Comparing equivalences of polynomials

An addendum to the talk of K. Györy on reduction theory of integral polynomials

László Remete
Joint work with M. Bhargava, J.-H. Evertse, K. Győry and A. Swaminathan
University of Debrecen
2023. 12. 01.

Introduction

The purpose of this talk is to compare the \mathbb{Z}, the $G L_{2}(\mathbb{Z})$ and the Hermite equivalences following the paper Hermite equivalence of polynomials (B.E.Gy.R.S. 2023)

Basic results:

- Lagrange 1773: There are only finitely many $G L_{2}(\mathbb{Z})$-equivalence classes of quadratic polynomials in $\mathbb{Z}[X]$ with given non-zero discriminant. (effective)
- Hermite 1851: There are only finitely many $G L_{2}(\mathbb{Z})$-equivalence classes of cubic polynomials in $\mathbb{Z}[X]$ with given non-zero discriminant. (effective)
- Delone, Nagell 1930: There are only finitely many \mathbb{Z}-equivalence classes of cubic monic polynomials in $\mathbb{Z}[X]$ with given non-zero discriminant. (ineffective)

Hermite's attempt to extend his results

Hermite attempted to extend his theorem (1851) on cubic polynomials to the case of arbitrary degree $n \geq 4$, but without success. Instead, he proved a theorem with a weaker equivalence.

- Hermite 1857: There are only finitely many Hermite equivalence classes of polynomials of degree $n \geq 2$ in $\mathbb{Z}[X]$ with given non-zero discriminant.
Hermite's original objective was finally achieved more than a century later.
- Birch and Merriman 1972: There are only finitely many $G L_{2}(\mathbb{Z})$-equivalence classes of polynomials of degree $n \geq 2$ in $\mathbb{Z}[X]$ with given non-zero discriminant. (ineffective)
- Independently: Győry 1973: There are only finitely many \mathbb{Z}-equivalence classes of monic polynomials of degree $n \geq 2$ in $\mathbb{Z}[X]$ with given non-zero discriminant. (effective)

Z-equivalence

Two monic polynomials $f, g \in \mathbb{Z}[X]$ of degree n are said to be \mathbb{Z}-equivalent, if

$$
g(X)=\varepsilon^{n} \cdot f(\varepsilon X+z)
$$

for some $\varepsilon \in\{1,-1\}$ and $z \in \mathbb{Z}$.
If f and g are \mathbb{Z}-equivalent irreducible polynomials, β is a root of g, then $\varepsilon \beta+z$ is a root of f. So, f and g are \mathbb{Z}-equivalent, iff there exist α, β with $f(\alpha)=0=g(\beta)$ and $\alpha=\varepsilon \beta+z$.

If f and g are \mathbb{Z}-equivalent monic irreducible polynomials, and α and β are their corresponding roots, then

- f and g have the same discriminant,
- $\mathbb{Q}(\alpha)=\mathbb{Q}(\beta) ; \mathbb{Z}[\alpha]=\mathbb{Z}[\beta]$.

$G L_{2}(\mathbb{Z})$-equivalence

Two polynomials $f, g \in \mathbb{Z}[X]$ of degree n are said to be $G L_{2}(\mathbb{Z})$-equivalent, if

$$
g(X)= \pm(c X+d)^{n} \cdot f\left(\frac{a X+b}{c X+d}\right), \text { for some }\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G L_{2}(\mathbb{Z})
$$

If f and g are $G L_{2}(\mathbb{Z})$-equivalent irreducible polynomials, $g(\beta)=0$, then $f\left(\frac{a \beta+b}{c \beta+d}\right)=0$. So, f and g are $G L_{2}(\mathbb{Z})$-equivalent, iff there exist α, β with $f(\alpha)=0=g(\beta)$ and $\alpha=\frac{a \beta+b}{c \beta+d}$.

If f, g are $G L_{2}(\mathbb{Z})$-equivalent monic irreducible polynomials, and α and β are their corresponding roots, then

- f and g have the same discriminant,
- $\mathbb{Q}(\alpha)=\mathbb{Q}(\beta) ; \mathbb{Z}[\alpha]=\mathbb{Z}[\beta]$.

