2
· 4
3
· 6
5
· 7
8
· · · = 1√

2
=

√
2

2

Shallit, J.O.: On infinite products associated with sums of digits, J. Number Theory 21 (1985), 128-134
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Some fascinating identities1

If k is an even positive integer and ci and di are such that 2i ≤ ci , di < 2(i + 1),
sk(ci) ≡ 0 (mod 2) and sk(di) ≡ 1 (mod 2)), then

∞∏
i=0

1 + ci
1 + di

=

√
k

k

For example, if k = 6 we obtain the following infinite product:

1

2
· 3
4
· 5
6
· 8
7
· · · =

√
6

6

Shallit, J.O.: On infinite products associated with sums of digits, J. Number Theory 21 (1985), 128-134
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How independent are sq’s?

Remember the Hindu check sq(n) ≡ n (mod q − 1), q ≥ 2.

If we understand the digits as random variables xl , x2, . . . , xn which take
independently the values 0, 1, . . . , q − 1, then it follows from the main principle
of probability theory that the distribution of the new random variables

p = x1 + x2 + · · ·+ xn,

as n increases, tends to a normal (Gaußian) distribution with the mean
(g − 1)n/2 and variance (g 2 − 1)n/12 and the probability function

W
(q)
n,m =

exp

−
6[m− 1

2 (q−1)n]
2

(q2−1)n


√

1
6
(q2−1)n

The proof uses the generating function technique introduced by De Moivre
employing the generating function (1 + x + · · ·+ xq−1)n =

(
1−xq

1−x

)n
.

Rohrbach, H.: Die Anzahl der Zahlen mit vorgegebener Quersumme, Math. Nachr. 1 (1948), 357-364
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How independent are sq’s?

S.Ulam has asked whether the number of n < x for which s10(n) ≡ n ≡ 0
(mod 13) is asymptotically x/132?

Na,c,p(x) = card{n < x : n ≡ a (mod p) and sq(n) ≡ c (mod p)}

Let a, c ∈ N0 and p be a prime such that p ∤ (q − 1). Then

lim
x→∞

Na,c,p(x)

x
=

1

p2
.

Fine remarks (without proof) that for distinct primes p, q, the residues of
n (mod p) and sq(n) (mod q) are asymptotically independent.

Fine, N.J.: The distribution of the sum of digits (mod p), Bull. Amer. Math. Soc. 71 (1965), 651-651
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How independent are sq’s?

Vk(x) = card{n : 0 ≤ n < x , sq(n) = k}

Vk(x ;m, h) = card{n : 0 ≤ n < x , sq(n) = k , n ≡ h (mod m)}

There exist positive numbers ℓ1, c0, c1, c2, all depending on q alone, such that if
x > 1 is a real number, m is a positive integer with (m, q) = 1, k , h, ℓ are integers
such that ℓ > ℓ1, and m < exp(c0

√
ℓ), then, writing d = (m, q − 1), we have∣∣∣∣Vk(x ;m, h)− d

m
Vk(x)

∣∣∣∣ < c1
m
Vk(x) exp(−c2ℓ/ logm)

for k ≡ h (mod d) and
Vk(x ;m, h) = 0

if k ̸≡ h (mod d).

Mauduit, Ch., Pomerance, C., Sárközy, A.: On the distribution in residue classes of integers with a fixed sum of digits, Ramanujan J. 9 (2005),
1-2, 45-62
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Some fascinating identities2

Shallit:
∞∑
n=1

sq(n)
n(n+1)

= q
q−1

log q,

∑
n≥1

s2(n)
2n(2n+1)(2n+2)

= −1
2
log π + γ

2
+ 1

2
log 2

Allouche & Shallit (q = 2): If ℜ(s) > 0 then
∞∑
n=1

sq(n)
(

1
ns
− 1

(n+1)s

)
= qs−q

qs−1
ζ(s)

If aw ,q(n) denote the number of (possibly overlapping) occurrences of the
word w in the q-ary expansion of n then

∞∑
n=1

aw ,q(n)
(

1
ns
− 1

(n+1)s

)
is expressible in terms of Hurwitz zeta-functions

A variety of generalizations in:

Allouche, J.-P., Shallit, J., Sondow, J.: Summation of series defined by counting blocks of digits, J. Number Theory 123 (2007), 1, 133-143
Vignat, Ch., Wakhare, T.: Finite generating functions for the sum-of-digits sequence, Ramanujan J. 50 (2019), 3, 639-684
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Erdős – Kac behaviour

If ω(n) denotes the number of prime divisors of n then (Erdős & Kac)

lim
n→∞

1

n
card{n ≤ x : ω(n) < log log n + λ

√
2 log log n} =

1√
π

∫ ∞

−∞
exp(−u2)du

with λ an arbitrary real number.

Let m ∈ N, (m, q − 1) = 1 and Ur (N) = {n ≤ N : sq(n) ≡ r (mod m)}. Then

lim
N→∞

card
{
n ∈ Ur (N) : ω(n)−log logN√

log logN

}
card(Ur (N))

→ 1√
2π

∫ X

−∞
exp
(
−u2/2)

)
du

uniformly in X .

Erdős, P., Kac, M.: The Gaussian Law of Errors in the Theory of Additive Number Theoretic Functions, Amer. J. Math. 62 (1940), 1, 738-742
Mauduit, Ch., Sárközy, A.: On the arithmetic structure of the integers whose sum of digits is fixed , Acta Arith. 81 (1997), 2, 145-173
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Bush: 1
x

∑
n≤x) sq(n) ∼

q−1
2 log q

log x as x → ∞

Bush thus proved a statement given in Bowden’s book (p. 68) for which the
author had no general proof, namely that the average sum of the digits of
integers is least when they are written in the binary scale.2

Bellman & Shapiro: 1
x

∑
n≤x s2(n) =

log x
2 log 2

+ O(log log x) and claimed that

one of them improved the error term to O(1), what is the best possible result.
This was proved definitely by Mirsky.

Gadd & Wong noticed a mistake in the proof of Bellman & Shapiro
thought their result is correct, and proved

∑
n≤x sq(n) =

log x
2 log q

+ O(log log x) for
all integer bases q ≥ 2.

