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Motivation

Vica is 4
Samu is 9
Their mother Kata is 36

4 · 9 = 36, 4 + 9 + 36 = 49.

Any more such triples?



The equation

is now
x2 + y 2 + (xy)2 = z2

By adding 1 to both sides we get the title equation

(x2 + 1)(y 2 + 1) = z2 + 1

which is beautiful but does not help in the solution.

* * * * * * * * * * * * * * * * * * *



The positive setting

The equation is symmetirc in x , y and everything is squared:
we may assume 0 ≤ x ≤ y .
Exclude the trivial solution (0, 0, 0). This is the only one with
x = y , so we may assume 0 ≤ x < y .
If x = 0, then y = z ; we call this class (0, n, n) of solutions
the root.

* * * * * * * * * * * * * * * * * * *



The positive recursion

Theorem
All solutions can be obtained from the root by repeated
application of the transformations

(T1)

{

x ′ = y , y ′ = 2y(z − xy)− x

z ′ = z + 2y
(

y(z − xy)− x
)

,

(T2)

{

x ′ = y , y ′ = 2y(z + xy) + x ,

z ′ = z + 2y
(

y(z + xy) + x
)

,

(T3)

{

x ′ = x , y ′ = 2x(z + xy) + y ,

z ′ = z + 2x
(

x(z + xy) + y
)

.



Comment

A root solution (0, n, n) is a fixed point of (T3), while (T1)
and (T2) both turn it into (n, 2n2, 2n3 + n). From this on
different sequences of transf ormations yield different soltuions,
that is, these transformations act as a free semigroup.

Call the next level (n, 2n2, 2n3 + n) the stem.
Each root gives rise to a single stem, from which grow 3
branches, which again ramify in 3 directions, up to the sky.

Another remarkable set is the sequence (n, n + 1, n2 + n + 1),
obtained from (1, 2, 3) by a repeated application of (T1). We
call this the main sequence, as this gives the majority of
solutions (more on this later).

* * * * * * * * * * * * * * * * * * *



Highlights from the proof
The ransformations (T1)–(T3) climb up in the tree of
solutions. Now we shall climb down.
The substitution z = xy + t turns the equation into

x2 + y 2 − t2 = 2xyt.

This is quadratic in y , so it has another solution y , which
satisfies

y + y = 2xt, yy = x2 − t2.

So the transformation

(T1−) x = y = 2xt − y , y = x , t = t

gives a new solution; but it may violate the condition
0 ≤ x < y . This happens if t ≥ x .

* * * * * * * * * * * * * * * * * * *



Continued

If t > x , then one of the following transformation works
(similarly easy details omitted):

(T2−) x = −y = y − 2xt, y = x , t = t − 2x(y − 2xt),

(T3−) x = x , y = −y = y − 2xt, t = t − 2x(y − 2xt).

Finally if t = x , then we arrived at the stem (n, 2n2, n) from
where both (T1–) és (T2–) go to the root.

* * * * * * * * * * * * * * * * * * *



Concluded
Expressing the variables x , y , t by x , y , t we ge the inverse
transformations which climb up:

(T1+) x = y , y = 2xt − x = 2yt − x , t = t,

(T2+) x = y , y = 2y(2xy − t)− x , t = 2xy − t,

(T3+) x = x , y = 2x(2xy − t)− y , t = 2xy − t.

Finally by some change of notation and the substitution
z = xy + t yields the transformations (T1)–(T3) of the
theorem.

* * * * * * * * * * * * * * * * * * *



Unrestricted version

x2 + y 2 − t2 = 2xyt

Don’t asume positivity and size ordering.
Trivial trasfomations: P , exchange of x and y ; change the sign
of two of x , y , t, Sx , Sy , St , where the subscript shows the one
unchanged. This generates a group of order 8, and from each
group of 8 solutions exacly one satisfies the (now discrded)
original restrictions.
The equation is quadratic in each variable, so it has another
root in each, which satisfy

x + x = 2yt, xx = y 2 − t2,

y + y = 2xt, yy = x2 − t2,

t + t = −2xy , tt = −(x2 + y 2).

