Index Form Equations in Quartic Number Fields

Shabnam Akhtari

March 10, 2023

Discriminant Form Equations

Let $\left\{1, \omega_{2}, \ldots, \omega_{n}\right\}$ be an integral basis for the number field K.
The discriminant form equation:

$$
D_{K / \mathbb{Q}}\left(x_{2} \omega_{2}+\ldots+x_{n} \omega_{n}\right)=D
$$

in x_{2}, \ldots, x_{n}.
Evertse and Győry's Book: Discriminant Equations in Diophantine Number Theory.

Index of an Algebraic Integer

We have

$$
D(\alpha)=I^{2}(\alpha) D_{K}
$$

$I(\alpha)$ is the index of $\mathbb{Z}[\alpha]$ in the ring of integers of K.
For a given $\left\{1, \omega_{2}, \ldots, \omega_{n}\right\}$ integral basis for the number field K, we can write

$$
D_{K / \mathbb{Q}}\left(x_{2} \omega_{2}+\ldots+x_{n} \omega_{n}\right)=D_{K / \mathbb{Q}}\left(x_{2}, \ldots, x_{n}\right)=\left(I\left(x_{2}, \ldots, x_{n}\right)\right)^{2} D_{K} .
$$

Index Forms

Let $\left\{1, \omega_{2}, \ldots, \omega_{n}\right\}$ be an integral basis for the number field K.
The index form:

$$
I\left(x_{2} \omega_{2}+\ldots+x_{n} \omega_{n}\right)=I\left(x_{2}, \ldots, x_{n}\right)
$$

in x_{2}, \ldots, x_{n}.
The form $I\left(x_{2} \omega_{2}+\ldots+x_{n} \omega_{n}\right)$ has degree $\binom{n}{2}$.

Index Form Equations

Upper bounds for the number of solutions of index form equations are obtained by Evertse, Győry, Bérczes, ...

Index Forms in Cubic Number Fields

$$
I\left(x_{2}, x_{3}\right)=m .
$$

Index of a Quartic Algebraic Integer

$K=\mathbb{Q}(\alpha)$.
I_{0} the index of the algebraic integer α.
Since $I(\alpha)=I_{0}$, for every algebraic integer β, we have $I_{0} \beta \in \mathbb{Z}[\alpha]$. Let

$$
I_{0} \beta=a_{\beta}+x \alpha+y \alpha^{2}+z \alpha^{3}
$$

with $a_{\beta} \in \mathbb{Z}$.

Index Forms in Quartic Number Fields

$K=\mathbb{Q}(\alpha)$ a quartic number field.
$\omega_{1}=1, \omega_{2}, \omega_{3}$ and ω_{4} a fixed integral basis for K.

$$
\mathfrak{l}_{1}:=\mathfrak{l}_{1}(x, y, z)=x \omega_{2}+y \omega_{3}+z \omega_{4} .
$$

\mathfrak{l}_{i} denotes the algebraic conjugates of \mathfrak{l}_{1} for $i=1,2,3,4$.

Index Forms in Quartic Number Fields

$$
D_{K / \mathbb{Q}}\left(x \omega_{2}+y \omega_{3}+z \omega_{4}\right)=\prod_{1 \leq i<j \leq 4}\left(\mathfrak{l}_{i}(x, y, z)-\mathfrak{l}_{j}(x, y, z)\right)^{2}
$$

$$
D_{K / \mathbb{Q}}\left(x \omega_{2}+y \omega_{3}+z \omega_{4}\right)=(I(x, y, z))^{2} D
$$

where D is the discriminant of the number field K.
$I(x, y, z) \in \mathbb{Z}[x, y, z]$ is a form of degree 6.
For any algebraic integer $\beta=a+x \omega_{2}+y \omega_{3}+z \omega_{4}$, with $a, x, y, z \in \mathbb{Z}$, the index $I(\beta)$ is equal to $|I(x, y, z)|$, where $I(\beta)$ is the module index of $\mathbb{Z}[\beta]$ in O_{K}.