Fang:
∑

n≤x sq(n) =
q−1
2 log q

x log x + θ(x)x , where −5q−4
8

≤ θ(x) ≤ q+1
2

Bellman, R., Shapiro, H.N.: On a problem in additive number theory , Ann. Math. (2) 49 (1948), 333-340
Bowden, J.: Special topics in theoretical arithmetic, Garden City, New York 1936
Bush, L.E.: An asymptotic formula for the average sum of the digits of integers, Am. Math. Mon. 47 (1940), 154-156
Fang, Y.: A theorem on the k-adic representation of positive integers, Proc. Amer. Math. Soc. 130 (2002), 6, 1619-1622
Gadd, C., Wong, K.L.: A generalization to Bellman and Shapiro’s method on the sum of digital sum functions, PUMP J. Undergrad. Res. 5
(2022), 176-187
Mirsky, L.: A theorem on representations of integers in the scale of r , Scripta Math. 15 (1949), 11-12

2Bowden on pages 17–81 devoted to scales of numeration wished to abolish the “tyranny of ten” (p. 81) and proposes, among other things, to
have a 16-hour day (p. 77).
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N =
∑t

j=1 ajq
nj with n1 > n2 > . . . nt ≥ 0 and 1 ≤ aj ≤ q − 1

∑
n≤N

sq(n) =
n1(q − 1)

2

t∑
j=1

ajq
nj

︸ ︷︷ ︸
q−1
2

N log N
log q

−

q − 1

2

t∑
j=1

(n1 − nj)ajq
nj +

1

2

t∑
j=1

aj(aj − 1)qnj +
t∑

j=1

aj +
t∑

j=1

(
j−1∑
k=1

ak

)
ajq

nj

︸ ︷︷ ︸
O(x)

Cheo, P-H., Yien, S-Ch.: A problem on the k-adic representation of positive integers, (Chinese), Acta Math. Sin. 5 (1955), 4, 433-438
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In 1975 Delange proved a prototype result without the error term∑
n≤N

sq(n) =
q − 1

2
N logq N + NF (logq N),

where logq stands for the logarithm to base q and F is a 1-periodic, continuous
and nowhere differentiable function explicitly given in three steps:

First, he defined the function g on R by the formula

g(x) =

∫ x

0

(
⌊qt⌋ − q⌊t⌋ − q − 1

2

)
dt

then the function

h(x) =
∞∑
r=0

g(qrx)

qr

and finally

F (x) =
q − 1

2
(1 + ⌊x⌋ − x) + q1+⌊x⌋−xh(q1+⌊x⌋−x).

Delange, H.: Sur la fonction sommatoire de la fonction ’somme des chiffres’, Enseign. Math. (2) 21 (1975), 31-47
Madritsch, M.G.: The summatory function of q-additive functions on pseudo-polynomial sequences, J. Théor. Nombres Bordx. 24 (2012), 1,
153-171
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Delange actually generalized an explicit result for the remainder term proved
by Trollope for binary expansion:

2m−1
(
2f (x) + (1 + x) log2(1 + x)− 2x

)
where the integer N is written in the form N = 2m(1 + x) with 0 ≤ x < 1 and

f (x) =
∑∞

i=0
g(2ix)

2i
with

g(x) =

{
1
2
x , if 0 ≤ x ≤ 1

2
1
2
(1− x), if 1

2
< x ≤ 1.

Trollope also proved the estimate for the error term

2m−1

(
5

3
log2

5

3
− 2

3

)
where constant cannot be reduced.

Trollope, J.R.: An explicit expression for binary digital sums, Math. Mag. 41 (1968), 21-25
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Flajolet and Ramshaw showed that, Delange’s proof method for
computing the sum of all of the digits used when the first n nonnegative integers
are expressed in base q, can be adapted to some ‘unusual’ number systems as
Gray code or balanced ternary and its generalization or even can also be adapted
to count the occurrences of each digit separately.

Flajolet, P. and Ramshaw, L.: A note on Gray code and odd-even merge, SIAM J. Comput. 9 (1980), 142-158
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Gray code

0110111
Wikipedia

In Gray code each number from {0, 1, . . . , 2N − 1} is represented as the sequence of
integers as a binary string of length N in an order in which the adjacent integers have
Gray code representations differing in only one bit position (OEIS A014550).

In essence, a Gray code takes a binary sequence and shuffles it to a new form sequence
with the mentioned adjacency property.

Binary 000 001 010 011 100 101 110 111

Gray 000 001 011 010 110 111 101 100

Heeffer, A., Hinz, A.M.: “A difficult case”: Pacioli and Cardano on the Chinese Rings, Recreational Mathematics Magazine 4 (2017), 8, 5-23
Stibitz, G.R.: Binary counter , Bell Telephone Laboratories, Incorporated. U.S. Patent 2,307,868. Serial No. 420537, 1943
Gray, F.: Pulse Code Communication, U. S. Patent 2 632 058 March 17, 1953
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Gray code and sum-of-digits function

Let γ(n) denote the number of 1-bits in the standard Gray code representation of
n. There exists a continuous, nowhere differentiable function G : R → R,
periodic with period 1, such that∑

n≤N

γ(n) =
N log2 N

2
+ NG (log2 n)

The Fourier series representation G (x) =
∑

k gk exp(2kπix) converges absolutely
and its coefficients gk are given explicitly:

g0 = 2 log2 Γ

(
1

4

)
− log2 π − 1

2 log2 2
− 5

4

gk =
2ζ(χk ,

1
4
)

(log2 2)χk(1 + χk)
, χk =

2kπi

log2 2
, ζ(z , α) =

∑
j≥0

(j + α)−z .

Gardner, M.: Mathematical games, Scientific American 227 (1972), 2, , 106-109
Flajolet, P. and Ramshaw, L.: A note on Gray code and odd-even merge, SIAM J. Comput. 9 (1980), 142-158
Larcher, G., Tichy, R.F.: A note on Gray code and odd-even merge, Discrete Appl. Math. 18 (1987), 309-313
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Balanced (q, r)-ary number systems

A balanced ternary number system is a numeral system that comprises digits
−1, 0, and 1.

46410 = 1 · 35 + 2 · 34 + 2 · 33 + 1 · 3 + 2 · 1 = 1220123.

