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Fixed notation and assumptions

» K is a number field, Mk its set of places (prime ideals +
archimedean norms).

» S C My is finite, contains the infinite places, so that
Oks ={ze K|Yve Mg\S, |z|, <1}.

» (C is a projective smooth irreducible curve over K.
» D is an effective divisor on C.
» The S-integral points of C'\ D are then defined by

(C\D)(Ok.s) :={P € C(K)|¥p € Mg\S, (P mod p) ¢ D mod p}.
Example

(P'\ {0,00})(Og {o0,2:8)) = O (00 0.3 = {£278%,0,b € Z}.



Effective bounds on integral points

Theorem (Siegel-Faltings)
If g(C) +2|D| > 3, (C\D)(Ok,s) is finite for all S.

Problem
This result does not tell us at all how to find the integral points.

Definition (Weil height)
The Weil height of x € K* is defined by

Z ny logt(|z],),

vEMK

1

o) = mg

with n, = [K, : Q,,] for v|vg € Mg the local degree of v.

Goal of an effective bound
For ¢ € K(C) fixed with poles in D, find a bound on the height
hg := h o ¢ on integral points of (C'\ D).



The general idea for the method

In everything that follows:
> d—[K:Q
> s =19
» Forve Mg, N(v) = N(p) = |Oxk/p| if v=yp prime ideal, 1 if v
archimedean.
> For r € N*, N(")(S) is the r-th largest N (v), v € S.
> Rg = regulator of Ok g, log™(z) = max(log(x), 1).

Theorem (LF, 2019)

Assume (B): “for every Q € D, there is ¢g € K(C) nonconstant with
poles and zeroes in D\ {Q} and ¢o(Q) =1"
Then, there is ¢ > 0 effective absolute such that for all S,

N{(S)

——————hgRglog"(hxR
log" NO(S) K Rslog®(hk Rs)

where r is the number of Gal(K /K )-orbits of D and f(d, s) explicit.



|dea of proof
D= |_|Dz, € (C\ D)(Ok.s).

Definition (Local helght)
For 1 <i <r and v € M, define the local and global heights

hp, »(P) = max( log(v-adic distance between P and D), 0)

th(P) = Z nth“U
'UEMK
(notice hp, ,(P) > 0 if and only if P mod v € D;).
|dea of Proof, part | (goal: bound some height(s)).

» For each v € S, hp, ,(P) large at most for one 4.

» Take ' =S\ {(r — 1) largest v’s}.

» Pigeonhole principle : 3i, hp, ,(P) small for all v € S\ S’, keep it.
» There is v € S’ such that hp, ,(P) = 1/|S|hp,(P), keep it.

» Enough to bound hp, ,(P) then!



ldea of proof, the end
By (B), one has ¢; € K(C) such that ¢;(D;) = 1 and div(¢;) C D and
then ¢;(P) € Oy 5 (almost), h1,(¢:(P)) 2 hp,»(P) and
hp,(P) > h(¢i(P)), so we have

hp. (P h(¢;(P))
ves, and hiw(0i(P)) Z hp, o(P) 2 Té€| ) > H‘J/‘ )

Proposition (Evertse and Gyéry, 2015)

Let T" subgroup of K* generated by {{1,--- ,&s—1} up to torsion.
Or :=h(&) - h(€s—1).Then, for every £ A1 €T and every v € K,

N(v
]/\_[«(i) = —log ‘1 — f‘v < (166d)510gx§<7)([})(—)r 10g*(N(U)/I(L))

Consequence

All the previous work allows to apply this to £ = ¢;(P),I' = O} ¢ and
with v € 8" so N(v) < N)(S) and Or bounded in terms of Rg (see
later),we thus obtain the theorem.



Applications to the S-unit equations: previous bounds
With fixed «, 5 € K, consider
ar+ By =1, z,y€Okg. (1)
and define H := max(h(«), h(58),1).
Remark
For a« = 3 =1, these points correspond to (P! \ {0,1,00})(Ok,s) :
r =3, (B) verified with functions 1 — z,x,1 — 1/x.
Lemma (Hajdu, 1993)
There exists a fundamental system of S-units £&1,---&s_1 for ' = O[ng
such that O < s**Rg.
Theorem (Gydry-Yu, 2006)
All solutions of (1) satisfy

max(h(x), h(y)) < AH (2)

where
log* Rs

_ 2543 a7(1)
A = (16ds)>+3 N (3) (1+10g* N(1>(S)>Rs.