How to Solve an Index Form Equation?

$$
\begin{aligned}
& K=\mathbb{Q}(\alpha) \\
& I(\alpha)=I_{0}
\end{aligned}
$$

$$
\mathfrak{l}_{1}:=\mathfrak{l}_{1}(x, y, z)=x \omega_{2}+y \omega_{3}+z \omega_{4}
$$

$\beta^{\prime}=I_{0} \beta \in \mathbb{Z}[\alpha]$.
We denote by $\alpha^{(i)}$ and $\beta^{\prime(i)}$ the corresponding algebraic conjugates of α and β^{\prime} over \mathbb{Q}, for $i=1,2,3,4$.

$$
\prod_{(i, j, k, l)}\left(\frac{\beta^{\prime(i)}-\beta^{\prime(j)}}{\alpha^{(i)}-\alpha^{(j)}}\right)\left(\frac{\beta^{\prime(k)}-\beta^{\prime(I)}}{\alpha^{(k)}-\alpha^{(I)}}\right)= \pm \frac{I_{0}^{6} m}{I_{0}}= \pm I_{0}^{5} m
$$

Finding Monogenizers of $\mathbb{Z}[\alpha]$

$$
\prod_{(i, j, k, I)}\left(\frac{\beta^{(i)}-\beta^{(j)}}{\alpha^{(i)}-\alpha^{(j)}}\right)\left(\frac{\beta^{(k)}-\beta^{(I)}}{\alpha^{(k)}-\alpha^{(I)}}\right)= \pm 1
$$

Ternary Quadratic Forms

For each ($i, j, k, l)$,

$$
\begin{aligned}
& \left(\frac{\beta^{\prime(i)}-\beta^{\prime(j)}}{\alpha^{(i)}-\alpha^{(j)}}\right)\left(\frac{\beta^{\prime(k)}-\beta^{\prime(I)}}{\alpha^{(k)}-\alpha^{(I)}}\right) \\
= & Q_{1}(x, y, z)-\alpha_{i, j, k, l} Q_{2}(x, y, z),
\end{aligned}
$$

where

$$
\alpha_{i, j, k, l}=\alpha^{(i)} \alpha^{(j)}+\alpha^{(k)} \alpha^{(I)} .
$$

A Binary Cubic Form

$$
\prod_{(i, j, k, l)}\left(\frac{\beta^{\prime(i)}-\beta^{\prime(j)}}{\alpha^{(i)}-\alpha^{(j)}}\right)\left(\frac{\beta^{\prime(k)}-\beta^{\prime(I)}}{\alpha^{(k)}-\alpha^{(I)}}\right)
$$

Ternary Quadratic Forms

$K=\mathbb{Q}(\alpha)$ a quartic number field.
$f(X)=X^{4}+a_{1} X^{3}+a_{2} X^{2}+a_{3} X+a_{4}$ the minimal polynomial of α.

$$
\begin{aligned}
& Q_{1}(x, y, z)= \\
& x^{2}-a_{1} x y+a_{2} y^{2}+\left(a_{1}^{2}-2 a_{2}\right) x z+ \\
& +\left(a_{3}-a_{1} a_{2}\right) y z+\left(-a_{1} a_{3}+a_{2}^{2}+a_{4}\right) z^{2}
\end{aligned}
$$

and

$$
Q_{2}(X, Y, Z)=y^{2}-x z-a_{1} y z+a_{2} z^{2}
$$

How to Solve an Index Form Equation?

$$
\begin{aligned}
& K=\mathbb{Q}(\alpha) \\
& I(\alpha)=I_{0}
\end{aligned}
$$

$$
\mathfrak{l}_{1}:=\mathfrak{l}_{1}(x, y, z)=x \omega_{2}+y \omega_{3}+z \omega_{4}
$$

$\beta^{\prime}=I_{0} \beta \in \mathbb{Z}[\alpha]$.
We denote by $\alpha^{(i)}$ and $\beta^{\prime(i)}$ the corresponding algebraic conjugates of α and β^{\prime} over \mathbb{Q}, for $i=1,2,3,4$.

$$
\prod_{(i, j, k, l)}\left(\frac{\beta^{\prime(i)}-\beta^{\prime(j)}}{\alpha^{(i)}-\alpha^{(j)}}\right)\left(\frac{\beta^{\prime(k)}-\beta^{\prime(I)}}{\alpha^{(k)}-\alpha^{(I)}}\right)= \pm \frac{I_{0}^{6} m}{I_{0}}= \pm I_{0}^{5} m
$$

Index Forms in Quartic Number Fields

$$
K=\mathbb{Q}(\alpha)
$$

$\omega_{1}=1, \omega_{2}, \omega_{3}$ and ω_{4} a fixed integral basis for K, with associated index form $I(x, y, z)$.

