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Fixed notation and assumptions

I K is a number field, MK its set of places (prime ideals +
archimedean norms).

I S ⊂MK is finite, contains the infinite places, so that

OK,S := {x ∈ K | ∀v ∈MK \ S, |x|v ≤ 1}.

I C is a projective smooth irreducible curve over K.
I D is an effective divisor on C.
I The S-integral points of C \D are then defined by

(C\D)(OK,S) := {P ∈ C(K) | ∀p ∈MK\S, (P mod p) /∈ D mod p}.

Example

(P1 \ {0,∞})(OQ,{∞,2,3}) = O×Q,{∞,2,3} = {±2a3b, a, b ∈ Z}.
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Effective bounds on integral points

Theorem (Siegel-Faltings)
If g(C) + 2|D| ≥ 3, (C\D)(OK,S) is finite for all S.

Problem
This result does not tell us at all how to find the integral points.

Definition (Weil height)
The Weil height of x ∈ K∗ is defined by

h(x) =
1

[K : Q]

∑
v∈MK

nv log+(|x|v),

with nv = [Kv : Qv0 ] for v|v0 ∈MQ the local degree of v.

Goal of an effective bound
For φ ∈ K(C) fixed with poles in D, find a bound on the height
hφ := h ◦ φ on integral points of (C \D).
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The general idea for the method
In everything that follows:
I d = [K : Q]

I s = |S|
I For v ∈MK , N(v) = N(p) = |OK/p| if v = p prime ideal, 1 if v

archimedean.
I For r ∈ N∗, N (r)(S) is the r-th largest N(v), v ∈ S.
I RS = regulator of OK,S , log∗(x) = max(log(x), 1).

Theorem (LF, 2019)
Assume (B): “for every Q ∈ D, there is φQ ∈ K(C) nonconstant with
poles and zeroes in D \ {Q} and φQ(Q) = 1”.
Then, there is c > 0 effective absolute such that for all S,

hφ(P ) ≤ cf(d, s)
N (r)(S)

log∗N (r)(S)
hKRS log∗(hKRS)

where r is the number of Gal(K/K)-orbits of D and f(d, s) explicit.
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Idea of proof
D =

r⊔
i=1

Di, P ∈ (C \D)(OK,S).

Definition (Local height)
For 1 ≤ i ≤ r and v ∈MK , define the local and global heights

hDi,v(P ) ' max(− log(v-adic distance between P and Di), 0)

hDi
(P ) =

1

[K : Q]

∑
v∈MK

nvhDi,v(P ),

(notice hDi,v(P ) > 0 if and only if P mod v ∈ Di).

Idea of Proof, part I (goal: bound some height(s)).

I For each v ∈ S, hDi,v(P ) large at most for one i.
I Take S′ = S \ {(r − 1) largest v’s}.
I Pigeonhole principle : ∃i, hDi,v(P ) small for all v ∈ S \ S′, keep it.
I There is v ∈ S′ such that hDi,v(P ) & 1/|S′|hDi

(P ), keep it.
I Enough to bound hDi,v(P ) then!
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Idea of proof, the end
By (B), one has φi ∈ K(C) such that φi(Di) = 1 and div(φi) ⊂ D and
then φi(P ) ∈ O×K,S (almost), h1,v(φi(P )) & hDi,v(P ) and
hDi(P )� h(φi(P )), so we have

v ∈ S′, and h1,v(φi(P )) & hDi,v(P ) &
hDi

(P )

|S′|
� h(φi(P ))

|S′|
.

Proposition (Evertse and Győry, 2015)
Let Γ subgroup of K∗ generated by {ξ1, · · · , ξs−1} up to torsion.
ΘΓ := h(ξ1) · · ·h(ξs−1).Then, for every ξ 6= 1 ∈ Γ and every v ∈ K,

h1,v(ξ) = − log |1− ξ|v < (16ed)s
N(v)

log∗N(v)
ΘΓ log∗(N(v)h(ξ)).

Consequence
All the previous work allows to apply this to ξ = φi(P ),Γ = O∗K,S and
with v ∈ S′ so N(v) ≤ N (r)(S) and ΘΓ bounded in terms of RS (see
later),we thus obtain the theorem.
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Applications to the S-unit equations: previous bounds
With fixed α, β ∈ K, consider

αx+ βy = 1, x, y ∈ O×K,S . (1)

and define H := max(h(α), h(β), 1).

Remark
For α = β = 1, these points correspond to (P1 \ {0, 1,∞})(OK,S) :
r = 3, (B) verified with functions 1− x, x, 1− 1/x.

Lemma (Hajdu, 1993)
There exists a fundamental system of S-units ξ1, · · · ξs−1 for Γ = O×K,S
such that ΘΓ ≤ s2sRS .