* * * * * * * * * * * * * * * * * * *



The proper transformations

arise by using the other root:

Rx : x ′ = x = 2yt − x , y ′ = y , t ′ = t,

Ry : y ′ = y = 2xt − y , x ′ = x , t ′ = t,

Rt : t ′ = t = −2xy − t, x ′ = x , y ′ = y .

Each is of order 2. Sx , Sy , St commute with each other and
with Rx ,Ry ,Rt , while P permutes them: PSx = SyP ,
PRx = RyP .

* * * * * * * * * * * * * * * * * * *



The sturcture of transformations

Theorem
Rx ,Ry ,Rt generate a group, which is the free product of three
2-element groups.

In everyday words, by applying them in any order where two
consecutive ones never coincide we obtain different
transformations.
Attention: we don’t claim that applying them on any solution
we get different triples, this would be false, just that there is
some solution when they are different.
So we upgraded the semigroup to a group, but paid a price.

* * * * * * * * * * * * * * * * * * *



Reason

Theorem
Let (x , y , t) be a solution with xy 6= 0. Then exactly one of
Rx ,Ry ,Rt , namely which acts on the one with maximal
absolute value, decreases it, the other two increase it. (There
is always a single maximal one.)

By always applying the decreasing transformation we arrive at
one with xy = 0; these are (0, n, n) and variants, the root.
From a root one incerasing transformations go to (−2n2, n, n),
the stem. From this we always get two branches.
The solutions are the same, but the tree is different. The
reason is that in the positive version we skipped the case
t < 0, essentially by Rt .

* * * * * * * * * * * * * * * * * * *



Parametic desciption?

Would be nice, but probably does not exist.
At least with polynomials it does not exist.

Theorem
Thee does not exist a finite collection of triples of polynomial
(fi , gi , hi) (in any number of variables) such that

x = fi(n), y = gi(n), t = hi(n), n ∈ Z
k

gives all solutions of our equation.



Reason

Use a slightly different classification of solutions.
Call those with xy = 0 or t = ±1 (so one is minimal possible)
the margin. From any solution a repeated application of
decreasing transformations hits the margin; call the number of
steps the level. Level 0 is the margin, the union of the root
and the main sequence.
We claim that if f , g , h are integer-valued polynomials such
that

f 2 + g 2 − h2 = 2fgh,

then all triples (f (n), g(n), h(n)) are in a finite number of
levels.
Given a triplet (f , g , h) of polynomials, we try to apply one of
the transfomations Rx ,Ry ,Rt so that the degree decreases.
After some steps this process stops: either the degree cannot
decrease, or one is the 0 polynomial.



(continued)
If f = 0, then g = h or g = −h, we are in the root; similarly if
g = 0. h = 0 is impossible.
If no transformation decreases the degree, then (calculations
omitted) one must be constant.
Asume f = c . Then

g 2 − 2cgh − h2 = −c2,

which can be rewritten as
(

g − (c +
√
c2 + 1)h

)(

g − (c −
√
c2 + 1)h

)

= −c2.

Hence both g − (c +
√
c2 + 1)h and g − (c −

√
c2 + 1)h are

constants, and so are g , h.
Similar calculations work when g or h is constant.
In each case the values of (f , g , h) are on a single level; we
came there by a finite number of steps, so theoriginal triples
are also on a finite number of levels.



Number of solutions

Let F (N) be the number of solutions with 0 < x < y ≤ N .

Theorem
There are numbers c3, c4, . . . such that for all k we have

F (N) = N +
√

N/2 + c3N
1/2 + . . .+ ckN

1/k + O
(

N1/(k+1)).

Here N is the main sequence,
√

N/2 is the stem.



Problem: pythagorean solutions?

x = 3, y = 4, z = 12 has the property that x2 + y 2 is also a
square. What else?
There are infinitely many examples in the main sequence. This
is the (almost Pell) equation

n2 + (n + 1)2 = m2.

All solutions can be obtained from the trivial solution
n = 0,m = 1 by the recursion.

n′ = 3n + 2m + 1, m′ = 3m + 4n + 2

First the above x = 3, y = 4, next x = 20, y = 21.
Is there a solution outside the main sequence?

* * * * * * * * * * * * * * * * * * *



-

The end.


