Index Form Equations in Quartic Number Fields

Shabnam Akhtari

March 10, 2023

Discriminant Form Equations

Let $\{1, \omega_2, \dots, \omega_n\}$ be an integral basis for the number field K.

The discriminant form equation:

$$D_{K/\mathbb{Q}}(x_2\omega_2+\ldots+x_n\omega_n)=D$$

in x_2, \ldots, x_n .

Evertse and Győry's Book: Discriminant Equations in Diophantine Number Theory.

Index of an Algebraic Integer

We have

$$D(\alpha) = I^2(\alpha)D_K.$$

 $I(\alpha)$ is the index of $\mathbb{Z}[\alpha]$ in the ring of integers of K.

For a given $\{1, \omega_2, \dots, \omega_n\}$ integral basis for the number field K, we can write

$$D_{K/\mathbb{Q}}(x_2\omega_2+\ldots+x_n\omega_n)=D_{K/\mathbb{Q}}(x_2,\ldots,x_n)=(I(x_2,\ldots,x_n))^2 D_K.$$

S. Akhtari 3/34

Index Forms

Let $\{1, \omega_2, \dots, \omega_n\}$ be an integral basis for the number field K.

The index form:

$$I(x_2\omega_2+\ldots+x_n\omega_n)=I(x_2,\ldots,x_n)$$

in x_2, \ldots, x_n .

The form $I(x_2\omega_2 + \ldots + x_n\omega_n)$ has degree $\binom{n}{2}$.

Upper bounds for the number of solutions of index form equations are obtained by Evertse, Győry, Bérczes, ...

Index Forms in Cubic Number Fields

$$I(x_2,x_3)=m.$$

Index of a Quartic Algebraic Integer

$$K = \mathbb{Q}(\alpha)$$
.

 I_0 the index of the algebraic integer α .

Since $I(\alpha) = I_0$, for every algebraic integer β , we have $I_0\beta \in \mathbb{Z}[\alpha]$. Let

$$I_0\beta = a_\beta + x\alpha + y\alpha^2 + z\alpha^3,$$

with $a_{\beta} \in \mathbb{Z}$.

S. Akhtari 7 / 34

Index Forms in Quartic Number Fields

 $K = \mathbb{Q}(\alpha)$ a quartic number field.

 $\omega_1=1$, ω_2 , ω_3 and ω_4 a fixed integral basis for K.

$$l_1 := l_1(x, y, z) = x\omega_2 + y\omega_3 + z\omega_4.$$

 l_i denotes the algebraic conjugates of l_1 for i = 1, 2, 3, 4.

8/34

Index Forms in Quartic Number Fields

$$D_{K/\mathbb{Q}}(x\omega_2 + y\omega_3 + z\omega_4) = \prod_{1 \leq i < j \leq 4} (\mathfrak{l}_i(x, y, z) - \mathfrak{l}_j(x, y, z))^2.$$

$$D_{K/\mathbb{Q}}(x\omega_2+y\omega_3+z\omega_4)=(I(x,y,z))^2 D,$$

where D is the discriminant of the number field K.

 $I(x, y, z) \in \mathbb{Z}[x, y, z]$ is a form of degree 6.

For any algebraic integer $\beta = a + x\omega_2 + y\omega_3 + z\omega_4$, with $a, x, y, z \in \mathbb{Z}$, the index $I(\beta)$ is equal to |I(x,y,z)|, where $I(\beta)$ is the module index of $\mathbb{Z}[\beta]$ in O_K .

> S. Akhtari 9 / 34

How to Solve an Index Form Equation?

$$K = \mathbb{Q}(\alpha).$$

$$I(\alpha) = I_0.$$

$$l_1 := l_1(x, y, z) = x\omega_2 + y\omega_3 + z\omega_4.$$

$$\beta' = I_0 \beta \in \mathbb{Z}[\alpha].$$

We denote by $\alpha^{(i)}$ and $\beta'^{(i)}$ the corresponding algebraic conjugates of α and β' over \mathbb{Q} , for i = 1, 2, 3, 4.