Improvements on the bounds

Theorem (LF, 2020)
With (1) and in (2), for P' = N®)(S) one can take

log™ Rg
_ 9. 2543 p/
A =2 (16ds)>+3P (1 t o > Rs.

Remark
The only dependance in the largest place v of S is in Rg (thus in

log N (v)).
Theorem (Gyéry, 2020)

t number of finite places in S, R = max(hg, Rx). With (1) and in (2),
one can take

P’ log* log P
o 4spt+4

Remark
Big improvement on the blue factor : no more s® term, but slightly
weaker dependence in Ry .



Applications to explicit abc bounds over number fields
For a,b,c € K* with a +b+ ¢ = 0, define

HK(a7bvc) = H max(”aHm Hb”v’ ”c”v) NK a b, C HN e(p/p)
vEMK

where p goes through primes for which we do not have |a|, = |b], = |c/,.
Uniform abc conjecture over number fields
HK(aa b, C) <<s,[K:Q] (AKNK<Q7 b, c))1+6

Theorem (Gydry, 2022)
For all a,b,c as above and N = max(Ng(a,b,c), 16),

cg logg N

IOg HK(aa ba C) < ClNl/3+ loga N

with c1, co eff. computable in d, Ak andlog,.(z) =logo---ologx.

Remark
Previous exponent of 1 + ¢ given by Gyé6ry in 2008.



New applications
For I' C K* a finitely generated subgroup of rank m, define the division
group
T:={zeQ |3k € Zs, 2" €T}.

Consider for fixed o, 3 € Q" (again, H = max(h(a), h(8),1)) the
equation

axr + By =1, z,y el (3)

Theorem (Gyéry-LF, 2022)
For solutions of (3) withT" C Oy g, [K(a, 8,2,y) : K(a, 8)] <2 and

max(h(x), h(y)) < A(H + mhg) + mhg

with
ho = max h(&)
P/
A = 16C6SW®F max(log(cgsP’),log" Or),

ce explicit in d and m and again P’ = N (S). 11



Other new applications

Other results for solutions of ax + By = 1 for:

» (z,y) € T a finite type subgroup of (@*)2 generated up to torsion
by &1, ,&m, and such that T' C (O )*.

Theorem (Gyéry-LF, 2022)
We again have [K(z,y,a, ) : K(a, 8)] <2 and

max(h(x), h(y)) < A(H + 3mhyg),
with ho = max;(h(&)), A = 16¢Gs 5 L Or, max(log(cgs '), log* P'),
iy = m?(16ed)3(m+2),
» Same bound for T. := {z € (Q)? |z = yz with y € T', h(z) < €}.

> Sinlilar bound fori
C[Te):={z € (Q*)2 |z =yz with y € T', h(z) < e(1+ h(y)}.
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The “power” unit equation 2" +y =1

Start now with the equation

" +y=1, (z,y) €0k (4

Starting point
Solutions correspond to points of (P \ D)(Ok s), where

D ={0,00} U iy,

This gives:
» r = 7(n) + 2 Galois orbits over Q as p, = Ugj, 1.
» Hypothesis (B) (“for every Q € D, there is ¢ € K(C) nonconstant
with poles and zeroes in D \ {Q}") satisfied with:

— 1—x for 0.
— 1—1/x for oco.
— z" for any n-th root of unity.
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Shape of the result

" +y=1

Theorem (Gyéry-LF, 2022)
For the solutions of (4), and P’ = N(7(")+2)(S), we have a bound of the
shape

max (h(a:), My)) <C(ds)— (1 ;. Jog” RS) Rs

n log™ P’ log™ P’
with C(d, s) explicit in d, s.

Consequence

When n has a lot of divisors, the red factor can be much smaller than the
one for ax + By = 1.

Remark
If s < 7(n)+ 2, we have the much better bound 2log(2n) by Runge's
method.
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Perspectives (work in progress)

Could we do the same for the more general equation

a4+ By =1, (z,y)€ (9;(75

Problem
In this case, the solutions correspond to points of (P! \ D)(Ok s) with

D = {0, 00} U {n-th roots of 1/a}.
In general, these n-th roots are all conjugate over Q!

Possible strategy
Extend the field K to have slightly more Galois orbits ?
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Thank you for your attention!
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