$$
I_{0}=I(\alpha)
$$

Gaál, Pethő and Pohst (1996)

The triple $(x, y, z) \in \mathbb{Z}^{3}$ is a solution of $I(x, y, z)=m$ if and only if there is a solution $(u, v) \in \mathbb{Z}^{2}$ of the cubic Thue equation

$$
F(u, v)= \pm I_{0}^{5} m
$$

such that (x, y, z) satisfies

$$
Q_{1}(x, y, z)=u, \quad Q_{2}(x, y, z)=v
$$

A Monogenic Order

K is a number field.
\mathcal{O} is an order in K.
The ring \mathcal{O} is called monogenic if it is generated by one element as a \mathbb{Z}-algebra.
$\mathcal{O}=\mathbb{Z}[\alpha]$ for an element $\alpha \in K$.
The element α is called a monogenizer of \mathcal{O}.
monogenizations

Orders in Quadratic Number Fields

Quadratic rings are parametrized by their discriminants D.
The unique (up to isomorphism) quadratic ring of discriminant D is

$$
\mathbb{Z}\left[\frac{D+\sqrt{D}}{2}\right]
$$

All quadratic rings are monogenic, and all have exactly one monogenization.

The Number of Monogenizations

K. Györy (1976)

An order \mathcal{O} has at most finitely many monogenizations.

The Number of Monogenizations

J.-H. Evertse and K. Győry, On unit equations and decomposable form equations (1985).

Evertse and Győry

An order \mathcal{O} in a number field K of degree n has at most $\left(3 \times 7^{2 n!}\right)^{n-2}$ monogenizations.

The Number of Monogenizations

J.-H. Evertse (2011)

An order \mathcal{O} in a number field K of degree n has at most $2^{4(n+5)(n-2)}$ monogenizations.

A. and Bhargava (2022)

A quartic order \mathcal{O} has at most 2760 monogenizations.

Finding the Monogenizers of $\mathbb{Z}[\alpha]$

$$
\begin{aligned}
\prod_{(i, j, k, l)} & \left(\frac{\beta^{(i)}-\beta^{(j)}}{\alpha^{(i)}-\alpha^{(j)}}\right)\left(\frac{\beta^{(k)}-\beta^{(I)}}{\alpha^{(k)}-\alpha^{(l)}}\right)= \pm 1 \\
& \left(\frac{\beta^{(i)}-\beta^{(j)}}{\alpha^{(i)}-\alpha^{(j)}}\right)\left(\frac{\beta^{(k)}-\beta^{(l)}}{\alpha^{(k)}-\alpha^{(l)}}\right) \\
= & Q_{1}(x, y, z)-\alpha_{i, j, k, l} Q_{2}(x, y, z)
\end{aligned}
$$

with

$$
\alpha_{i, j, k, l}=\alpha^{(i)} \alpha^{(j)}+\alpha^{(k)} \alpha^{(I)} .
$$

Finding the Monogenizers of $\mathbb{Z}[\alpha]$

$$
\prod_{(i, j, k, l)}\left(\frac{\beta^{(i)}-\beta^{(j)}}{\alpha^{(i)}-\alpha^{(j)}}\right)\left(\frac{\beta^{(k)}-\beta^{(I)}}{\alpha^{(k)}-\alpha^{(I)}}\right)= \pm 1
$$

$$
\prod\left(Q_{1}(x, y, z)-\alpha_{i, j, k, l} Q_{2}(x, y, z)\right)= \pm 1
$$

$$
F(u, v)= \pm 1
$$

$$
F(u, v)=u^{3}-a_{2} u^{2} v+\left(a_{1} a_{3}-4 a_{4}\right) u v^{2}+\left(4 a_{2} a_{4}-a_{3}^{2}-a_{1}^{2} a_{4}\right) v^{3}
$$

Resolvent Cubic Form

Let

$$
f(X)=X^{4}+a_{1} X^{3}+a_{2} X^{2}+a_{3} X+a_{4} \in \mathbb{Z}[X]
$$

be the minimal polynomial of α.

$$
F(u, v)=u^{3}-a_{2} u^{2} v+\left(a_{1} a_{3}-4 a_{4}\right) u v^{2}+\left(4 a_{2} a_{4}-a_{3}^{2}-a_{1}^{2} a_{4}\right) v^{3}
$$

is the cubic resolvent of the polynomial $f(X)$.
The discriminant of $f(X)$ is equal to the discriminant of $F(u, 1) \in \mathbb{Z}[u]$.