$$\prod_{(i,j,k,l)} \left(\frac{\beta'^{(i)} - \beta'^{(j)}}{\alpha^{(i)} - \alpha^{(j)}} \right) \left(\frac{\beta'^{(k)} - \beta'^{(l)}}{\alpha^{(k)} - \alpha^{(l)}} \right) = \pm \frac{I_0^6 m}{I_0} = \pm I_0^5 m,$$

Finding Monogenizers of $\mathbb{Z}[\alpha]$

$$\prod_{(i,j,k,l)} \left(\frac{\beta^{(i)} - \beta^{(j)}}{\alpha^{(i)} - \alpha^{(j)}} \right) \left(\frac{\beta^{(k)} - \beta^{(l)}}{\alpha^{(k)} - \alpha^{(l)}} \right) = \pm 1$$

Ternary Quadratic Forms

For each (i, j, k, l),

$$\left(\frac{\beta'^{(i)} - \beta'^{(j)}}{\alpha^{(i)} - \alpha^{(j)}}\right) \left(\frac{\beta'^{(k)} - \beta'^{(l)}}{\alpha^{(k)} - \alpha^{(l)}}\right)$$

$$= Q_1(x, y, z) - \alpha_{i,j,k,l}Q_2(x, y, z),$$

where

$$\alpha_{i,j,k,l} = \alpha^{(i)}\alpha^{(j)} + \alpha^{(k)}\alpha^{(l)}.$$

A Binary Cubic Form

$$\prod_{(i,i,k,l)} \left(\frac{\beta'^{(i)} - \beta'^{(j)}}{\alpha^{(i)} - \alpha^{(j)}} \right) \left(\frac{\beta'^{(k)} - \beta'^{(l)}}{\alpha^{(k)} - \alpha^{(l)}} \right)$$

Ternary Quadratic Forms

 $K = \mathbb{Q}(\alpha)$ a quartic number field.

$$f(X) = X^4 + a_1 X^3 + a_2 X^2 + a_3 X + a_4$$
 the minimal polynomial of α .

$$Q_1(x, y, z) = x^2 - a_1 xy + a_2 y^2 + (a_1^2 - 2a_2)xz + +(a_3 - a_1 a_2)yz + (-a_1 a_3 + a_2^2 + a_4)z^2,$$

and

$$Q_2(X, Y, Z) = y^2 - xz - a_1yz + a_2z^2.$$

 4 □ → 4 □ → 4 □ → 4 ≡ → 2 → 2 → 2 → 2

 S. Akhtari

13/34

How to Solve an Index Form Equation?

$$K = \mathbb{Q}(\alpha).$$

$$I(\alpha) = I_0.$$

$$l_1 := l_1(x, y, z) = x\omega_2 + y\omega_3 + z\omega_4.$$

$$\beta' = I_0 \beta \in \mathbb{Z}[\alpha].$$

We denote by $\alpha^{(i)}$ and $\beta'^{(i)}$ the corresponding algebraic conjugates of α and β' over \mathbb{Q} , for i = 1, 2, 3, 4.

$$\prod_{(i,j,k,l)} \left(\frac{\beta'^{(i)} - \beta'^{(j)}}{\alpha^{(i)} - \alpha^{(j)}} \right) \left(\frac{\beta'^{(k)} - \beta'^{(l)}}{\alpha^{(k)} - \alpha^{(l)}} \right) = \pm \frac{I_0^6 m}{I_0} = \pm I_0^5 m,$$

S. Akhtari 14/34

Index Forms in Quartic Number Fields

$$K = \mathbb{Q}(\alpha).$$

 $\omega_1=1,~\omega_2,~\omega_3$ and ω_4 a fixed integral basis for K, with associated index form I(x,y,z).

$$I_0 = I(\alpha)$$
.

Gaál, Pethő and Pohst (1996)

The triple $(x, y, z) \in \mathbb{Z}^3$ is a solution of I(x, y, z) = m if and only if there is a solution $(u, v) \in \mathbb{Z}^2$ of the cubic Thue equation

$$F(u,v) = \pm I_0^5 m$$

such that (x, y, z) satisfies

$$Q_1(x, y, z) = u, \ Q_2(x, y, z) = v.$$

S. Akhtari 15 / 34

A Monogenic Order

K is a number field.