46410 = 1 · 36 − 1 · 35 − 1 · 33 + 1 · 32 − 1 · 3− 1 · 1 = R1L10L1R1L1L1

Most famous application: The weight problem of Bachet de Méziriac when
the weight can be placed in either pan of the balance.
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Balanced (q, r)-ary number systems

Balanced q-ary number system:

If q is odd, say q = 2r + 1, r = 1, 2, 3, . . . , one can express any natural
number N in base (q, r) in terms of symbols
−r ,−r + 1, . . . , 0, 1, . . . , r − 1, r in symbols 0, Li ,Ri , i = 1, 2, . . . , , r

If q is even, say q = 2r , r = 1, 2, 3, . . . , one can express any natural number
N in base (q, r) in terms of symbols −r + 1, . . . , 0, 1, . . . , r − 1 in symbols
0, Li ,Ri , i = 1, 2, . . . , , r − 1 and for −r with Lr (or for r = m with Rr ).
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Balanced (q, r)-ary number systems

More generally, digits need not be ‘centered’ around 0. We can take q
consecutive integers including 0 as digits. Denote by (q, r) number system,
where q denotes the base and r , 0 ≤ r ≤ q − 1, denotes the number of negative
digits −r , 1− r , . . . , . . . , q − 1− r .

balanced ternary system is the (3, 1) system

q-ary number system is (q, 0) system
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The number of d-digits in the (q, r) positional

number system

Let q and r be integers satisfying q ≥ 2 and 0 ≤ r ≤ q − 2. Let the (q, r) number
system be the positional number system with base q and digits −r , 1− r , q − 1− r ,
and let d be a non-zero digit in this system. Let ρ(n) denote the number of times that
the digit d is used when n is expressed in the (q, r) number system, and let F (ρ, n)
denote the appropriately truncated summation of ρ, in particular,

F (d , n) =

(
1− r

q − 1

)
ρ(0) + ρ(1) + ρ(2) + · · ·+ ρ(n − 1) +

r

q − 1
ρ(n).

Then, there exists a continuous, nowhere differentiable function P : R → R, periodic
with period 1, such that

F (d , n) =
n logq n

q
+ nP(logq n) for n ≥ 1

The Fourier series P(x) =
∑

k pkexp(2kπix) converges absolutely, and the coefficients
pk are given expolicitely.

Flajolet, P. and Ramshaw, L.: A note on Gray code and odd-even merge, SIAM J. Comput. 9 (1980), 142-158
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The Zeckendorf sum-of-digits function

The Zeckendorf decomposition of a natural number n is the unique expression
of n as a sum of Fibonacci numbers with non-consecutive indices and with
each index greater than 1:

309 018 = 196 418 + 75 025 + 28 657 + 6 765 + 1 597 + 377 + 144 + 34 + 1 =

F27+F25+F23+F17+F14+F12+F9+F1 = (10101001001001010010000001)Zeck

Let n be a positive integer. Define sZeck(n) as the sum (number) 1’s in the
Zeckendorf decomposition of the natural number n. We have (Coquet &
van den Bosch)∑

n<x

sZeck(n) =
3− β

5 log β
x log x + xG

(
log x

log β

)
+ O(log x)

(G is a real valued continuous, nowhere differentiable function of period 1 and
β = (1 +

√
5)/2)

Coquet, J., van den Bosch, P.: A summation formula involving Fibonacci digits, J. Number Theory 22 (1986), 139-146
Zeckendorf, E.: Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. R. Sci. Liège 41
(1972), , 179-182
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k-Zeckendorf representation

The k-Zeckendorf representation of a positive integer n is defined as the sum
of the k-generalized Fibonacci numbers n =

∑
i≥k εiF

(k)
i , where εi ∈ {0, 1}

and for all i ≥ k we have εiεi+1 · · · εi+k−1 = 0.

The k-generalized Fibonacci sequence for k = 2, 3, 4, 5, 6, 7, 8 can be found in
OEIS as sequences A000045, A000073, A000078, A001591, A001592, A122189,
and A079262, respectively.

Given this representation of a number n we say the k-Zeckendorf digital sum
of n is sk-Zeck(n) =

∑
i≥k εi and if sk-Zeck(n) | n then n is called a k-Zeckendorf

Niven number.

For instance, every F
(k)
i is a k-Zeckendorf Niven number or 8 and 12 are

3-Zeckendorf Niven numbers.

The asymptotic density of the k-Zeckendorf Niven numbers is zero.

Cooper, C.: The k-Zeckendorf array , in: Proceedings of the 14th international conference on Fibonacci numbers and their applications, Morelia,
Mexico, July 5–9, 2010 , (Luca, F., Stănică, P. Eds.), pp. 79-90, Sociedad Matemática Mexicana, México 2011,
Ray, A., Cooper, C.: On the natural density of the k-Zeckendorf Niven numbers, J. Inst. Math. Comput. Sci., Math. Ser. 19 (2006), 1, 83-98
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Expansions and linear recurrences

Let G = (Gk)k≥0 be a linear recurring sequence

Gk+d = a1Gk+d−1 + · · ·+ adGk
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Expansions and linear recurrences

Let G = (Gk)k≥0 be a linear recurring sequence

Gk+d = a1Gk+d−1 + · · ·+ adGk

with

integral coefficients a1 ≥ a2 ≥ · · · ≥ ad > 0, and

integral initial values 1 = G0, . . . ,Gd−1 satisfying a1 > 1 (for d = 1) and for
d ≥ 2 Gk ≥ a1Gk−1 + · · ·+ anG0 + 1 for n = 1, . . . , d − 1.
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Expansions and linear recurrences

Let G = (Gk)k≥0 be a linear recurring sequence

Gk+d = a1Gk+d−1 + · · ·+ adGk

Then every positive integer n can be represented in a unique way by
∑

j εj(n)Gj ,
where the G -ary digits εj(n) are integers with 0 ≤ εj < a1 satisfying some additional
conditions (cf. Theorem 1 of Pethő & Tichy).

Then for the sum-of-digits function sG(n) =
∑

εj(n) with respect to the given linear
recurrence G we have∑

n<N

sG(n) = cGN logN + N · F
(
logN

logα

)
+ O(logN),

where α is the dominating root of the characteristic polynomial of G, cG a suitable
constant, and F is a bounded periodic function of period 1 (not necessary continuous,
for more details Sec. 4 of Pethő & Tichy).

Pethő, A., Tichy, R.F.: On digit expansions with respect to linear recurrences, J. Number Theory 33 (1989), 2, 243-256
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Non-integer base of numeration

A positional numeral system with a non-integer number β > 1 as the radix. If

x = βndn + · · ·+ β2d2 + βd1 + d0 + β−1d−1 + β−2d−2 + · · ·+ β−md−m

then
x = (d2d1d0.d−1d−2 . . . d−m)β

For instance, base
√
2 behaves in a very similar way to base 2. Every integer can

be expressed in base
√
2 without the need of a decimal point (just put a zero

digit in between every binary digit):

(5118)10 = (1001111111110)2 = (1000001010101010101010100)√2.