Theorem (Györy-Yu, 2006)
All solutions of (1) satisfy

max(h(x), h(y)) ≤ AH (2)

where

A = (16ds)2s+3N (1)(S)

(
1 +

log∗RS
log∗N (1)(S)

)
RS .
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Improvements on the bounds
Theorem (LF, 2020)
With (1) and in (2), for P ′ = N (3)(S) one can take

A = 2 · (16ds)2s+3P ′
(

1 +
log∗RS
log∗ P ′

)
RS .

Remark
The only dependance in the largest place v of S is in RS (thus in
logN(v)).

Theorem (Győry, 2020)
t number of finite places in S, R = max(hK , RK). With (1) and in (2),
one can take

A = (16ed)4sRt+4 P ′

log∗ P ′

(
1 +

log∗ logP

log∗ P ′

)
RS .

Remark
Big improvement on the blue factor : no more ss term, but slightly
weaker dependence in RK .
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Applications to explicit abc bounds over number fields
For a, b, c ∈ K∗ with a+ b+ c = 0, define

HK(a, b, c) :=
∏

v∈MK

max(‖a‖v, ‖b‖v, ‖c‖v) NK(a, b, c) :=
∏
p

N(p)e(p/p)

where p goes through primes for which we do not have |a|p = |b|p = |c|p.

Uniform abc conjecture over number fields
HK(a, b, c)�ε,[K:Q] (∆KNK(a, b, c))1+ε

Theorem (Györy, 2022)
For all a, b, c as above and N = max(NK(a, b, c), 16),

logHK(a, b, c) < c1N
1/3+

c2 log3 N
log2 N

with c1, c2 eff. computable in d,∆K and logr(x) = log ◦ · · · ◦ log x.

Remark
Previous exponent of 1 + ε given by Győry in 2008.
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New applications
For Γ ⊂ K∗ a finitely generated subgroup of rank m, define the division
group

Γ := {x ∈ Q∗ | ∃k ∈ Z>0, x
k ∈ Γ}.

Consider for fixed α, β ∈ Q∗ (again, H = max(h(α), h(β), 1)) the
equation

αx+ βy = 1, x, y ∈ Γ. (3)

Theorem (Győry-LF, 2022)
For solutions of (3) with Γ ⊂ O×K,S , [K(α, β, x, y) : K(α, β)] ≤ 2 and

max(h(x), h(y)) ≤ A(H +mh0) +mh0

with

h0 = max
1≤i≤m

h(ξi)

A = 16c6s
P ′

log∗ P ′
ΘΓ max(log(c6sP

′), log∗ΘΓ),

c6 explicit in d and m and again P ′ = N (3)(S). 11



Other new applications

Other results for solutions of αx+ βy = 1 for:

I (x, y) ∈ Γ a finite type subgroup of (Q∗)2 generated up to torsion
by ξ1, · · · , ξm, and such that Γ ⊂ (O×K,S)2.

Theorem (Győry-LF, 2022)
We again have [K(x, y, α, β) : K(α, β)] ≤ 2 and

max(h(x), h(y)) ≤ A(H + 3mh0),

with h0 = maxi(h(ξi)), A = 16c′6s
P ′

log∗ P ′ΘΓ,max(log(c′6sP
′), log∗ P ′),

c′6 = m2(16ed)3(m+2).
I Same bound for Γε := {x ∈ (Q∗)2 |x = yz with y ∈ Γ, h(z) < ε}.
I Similar bound for
C(Γ, ε) := {x ∈ (Q∗)2 |x = yz with y ∈ Γ, h(z) < ε(1 + h(y)}.
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The “power” unit equation xn + y = 1

Start now with the equation

xn + y = 1, (x, y) ∈ O×K,S (4)

Starting point
Solutions correspond to points of (P1 \D)(OK,S), where

D = {0,∞} ∪ µn.

This gives:

I r = τ(n) + 2 Galois orbits over Q as µn = td|nµ∗d.
I Hypothesis (B) (“for every Q ∈ D, there is φQ ∈ K(C) nonconstant

with poles and zeroes in D \ {Q}”) satisfied with:
− 1− x for 0.
− 1− 1/x for ∞.
− xn for any n-th root of unity.
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Shape of the result

xn + y = 1

Theorem (Győry-LF, 2022)
For the solutions of (4), and P ′ = N (τ(n)+2)(S), we have a bound of the
shape

max

(
h(x),

h(y)

n

)
≤ C(d, s)

P ′

log∗ P ′

(
1 +

log∗RS
log∗ P ′

)
RS

with C(d, s) explicit in d, s.

Consequence
When n has a lot of divisors, the red factor can be much smaller than the
one for αx+ βy = 1.

Remark
If s < τ(n) + 2, we have the much better bound 2 log(2n) by Runge’s
method.
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Perspectives (work in progress)

Could we do the same for the more general equation

αxn + βy = 1, (x, y) ∈ O×K,S ?

Problem
In this case, the solutions correspond to points of (P1 \D)(OK,S) with

D = {0,∞} ∪ {n-th roots of 1/α}.

In general, these n-th roots are all conjugate over Q!

Possible strategy
Extend the field K to have slightly more Galois orbits ?
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Thank you for your attention!
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