 \mathcal{O} is an order in K.

The ring $\mathcal O$ is called monogenic if it is generated by one element as a $\mathbb Z$ -algebra.

 $\mathcal{O} = \mathbb{Z}[\alpha]$ for an element $\alpha \in K$.

The element α is called a monogenizer of \mathcal{O} .

monogenizations

Orders in Quadratic Number Fields

Quadratic rings are parametrized by their discriminants D.

The unique (up to isomorphism) quadratic ring of discriminant D is

$$\mathbb{Z}\left[\frac{D+\sqrt{D}}{2}\right]$$

All quadratic rings are monogenic, and all have exactly one monogenization.

S. Akhtari 17 / 34

The Number of Monogenizations

K. Győry (1976)

An order $\mathcal O$ has at most finitely many monogenizations.

The Number of Monogenizations

J.-H. Evertse and K. Győry, On unit equations and decomposable form equations (1985).

Evertse and Győry

An order $\mathcal O$ in a number field K of degree n has at most $\left(3\times7^{2n!}\right)^{n-2}$ monogenizations.

S. Akhtari 19 / 34

The Number of Monogenizations

J.-H. Evertse (2011)

An order \mathcal{O} in a number field K of degree n has at most $2^{4(n+5)(n-2)}$ monogenizations.

A. and Bhargava (2022)

A quartic order \mathcal{O} has at most 2760 monogenizations.

S. Akhtari 20 / 34

Finding the Monogenizers of $\mathbb{Z}[\alpha]$

$$\prod_{(i,i,k,l)} \left(\frac{\beta^{(i)} - \beta^{(j)}}{\alpha^{(i)} - \alpha^{(j)}} \right) \left(\frac{\beta^{(k)} - \beta^{(l)}}{\alpha^{(k)} - \alpha^{(l)}} \right) = \pm 1.$$

$$\begin{pmatrix} \beta^{(i)} - \beta^{(j)} \\ \alpha^{(i)} - \alpha^{(j)} \end{pmatrix} \begin{pmatrix} \beta^{(k)} - \beta^{(l)} \\ \alpha^{(k)} - \alpha^{(l)} \end{pmatrix}$$
$$= Q_1(x, y, z) - \alpha_{i,j,k,l} Q_2(x, y, z),$$

with

$$\alpha_{i,j,k,l} = \alpha^{(i)} \alpha^{(j)} + \alpha^{(k)} \alpha^{(l)}.$$

21 / 34

Finding the Monogenizers of $\mathbb{Z}[\alpha]$

$$\prod_{(i,j,k,l)} \left(\frac{\beta^{(i)} - \beta^{(j)}}{\alpha^{(i)} - \alpha^{(j)}} \right) \left(\frac{\beta^{(k)} - \beta^{(l)}}{\alpha^{(k)} - \alpha^{(l)}} \right) = \pm 1.$$

$$\prod (Q_1(x,y,z) - \alpha_{i,j,k,l}Q_2(x,y,z)) = \pm 1.$$

$$F(u, v) = \pm 1.$$

$$F(u,v) = u^3 - a_2 u^2 v + (a_1 a_3 - 4a_4) u v^2 + (4a_2 a_4 - a_3^2 - a_1^2 a_4) v^3$$

 4 □ ▷ 4 ∰ ▷ 4 ඕ ○ 4 ඕ ○

Resolvent Cubic Form

Let

$$f(X) = X^4 + a_1 X^3 + a_2 X^2 + a_3 X + a_4 \in \mathbb{Z}[X]$$

be the minimal polynomial of α .

$$F(u,v) = u^3 - a_2 u^2 v + (a_1 a_3 - 4a_4) u v^2 + (4a_2 a_4 - a_3^2 - a_1^2 a_4) v^3$$

is the cubic resolvent of the polynomial f(X).

The discriminant of f(X) is equal to the discriminant of $F(u,1) \in \mathbb{Z}[u]$.