Bergman, G.: A number system with an irrational base, Math. Mag. 31 (1957), 98-110
Parry, W.: On the β-expansions of real numbers, Acta Math. Acad. Sci. Hung. 11 (1960), 3-4, 401-416
Rényi, A.: Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hung. 8 (1957), 3-4, 477-493
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Golden mean representations
Base φ = (1 +

√
5/2) was introduced by Bergman. A positive integer n written in

base φ has the form n =
∑∞

j=0 εjφ
j , with digits εj ∈ {0, 1}, and where εjεj+1 = 11 is

not allowed. Ignoring leading and trailing 0’s, the base phi representation of a number
n is unique.
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Golden mean representations
Base φ = (1 +

√
5/2) was introduced by Bergman. A positive integer n written in

base φ has the form n =
∑∞

j=0 εjφ
j , with digits εj ∈ {0, 1}, and where εjεj+1 = 11 is

not allowed. Ignoring leading and trailing 0’s, the base phi representation of a number
n is unique. For instance

1 000 000 = φ28 + φ26 + φ20 + φ16 + φ13 + φ8 + φ4 + φ0+

φ−4 + φ−9 + φ−11 + φ−14 + φ−16 + φ−20 + φ−26 + φ−28 =

(10100000100010100101000010001.0001000100001001000100000101)φ
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Golden mean representations
Base φ = (1 +

√
5/2) was introduced by Bergman. A positive integer n written in

base φ has the form n =
∑∞

j=0 εjφ
j , with digits εj ∈ {0, 1}, and where εjεj+1 = 11 is

not allowed. Ignoring leading and trailing 0’s, the base phi representation of a number
n is unique.

If sφ(n) =
∑

j εj , then (sφ(n))n≥0 = 0, 1, 2, 2, 3, 3, 3, 2, 3, 4, 4, 5, 4, 4, 4, 5, 4, 4, . . .

If Ln is the Lucas sequence: L0 = 2, L1 = 1, Li = Li−1 + Li−2 for i ≥ 2 then
(Cooper & Kennedy)

∑
k≤Ln

sφ(k) =
3

2
− 3

2
(−1)n +

1−
√
5

2

(
1 +

√
5

2

)n

+
1 +

√
5

2

(
1−

√
5

2

)n

+

+
5−

√
5

2

(
1 +

√
5

2

)n

(n + 1) + +
5 +

√
5

2

(
1−

√
5

2

)n

(n + 1)

Bergman, G.: A number system with an irrational base, Math. Mag. 31 (1957), 98-110
Cooper, C.N., Kennedy, R.E.: The first moment of the number of 1’s function in the beta-expansion of the positive integers, Journal of Institute
of Mathematics & Computer Sciences 14 (2001), 69-77
Dekking, F.M.: The sum of digits functions of the Zeckendorf and the base phi expansions, Theor. Comput. Sci. 859 (2021), 70-79
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Complex integer bases

The notion of congruence can be applied to any ring of algebraic integers Z[β] in
an algebraic number field, modulo the element β in the ring. This ring Z[β] is
isomorphic to the quotient ring Z[x ]/(m(x)), where m(x) is the minimum
polynomial of β.

Sylvester a.k.a. Lanavicensis: If β is a non-zero algebraic integer of norm
|β| = N , then a complete residue system of elements of Z[β] modulo β contains
|N | elements and

Z[β]
β

≈ZN .

Kátai & Szabó: Let β be a Gaussian integer of norm N and let
D = {0, 1, 2, . . . ,N − 1}. Then β is a valid base for the complex numbers using
the digit set D if and only if β = −a ± i for some positive integer a.

Lanavicensis: Note on complex integers, Quart. J. Pure and Applied Math. 4 (1861), 94-96, 124-130
Kátai, I., Szabó, J.: Canonical number-systems for complex integers, Acta Sci. Math. 37 (1975), , 255-260
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Complex integer bases

The only complex integer bases in Z[i ], which give rise to a unique unite digital
representation of the Gaussian integers using a ‘connected’ set of digits from the
natural numbers (in our instance we have the digits (0, . . . , a2)), is based on
Gaußian integers a + i with a ∈ N. Let

z =
K∑

k=0

εk(−a + i)k , εk ̸= 0, s−a+i(z) =
K∑

k=0

εk .

For instance, −3 + 3i = (11010)−1+i

∑
|−2+i|<N

s−a+i(z) = 2πN log5 N + NΦ(log5 N) + O(
√
N · logN)

(the proof could be extended to the general case)

Grabner, P.J., Kirschenhofer, P., Prodinger, H.: The sum-of-digits function for complex bases, J. Lond. Math. Soc., II. Ser. 57 (1998), 1,
20-40
Knuth, D.E.: The art of computer programming. Vol. 2: Seminumerical algorithms, Vol. 2, 3rd Ed., Addison-Wesley, Bonn 1998
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sum-of-digits function along the real line

The summatory function S(N) of the sum-of-digits function in base q = −a + i,
where a = 1 or a ≥ 2 and even, of the first N positive integers satisfies

a2

2
≤ lim inf

N→∞

S(N)

N loga2+1 N
≤ lim sup

N→∞

S(N)

N loga2+1 N
≤ 3a2

2

Grabner, P.J., Kirschenhofer, P., Prodinger, H.: The sum-of-digits function for complex bases, J. Lond. Math. Soc., II. Ser. 57 (1998), 1,
20-40
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Legendre’s formulae & Kummer’s theorem

A.-M. Legendre: . . . En général, si on a N = θn, le nombre de fracteurs θ
compris dans le produit 1, 2, 3, . . . ,N sera

x =
N − 1

θ − 1
.

Et si on fait, comme on peut toujours la supposer,

N = Aθm + Bθn + Cθr + etc.,

les coefficiens A,B ,C ,etc. étant plus petits que θ, il résulters

x =
N − A− B − C − etc.

θ − 1

Legendre, A.-M.: Essai sur la théorie des nombres, 2de édition, Courcier, Paris 1808 (p. 10).
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Legendre’s formulae & Kummer’s theorem

Let νp(n) be the exponent of the largest power of prime p that divides n, then

νp(n!) =
n − sp(n)

p − 1
.
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Legendre’s formulae & Kummer’s theorem

Let νp(n) be the exponent of the largest power of prime p that divides n, then

νp(n!) =
n − sp(n)

p − 1
.

Kummer:

νp

((
n

m

))
=

sp(m) + sp(n −m)− sp(n)

p − 1

Kummer’s algorithm: the exact power of prime p that divides the binomial
coefficient

(
n
m

)
is given by the number of ‘carries’ when we add m and n −m in

base p.