Constructing Quartic Thue Equations

$$
\begin{gathered}
F(u, v)=u^{3}-a_{2} u^{2} v+\left(a_{1} a_{3}-4 a_{4}\right) u v^{2}+\left(4 a_{2} a_{4}-a_{3}^{2}-a_{1}^{2} a_{4}\right) v^{3}= \pm 1 \\
Q_{1}(x, y, z)=1 . \\
Q_{2}(x, y, z)=y^{2}-x z-a_{1} y z+a_{2} z^{2}=0 . \\
X(p, q)=p^{2}-a_{1} p q+a_{2} q^{2}, Y(p, q)=p q, Z(p, q)=q^{2} . \\
Q_{1}(X(p, q), Y(p, q), Z(p, q))=1 .
\end{gathered}
$$

A quartic Thue equation!

Constructing Quartic Thue Equations for Non-trivial (u, v)

$$
\begin{aligned}
& Q_{1}(x, y, z)=u_{0} \\
& Q_{2}(x, y, z)=v_{0}
\end{aligned}
$$

Find $s, t \in \mathbb{Z}$ such that

$$
s u_{0}+t v_{0}=1
$$

Bhargava's Method

Manjul Bhargava, On the number of monogenizations of a quartic order, Publicationes Mathematicae (2022).
M. Wood, Quartic rings associated to binary quartic forms (2008): Natural bijection between classes of integral binary quartic forms and isomorphism classes of triples $(Q ; R ; \beta)$ where Q is a quartic ring, R is a monogenic cubic resolvent ring of Q, and β is a monogenizer of R up to equivalence.

Bhargava's Parametrization of Quartic Rings:
Canonical bijection between pairs of integral ternary quadratic forms and the set of isomorphism classes of pairs (Q, R), where Q is a quartic ring and R is a cubic resolvent ring of Q.

Index Form Equations

$$
I(x, y, z)= \pm m
$$

How many solutions?
We can give an upper bound for the number of integer solutions.

Index Form Equations

$$
I(x, y, z)= \pm m
$$

Index Form Equations

$$
I(x, y, z)= \pm m
$$

If there is an algebraic integer α in the quartic number field K with index m, then we can consider a cubic Thue equation:

$$
F(u, v)= \pm m^{6}
$$

The cubic form F is the cubic resolvent of the minimal polynomial of α.

Solutions of Cubic Thue Equations

In order to find primitive solutions of the cubic equation

$$
F(u, v)= \pm m^{6} .
$$

we may reduce this equation modulo each prime divisor of m to obtain a family of cubic Thue equations of the shape

$$
G(u, v)= \pm 1
$$

How many equations $G(u, v)= \pm 1$ can we possibly produce?

Primitive Solutions of Cubic Thue Equations

How many equations

$$
G(u, v)= \pm 1
$$

do we have?

Quadratic Ternary Systems and Quartic Thue Equations

Each solution $\left(u_{0}, v_{0}\right)$ of

$$
G(u, v)= \pm 1
$$

gives a system of quadratic ternary equations

$$
Q_{1}^{\prime}(x, y, z)=u_{0}, \quad Q_{2}^{\prime}(x, y, z)=v_{0}
$$

This system gives a quartic Thue equation

$$
Q(\mathfrak{p}, \mathfrak{q})=1
$$

Bhargava's Parametrization of Quartic Rings

Let $\left(\operatorname{Sym}^{2} \mathbb{Z}^{3} \otimes \mathbb{Z}^{2}\right)^{*}$ denote the space of pairs of ternary quadratic forms having integer coefficients.

There is a canonical bijection between the set of $\mathrm{GL}_{2}(\mathbb{Z}) \times \mathrm{GL}_{3}(\mathbb{Z})$-orbits on the space $\left(\mathrm{Sym}^{2} \mathbb{Z}^{3} \otimes \mathbb{Z}^{2}\right)^{*}$ of pairs of integral ternary quadratic forms and the set of isomorphism classes of pairs $(\mathfrak{Q}, \mathfrak{R})$, where \mathfrak{Q} is a quartic ring and \mathfrak{R} is a cubic resolvent ring of \mathfrak{Q}.

Non-primitive Solutions of Cubic Thue Equations

Non-primitive solutions of

$$
F(u, v)= \pm m^{6}
$$

How many equations

$$
G(u, v)= \pm 1
$$

do we have?

Questions?