←□ → ←□ → ← □ → ← □ → へ○

23 / 34

Constructing Quartic Thue Equations

$$F(u,v) = u^3 - a_2u^2v + (a_1a_3 - 4a_4)uv^2 + (4a_2a_4 - a_3^2 - a_1^2a_4)v^3 = \pm 1$$

$$Q_1(x,y,z)=1.$$

$$Q_2(x, y, z) = y^2 - xz - a_1yz + a_2z^2 = 0.$$

$$X(p,q) = p^2 - a_1pq + a_2q^2, \ Y(p,q) = pq, \ Z(p,q) = q^2.$$

$$Q_1(X(p,q), Y(p,q), Z(p,q)) = 1.$$

A quartic Thue equation!

Constructing Quartic Thue Equations for Non-trivial (u, v)

$$Q_1(x, y, z) = u_0,$$

$$Q_2(x,y,z)=v_0.$$

Find $s, t \in \mathbb{Z}$ such that

$$su_0+tv_0=1.$$

Bhargava's Method

Manjul Bhargava, On the number of monogenizations of a quartic order, Publicationes Mathematicae (2022).

M. Wood, Quartic rings associated to binary quartic forms (2008): Natural bijection between classes of integral binary quartic forms and isomorphism classes of triples $(Q; R; \beta)$ where Q is a quartic ring, R is a monogenic cubic resolvent ring of Q, and β is a monogenizer of R up to equivalence.

Bhargava's Parametrization of Quartic Rings:

Canonical bijection between pairs of integral ternary quadratic forms and the set of isomorphism classes of pairs (Q, R), where Q is a quartic ring and R is a cubic resolvent ring of Q.

4□ > 4Ē > 4Ē > 4Ē > 4Ē > 9

S. Akhtari 26 / 34

$$I(x, y, z) = \pm m$$

How many solutions?

We can give an upper bound for the number of integer solutions.

S. Akhtari 27 / 34

$$I(x,y,z)=\pm m$$

$$I(x, y, z) = \pm m$$

If there is an algebraic integer α in the quartic number field K with index m, then we can consider a cubic Thue equation:

$$F(u,v)=\pm m^6.$$

The cubic form F is the cubic resolvent of the minimal polynomial of α .

Solutions of Cubic Thue Equations

In order to find primitive solutions of the cubic equation

$$F(u, v) = \pm m^6$$
.

we may reduce this equation modulo each prime divisor of m to obtain a family of cubic Thue equations of the shape

$$G(u, v) = \pm 1.$$

How many equations $G(u, v) = \pm 1$ can we possibly produce?

S. Akhtari 29 / 34

Primitive Solutions of Cubic Thue Equations

How many equations

$$G(u, v) = \pm 1$$

do we have?

Quadratic Ternary Systems and Quartic Thue Equations

Each solution (u_0, v_0) of

$$G(u, v) = \pm 1$$

gives a system of quadratic ternary equations

$$Q'_1(x,y,z)=u_0, \ Q'_2(x,y,z)=v_0.$$

This system gives a quartic Thue equation

$$Q(\mathfrak{p},\mathfrak{q})=1.$$

S. Akhtari 31 / 34

Bhargava's Parametrization of Quartic Rings

Let $\left(\mathrm{Sym}^2\mathbb{Z}^3\otimes\mathbb{Z}^2\right)^*$ denote the space of pairs of ternary quadratic forms having integer coefficients.

There is a canonical bijection between the set of $\mathrm{GL}_2(\mathbb{Z}) \times \mathrm{GL}_3(\mathbb{Z})$ -orbits on the space $\left(\mathrm{Sym}^2\mathbb{Z}^3 \otimes \mathbb{Z}^2\right)^*$ of pairs of integral ternary quadratic forms and the set of isomorphism classes of pairs $(\mathfrak{Q},\mathfrak{R})$, where \mathfrak{Q} is a quartic ring and \mathfrak{R} is a cubic resolvent ring of \mathfrak{Q} .

S. Akhtari 32 / 34

Non-primitive Solutions of Cubic Thue Equations

Non-primitive solutions of

$$F(u,v)=\pm m^6.$$

How many equations

$$G(u,v)=\pm 1$$

do we have?