Example: 33
∣∣(189

78

)
and 78 = (2220)3, 189− 78 = 111 = (11010)3

Kummer, E.E.: Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine Angew. Math. 44 (1852), 93-146 (p. 116).
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If n = (nknk−1 . . . n0)q and m = (mkmk−1 . . .m0)q with n ≥ m, the base q
carries when adding m and n −m are defined by ϵn,m,q

−1 = 0 and for i ≥ 0,

ϵn,m,q
i =


1, if mi > ni

1 if mi = ni and ϵn,m,q
i−1 = 1

0, otherwise.

If κq(m, n) = νp
((

n
m

))
=
∑k

i=0 ϵi then

sq(m) + sq(n −m)− sq(n) = (q − 1)κq(n,m).

Define generally cq(a1, a2, . . . , ar ) as the sum of all carries produced in
computing a1 + · · ·+ ar by the traditional addition algorithm. Then

sq

(
r∑

i=1

ai

)
=

r∑
i=1

sq(ai)− (q − 1)cq(a1, . . . , ar ).

Schneider, M., Schneider, R.: Digit sums and generating functions, Ramanujan J. 52 (2020), 2, 291-302
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A factorial excursion

Every positive integer n can be uniquely written in the factorial base (Cantor)
representation

n = n1 · 1! + n2 · 2! + · · ·+ nk · k! = (nk . . . n2nk)!

Ball et al. introduce three different analogs of generalized integral binomial
coefficients and prove three different analogs, involving generalized factorial base
representations, of Kummer’s theorem.

Ball, T., Edgar, T., Juda, D.: Dominance orders, generalized binomial coefficients, and Kummer’s theorem, Math. Mag. 87 (2014), 2, 135-143
Ball, T., Beckford, J., Dalenberg, P., Edgar, T. Rajabi, T.: Some combinatorics of factorial base representations, J. Integer Seq. 23
(2020), No.3, Article 20.3.3, 29 p.
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Cantor type representation

Let Q = (qn)n≥0 be a sequence of positive integers with q0 = 1 and qi > 1 for all
i ≥ 1. Given an n ∈ N we have uniquely

n =
∑
j≥0

aQ,j(n)q0 · · · qj with 0 ≤ aQ,j(n) < qj+1

If 1 = q0 < q1 ≤ q2 ≤ . . . and sQ(n) =
∑k

j=1 aQ,j(n) then

m−1∑
n=0

sQ(n) =
m

2

q∗(m)∑
j=1

(qj − 1) +
mP(m)

2
+

mqq∗(m){P(m)}2

2P(m)
− m

2

− mH(P(m))

P(m)
− m{P(m)}

2P(m)
+

mqq∗(m−1)−1{P(m)qq∗(m)}2

2qq∗(m)P(m)
+ O

(
m

qq∗(m)

)
,

where q∗(m) = i denotes the uniquely determined integers ≥ 0 such that
qi ≤ m < qi+1, P(m) = m/qq∗(m), H(x) =

∫ x

0
({v} − 1)dv and {·} is the

fractional part.
Kirschenhofer, P., Tichy, R.F.: On the distribution of digits in Cantor representations of integers, J. Number Theory 18 (1984), 121-134
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Lower bounds for sq(n)

For a wide variety of integer sequences (an)n of controlled growth arising from
number theory and combinatorics it was shown that sq(an) is at least cq log n,
where cq is a constant depending on the base q and on the sequence. For
example:

Let (an)n be sequence of positive integers with asymptotic behaviour

an = e f (n)(1 + O(n−α)), with f ′′ ≍ 1

x
,

for some α > 0 and a two times differentiable function f . For any base q ≥ 2,
the inequality

sq(an) >
β log n

10 log q
, β = min

{
α,

2

3

}
holds on a set of positive integers n of asymptotic density 1.

Cilleruelo, J., Luca, F., Rue, J., Zumalacárregui, A.: On the number of nonzero digits of some integer sequences, Cent. Eur. J. Math. 11
(2012), 188-195
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Lower bounds for sq(n)

For a wide variety of integer sequences (an)n of controlled growth arising from
number theory and combinatorics it was shown that sq(an) is at least cq log n,
where cq is a constant depending on the base q and on the sequence. For
example:

for special cases we know improvements

Luca (2002): the number of non-zero digits lq(an) in the base q representation
of an = n! or an = lcm[1, 2, . . . , n] grows at least as fast as a constant,
depending on base the q, times log n:

(lq(an) + 1) log q + log(lq(an)) ≥ log(n + 1)

Sanna (2015): let an = n! or an = lcm[1, 2, . . . , n] then

sq(n) > Cq log n log log log n for n > ee

Luca, F.: The number of non-zero digits of n!, Can. Math. Bull. 45 (2002), 1, 115-118
Sanna, C.: On the sum of digits of the factorial , J. Number Theory 147 (2015), 836-841
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Digits on prescribed positions

Let C (n, r , d) be the number of 1 bits in the binary representation of n that are
in positions that are congruent to r (mod d), the positions are indexed starting
at 0 on the right. Then

∑
n≥0

C (n, r , d)zn =
∑
m≥0

z2
r+dm

1 + z2r+dm , d ≥ 0, 0 ≤ r < d

For instance, the generating function for the number of 1’s in even positions in
the binary expansion of n is given by

1

1− z

∞∑
m=0

z4
m

1 + z4m

Adams-Watters, F.T., Ruskey, F.: Generating functions for the digital sum and other digit counting sequences, J. Integer Seq. 12 (2009), N0. 5,
Article ID 09.5.6, 9 p.
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Power sums of digital sums

Motivation: Glaisher (§14) has shown that the number of odd binomial
coefficients

(
n
j

)
, where 0 ≤ j ≤ n, is 2s2(n). Consequently, the number of odd

numbers in the first k rows of Pascal’s triangle is∑k−1
n=0 2

s2(n) =
∑∞

j=0

(∑k−1
n=0 s2(n)

k
)

(log 2)j

j!
.

Stolarsky:

1
x

∑
n<x s2(n)

k =

(
log x

log 2

)k

+

{
O
(
(log x)k−1

)
, k non-negative integer

O
(
(log x)k−1/2

√
log log x)

)
, k ≥ 0.

Coquet extended the first estimate to arbitrary real k proving:∑
n<N s2(n)

k =

N
(

logN
2 log 2

)k
+ N

(
logN
2 log 2

)k−1 (
kF
(

logN
log 2

)
+ k(k−1)

4

)
+ O

(
N
(

logN
log 2

)k−2
)

with a function F : R → R of period 1, continuous, nowhere differentiable, and
the implicit constant depending only on k .
Coquet, J.: Power sums of digital sums, J. Number Theory 22 (1986), 161-176
Glaisher, J. W. L.: On the residue of a binomial-theorem coefficient with respect to a prime modulus, Quart. J. 30 (1899), 150-156
Stolarsky, K.B.: Power and exponential sums of digital sums related to binomial coefficient parity , SIAM J. Appl. Math. 32 (1977), 717-730
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Digit sums over prime bases

sq(n) is, on average, not too dependent on the primality of q Fissum:

∑
p≤N

p prime

sp(n) =

(
1− π2

12

)
N2

logN
+ C

N2

log2 N
+ o

(
N2

log2 N

)
, C

.
= 0.1199

Fissum, R.: Digit sums and the number of prime factors of the factorial n! = 1 · 2 · n, (Bachelor’s project in BMAT), Norwegian University of
Science and Technology, Tromdheim, Gjøvik May 2020 (Prop. 2.12).
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Digit sums over complex primes

Mauduit & Rivat answering a question by Gel’fond proved that the sum of
digits of prime numbers written in a basis q ≥ 2 is equidistributed in arithmetic
progressions (except for some well known degenerate cases): if q ≥ 2 and m ≥ 2
and there exists σq,m such that for every a ∈ Z we have

card{p ≤ x : sq(p) ≡ a (mod m)} =
(m, q − 1)

m
π(x , a, (m, q−1))+O(x1−σq,m)

Drmota, Rivat & Stoll extended this result to Gaußian primes from some
fixed residue class lying in full disc and basis −a ± i.

Morgenbesser extended further this result to Gaußian primes from some
fixed residue class lying in angular regions and basis −a ± i.

Gelfond, A.O.: Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith. 13 (1968), 259-265
Drmota, M., Rivat, J., Stoll, Th.: The sum of digits of primes in Z[i ], Monatsh. Math. 155 (2008), 3-4, 317-347
Morgenbesser, J.F.: The sum of digits of Gaussian primes, Ramanujan J. 27 (2012), 1, 43-70
Mauduit, Ch., Rivat, J.: Sur un problème de Gelfond: la somme des chiffres des nombres premiers, Ann. Math. 171 (2010), 1591-1646
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Functional generalisations

Bellman & Shapiro in connection with function s2(n) proposed to investigate
arithmetic functions w(n), called by them dyadically additive, satisfying the
relation w(m + n) = w(m) + w(n), whenever m and n have no summand in
common when written as sums of distinct powers of two.

Bellman, R., Shapiro, H.N.: On a problem in additive number theory , Ann. Math. (2) 49 (1948), 333-340
Gelfond, A.O.: Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith. 13 (1968), 259-265
Mahler, K.: The spectrum of an array and its application to the study of the translation properties of a simple class of arithmetical functions. II: On
the translation properties of a simple class of arithmetical functions, J. Math. Phys., Mass. Inst. Techn. 6 (1927), 158-163 (Reprinted in Publ. MIT
Ser. II 62 No. 118 (1927)).
Mendès France, M.: Les suites ŕ spectre vide et la répartition modulo 1 , J. Number Theory 5 (1973), 1-15
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arithmetic functions w(n), called by them dyadically additive, satisfying the
relation w(m + n) = w(m) + w(n), whenever m and n have no summand in
common when written as sums of distinct powers of two.

During his visit to Paris in October 1966 (cf. Mendès France),
A.O.Gel’fond defined the notion of the q-additive function: Given an integer
q ≥ 2, an arithmetic function f : N0 → R is called q-additive if for every
r , a ∈ N and b ∈ N0 we have f (qra+ b) = f (qra) + f (b) whenever 0 ≤ b < qr .
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Functional generalisations

Bellman & Shapiro in connection with function s2(n) proposed to investigate
arithmetic functions w(n), called by them dyadically additive, satisfying the
relation w(m + n) = w(m) + w(n), whenever m and n have no summand in
common when written as sums of distinct powers of two.

During his visit to Paris in October 1966 (cf. Mendès France),
A.O.Gel’fond defined the notion of the q-additive function: Given an integer
q ≥ 2, an arithmetic function f : N0 → R is called q-additive if for every
r , a ∈ N and b ∈ N0 we have f (qra+ b) = f (qra) + f (b) whenever 0 ≤ b < qr .

In the written form, in his last but one research paper (Gelfond) he only
defined the notion of the additive function as a function satisfying the relations
f (n) = f (a) + f (b) if n = a + b and a < 2ℓ, b = 2ℓc , where a, b, c , n ∈ N.

As examples of such additive functions he gives the identity function, the
sum-of-digits functions sq and their linear combinations.

Bellman, R., Shapiro, H.N.: On a problem in additive number theory , Ann. Math. (2) 49 (1948), 333-340
Gelfond, A.O.: Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith. 13 (1968), 259-265
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arithmetic functions w(n), called by them dyadically additive, satisfying the
relation w(m + n) = w(m) + w(n), whenever m and n have no summand in
common when written as sums of distinct powers of two.

During his visit to Paris in October 1966 (cf. Mendès France),
A.O.Gel’fond defined the notion of the q-additive function: Given an integer
q ≥ 2, an arithmetic function f : N0 → R is called q-additive if for every
r , a ∈ N and b ∈ N0 we have f (qra+ b) = f (qra) + f (b) whenever 0 ≤ b < qr .

Traces of the concept of the q-additive function can also be found in (Mahler).

Bellman, R., Shapiro, H.N.: On a problem in additive number theory , Ann. Math. (2) 49 (1948), 333-340
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Bellman & Shapiro in connection with function s2(n) proposed to investigate
arithmetic functions w(n), called by them dyadically additive, satisfying the
relation w(m + n) = w(m) + w(n), whenever m and n have no summand in
common when written as sums of distinct powers of two.

During his visit to Paris in October 1966 (cf. Mendès France),
A.O.Gel’fond defined the notion of the q-additive function: Given an integer
q ≥ 2, an arithmetic function f : N0 → R is called q-additive if for every
r , a ∈ N and b ∈ N0 we have f (qra+ b) = f (qra) + f (b) whenever 0 ≤ b < qr .

A later extension of this definition says that a function f : N0 → R is said to be
strongly q-additive if f (qra + b) = f (a) + f (b) whenever 0 ≤ b < qr .

Bellman, R., Shapiro, H.N.: On a problem in additive number theory , Ann. Math. (2) 49 (1948), 333-340
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Joint work with

L.Mǐśık, Ostrava O.Strauch, Bratislava

Mǐśık, L., Porubský, Š., Strauch, O.: Uniform distribution of the weighted sum-of-digits functions, Unif. Distrib. Theory 16 (2021), no. 1, 93-126
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Uniform distribution mod 1

Sequence of d-dimensional vectors x⃗n, n = 0, 1, 2, . . . , in Rd is said to be
uniformly distributed mod 1 (shortly u.d. mod1) if for all intervals

[a⃗, b⃗) ⊆ [0, 1)d we have

lim
N→∞

A
(
[a⃗, b⃗);N ; x⃗n mod 1

)
N

=
d∏

j=1

(bj − aj)

where a⃗ = (a1, . . . , ad) and b⃗ = (b1, . . . , bd).

Here, A(I ;N ; x⃗n) denotes the number of elements, out of the first N elements of
the sequence x⃗n, n = 0, 1, 2, . . . , that lies in set I ⊆ Rd .

59



Almost uniform distribution mod 1

If there exists an increasing sequence of positive integers
N = {N1 < N1 < N3 < . . . } such that

lim
j→∞

A
(
[⃗0, x⃗);Nj ; x⃗n mod 1

)
Nj

=
d∏

j=1

x (j) (1)

for all x⃗ ∈ [0, 1)d then the sequence x⃗n, n = 0, 1, 2, . . . , is called N-almost
uniformly distributed mod1 (or N-almost u. d. mod1).

n
21+⌊log2 n⌋ — almost u.d. but not u.d.

log pn, pn the nth prime — not almost u.d.

S.Akiyama: Almost uniform distribution modulo 1 and the distribution of primes, Acta Math. Hung. 78 (1998), 39-44
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Let d be a positive integer and let s
(d)
q (n) =

∑∞
j=0 n

d
j denote the sum of the dth

powers of the q-adic digits of the positive integer n. If θ ∈ R then sequences of
the form θs

(d)
q (n) with n running over N0 or over the set of prime numbers were

studied by several authors.
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sq and u.d.
Mendès France proved that sequence θsq(n), n = 0, 1, 2, . . . , is u.d. mod1 if and
only if θ is irrational.

This result was later reproved by Coquet, who proved that for every k ∈ N the

sequence θs
(k)
q (n), n = 0, 1, 2, . . . , is u.d. mod 1 if and only if θ is irrational.

Mauduit & Rivat proved that θs
(1)
q (n) is u.d. mod 1 when θ is irrational and n runs

through the prime numbers only.

Tichy & Turnwald proved estimates for the discrepancy of the sequence αs
(d)
q (n),

n = 0, 1, 2, . . . , for irrational α of finite approximation type η.

Drmota & Rivat & Stoll proved that sequence (αs−a±i(p)), running over
Gaussian primes p is uniformly distributed modulo 1 if and only if α ∈ R/Q if −a± i is
prime and a ≥ 28. Morgenbesser extended this result to circular sector.
Simultaneously he removed the conditional assuptions.

M. Mendès France: Nombres normaux applications aux fonctions pseudoaleatoires, J. Anal. Math. 20 (1967), 1-56
Coquet, J.: Sur certaines suites uniformement équireparties modulo 1 , Acta Arith. 36 (1980), 157-162
Drmota, M., Rivat, J., Stoll, Th.: The sum of digits of primes in Z[i ], Monatsh. Math. 155 (2008), 3-4, 317-347
Morgenbesser, J.F.: The sum of digits of Gaussian primes, Ramanujan J. 27 (2012), 1, 43-70
Tichy, R.F., Turnwald, G.: On the discrepancy of some special sequences, J. Number Theory 26 (1987), 68-78
Mauduit, Ch., Rivat, J.: Sur un problème de Gelfond: la somme des chiffres des nombres premiers, Ann. Math. 171 (2010), 1591-1646
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weighted q-ary sum-of-digits function

Let
γ = (γ0, γ1, γ3, . . . )

denote a sequence of real numbers, q ≥ 2 a positive integer, and
Σq = {0, 1, . . . , q − 1} the set of q-ary digits. For a non-negative integer n with
base q representation

n = n0 + n1q + n2q
2 + · · ·+ nℓq

ℓ, nj ∈ Σq, nℓ ̸= 0,

where ℓ = ⌊logq n⌋, the weighted q-ary sum-of-digits function is defined by
the relation

sq,γ(n) = γ0n0 + γ1n1 + γ2n2 + . . . γℓnℓ.

q-adic van der Corput sequence = sq,γ(n), n ∈ N0, where γi = q−i−1 for all
i ∈ N0.
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van der Corput sequence

For a non-negative integer n with base q, q ≥ 2, q ∈ N, representation

n = n0 + n1q + n2q
2 + · · ·+ nℓq

ℓ, nj ∈ Σq, nℓ ̸= 0, (2)

where ℓ = ⌊logq n⌋, define

ϕq(n) =
n0
q

+
n1
q2

+
n2
q3

+ . . .
nk
qk+1

.

van der Corput sequence

ϕq(n), n = 0, 1, 2 . . . ,

is an example of the simplest one-dimensional low-discrepancy sequence over the
unit interval. Simultaneously, it can be interpreted as an example of a weighted
q-ary sum-of-digits function.
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Halton sequence

If qi , i ∈ {1, . . . , d}, are pairwise coprime bases, the d-dimensional Halton
sequence is defined by

(ϕq1(n), ϕq2(n), . . . , ϕqd (n)), n = 0, 1, 2 . . . .

d = 1 ↬ van der Corput
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d-dimensional generalization with d > 1

Let (q1, q2, . . . , qd) be a d-tuple of positive integers ≥ 2 and

Γ =


γ(1)

γ(2)

...
γ(d)

 =


γ
(1)
0 γ

(1)
1 γ

(1)
2 . . .

γ
(2)
0 γ

(2)
1 γ

(2)
2 . . .

...
...

...
. . .

γ
(d)
0 γ

(d)
1 γ

(d)
2 . . .

 =
(
γ⃗T
0 , γ⃗

T
1 , γ⃗

T
2 , . . .

)

be a d ×∞-matrix with real entries with γ⃗j = (γ
(1)
j , γ

(2)
j , . . . , γ

(d)
j ) transposed in

the jth column. For every n ∈ N0 define

sq1,...,qd ,Γ(n) =
(
sq1,γ(1)(n), sq2,γ(2)(n), . . . , sqd ,γ(d)(n)

)
,
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Pillichshammer’s problem

Pillichshammer proposed the following general problem:

Let q1, . . . , qd be a d-tuple of pairwise coprime integers ≥ 2. What properties of
the weight sequences forming Γ guarantee the uniform distribution mod 1 of the
sequence

sq1,...,qd ,Γ(n) =
(
sq1,γ(1)(n), sq2,γ(2)(n), . . . , sqd ,γ(d)(n)

)
, n = 0, 1, 2, . . .?

F.Pillichshammer: Uniform distribution of sequences connected with the weighted sum-of-digits function, Unif. Distrib. Theory 2 (2007), 1, 1-10
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Partial answer

Pillichshammer proved:

Let the base q ∈ N be at least 2. The sequence

sq,Γ(n) =
(
sq,γ(1)(n), sq,γ(2)(n), . . . , sq,γ(d)(n)

)
is u.d. mod1 if and only if for every integral vector h⃗ ∈ Zd \ {⃗0} one of the
following conditions is fulfilled: either

∞∑
k=0

⟨h⃗,γ⃗k ⟩q/∈Z

||⟨h⃗, γ⃗k⟩||2 = ∞,

or, there exists a non-negative integer k with

⟨h⃗, γ⃗k⟩ /∈ Z and ⟨h⃗, γ⃗k⟩q ∈ Z.

van der Corput sequence satisfies the second condition of this criterion with k
taken as the maximal exponent such that qk+1 divides h.
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Hofer proved a sufficient condition on the weight sequences which gives a
partial answer to Pillichshammer’s question which requires the divergence of
the series

∞∑
i=0

∣∣∣∣∣∣h (γ(j)
2i+1 − qjγ

(i)
2i

) ∣∣∣∣∣∣2
for each dimension j ∈ {1, . . . , d} and every non-zero integer h.

Drawback: this sufficient condition is not necessary and it does not cover some
prototype classes of u.d. sequences as d-dimensional Kronecker sequences.

R.Hofer: Note on the joint distribution of the weighted sum-of-digits function modulo one in case of pairwise coprime bases, Unif. Distrib. Theory 2
(2007), 2, 35-47
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Trigonometric criterion

Let q ≥ 2 be an integer and Γ be the d ×∞-matrix of real weights defined
above. Then the sequence sq,Γ(n), n = 0, 1, 2, . . . , is u.d. mod 1 if and only if for

every integral vector h⃗ ∈ Zd \ {⃗0} we have

lim
N→∞

N−1∏
j=0

⟨h⃗,γ⃗j ⟩/∈Z

sin π||q⟨h⃗, γ⃗j⟩||
q sin π||⟨h⃗, γ⃗j⟩||

= 0. (P)

Mǐśık, L., Porubský, Š., Strauch, O.: Uniform distribution of the weighted sum-of-digits functions, Unif. Distrib. Theory 16 (2021), no. 1, 93-126

70



Trigonometric criterion

Let q ≥ 2 be an integer and Γ be the d ×∞-matrix of real weights defined
above. Then the sequence sq,Γ(n), n = 0, 1, 2, . . . , is u.d. mod 1 if and only if for

every integral vector h⃗ ∈ Zd \ {⃗0} we have

lim
N→∞

N−1∏
j=0

⟨h⃗,γ⃗j ⟩/∈Z

| sin πq⟨h⃗, γ⃗j⟩|
q| sin π⟨h⃗, γ⃗j⟩|

= 0. (P)
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A discrepancy estimate

Let q ≥ 2,N ,M be positive integers such that qN ≤ M < qN+1. Let Γ be the
d ×∞-matrix of real weights as above. Then for the discrepancy of the sequence

sq,Γ(n) mod 1, n = 0, 1, 2, . . . ,M − 1,

we have

DM(sq,Γ(n) mod 1) ≤ Cd

(
1

H
+

∑
0<||h⃗||∞≤H

1

r(h⃗)
×

×
( k∑

j=1

q−j+2

N−j∏
t=0

⟨h⃗,γ⃗t⟩/∈Z

| sin πq⟨h⃗, γ⃗t⟩|
q| sin π⟨h⃗, γ⃗t⟩|

+ O

(
1

qk−1

)))
.

for every integer k satisfying 1 ≤ k ≤ N .
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Distribution functions of sq,γ(n) mod 1

Distribution function g(x) is called a distribution function of sequence xn,
n = 1, 2, . . . , if there exists an increasing sequence of positive integers
N1,N2, . . . such that

lim
k→∞

A
(
[0, x),Nk , xn

)
Nk

= g(x) a.e. on [0, 1).

Distribution function g(x) is called an asymptotic distribution function of the
sequence xn, n = 1, 2, . . . , if limN→∞ FN(x) = g(x) a.e. on [0, 1]. Sequence xn,
n = 1, 2, . . . , is u.d. in [0, 1] if and only if g(x) = x is its asymptotic distribution
function.

There holds:

If function g(x) = x , x ∈ [0, 1], is a distribution function of the sequence
sq,γ(n) mod 1, n = 0, 1, 2, . . . , then this sequence is u.d., i.e. g(x) = x is its
asymptotic d.f.
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A new property of the van der Corput

sequence

(q − 1)
∞∑
j=0

γj = S (S1)

γ0 ≥ γ1 ≥ γ2 ≥ · · · > 0. (S2)
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γ0 ≥ γ1 ≥ γ2 ≥ · · · > 0. (S2)

If there exists λ = 0, 1, 2, . . . such that

(q − 1)(γλ+2 + γλ+3 + . . . ) < γλ+1.

Then the interval

J =

(
(q − 1)

∞∑
j=0

γj − γλ+1, (q − 1)
λ+1∑
j=0

γj

)

(of positive length) does not contain an element of the form sq,γ(n).
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If there exists λ = 0, 1, 2, . . . such that

(q − 1)(γλ+2 + γλ+3 + . . . ) > γλ+1,

then sequence sq,γ(n), n = 0, 1, 2, . . . , is not u.d. in the interval [0, S ].
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sequence

(q − 1)
∞∑
j=0

γj = S (S1)

γ0 ≥ γ1 ≥ γ2 ≥ · · · > 0. (S2)

Let γ be a sequence of positive real numbers such that for every λ = 0, 1, 2, . . .
we have

(q − 1)(γλ+2 + γλ+3 + . . . ) = γλ+1.

If γ satisfies conditions (S1) and (S2), and S = 1 then sequence sq,γ(n),
n = 0, 1, 2, . . . , is the q-adic van der Corput sequence.
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Let γ be a sequence of positive real numbers such that for every λ = 0, 1, 2, . . .
we have

(q − 1)(γλ+2 + γλ+3 + . . . ) = γλ+1.

If γ satisfies conditions (S1) and (S2), and S = 1 then sequence sq,γ(n),
n = 0, 1, 2, . . . , is the q-adic van der Corput sequence.

Consequently, if γ satisfies conditions (S1), (S2), and S = 1 then every
uniformly distributed γ-weighted q-adic sum-of-digits function sq,γ(n),
n = 0, 1, 2, . . . , is the q-adic van der Corput sequence.
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Thank you for your kind attention.
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