Hermite equivalence

Let $f(X)=f_{0} X^{n}+\ldots+f_{n}=f_{0}\left(X-\alpha_{1}\right) \cdots\left(X-\alpha_{n}\right) \in \mathbb{Z}[X]$
Hermite associated the decomposable form below to $f(X)$

$$
[f](\underline{X})=f_{0}^{n-1} \prod_{i=1}^{n}\left(\alpha_{i}^{n-1} X_{1}+\alpha_{i}^{n-2} X_{2}+\ldots+X_{n}\right)
$$

where $\underline{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{T}$. Two polynomials $f, g \in \mathbb{Z}[X]$ are said to be Hermite equivalent, if there is a matrix $U \in G L_{n}(\mathbb{Z})$, such that

$$
[g](\underline{X})=[f](U \underline{X}) .
$$

If f and g are irreducible and there exist α, β roots of f and g for which

$$
\left(\beta^{n-1}, \beta^{n-2}, \ldots, 1\right)=\left(\alpha^{n-1}, \alpha^{n-2}, \ldots, 1\right) \cdot U
$$

then f and g are Hermite equivalent. I.e. if f and g are monic and $\mathbb{Z}[\alpha]=\mathbb{Z}[\beta]$, then f and g are Hermite equivalent.

If f and g are Hermite equivalent irreducible polynomials, then

- f and g have the same discriminant,
- $\mathbb{Q}[X] /(f(X))$ is isomorphic to $\mathbb{Q}[X] /(g(X))$

Two monic polynomials $f, g \in \mathbb{Z}[X]$ are Hermite equivalent if and only if $\mathbb{Z}[\alpha] \simeq \mathbb{Z}[\beta]$. So, if $\alpha=p(\beta)$ and $\beta=q(\alpha)$ for some polynomials $p, q \in \mathbb{Z}[X]$, then $f, g \in \mathbb{Z}[X]$ are Hermite equivalent.

Comparing monic equivalences

In general:

- $G L_{2}(\mathbb{Z})$-equivalent polynomials are Hermite equivalent
- \mathbb{Z}-equivalent polynomials are $G L_{2}(\mathbb{Z})$-equivalent and thus Hermite equivalent

Degree 2

Separable monic quadratic polynomials in $\mathbb{Z}[X]$ are Hermite equivalent if and only if they are \mathbb{Z}-equivalent.

Degree 3

Separable cubic polynomials in $\mathbb{Z}[X]$ are Hermite equivalent if and only if they are $G L_{2}(\mathbb{Z})$-equivalent. Moreover, every Hermite equivalence class of separable monic cubic polynomials in $\mathbb{Z}[X]$ is a union of at most $10 \mathbb{Z}$-equivalence classes. (Bennett, 2001)

Degree 4

- Every Hermite equivalence class of separable quartic polynomials in $\mathbb{Z}[X]$ is a union of at most $10 G L_{2}(\mathbb{Z})$-equivalence classes, and at most 7, if the discriminant is large enough. (Bhargava, 2022)
- Every Hermite equivalence class of separable monic quartic polynomials in $\mathbb{Z}[X]$ is a union of at most $2760 \mathbb{Z}$-equivalence classes, and at most 182, if the discriminant is large enough. (Akhtari, Bhargava, 2022)

Degree ≥ 5

Every Hermite equivalence class of separable monic polynomials of degree $n \geq 5$ in $\mathbb{Z}[X]$ is a union of at most $2^{4(n+5)(n-2)}$ \mathbb{Z}-equivalence classes. (Evertse, 2011)

Cubic Hermite equivalence class with many \mathbb{Z}-classes

Let $f(X)=X^{3}-X^{2}-2 X+1$, then $f(X)$ is Hermite equivalent to $g_{i}(X)(i=0, \ldots, 8)$, where

$$
\begin{array}{l|l}
g_{0}(X)=X^{3}-X^{2}-2 X+1 & \alpha \\
g_{1}(X)=X^{3}-3 X^{2}-4 X-1 & \alpha^{2}-2 \alpha \\
g_{2}(X)=X^{3}-4 X^{2}+3 X+1 & \alpha^{2}-\alpha \\
g_{3}(X)=X^{3}-5 X^{2}+6 X-1 & \alpha^{2} \\
g_{4}(X)=X^{3}-6 X^{2}+5 X-1 & \alpha^{2}+\alpha \\
g_{5}(X)=X^{3}-9 X^{2}+20 X+1 & 2 \alpha^{2}-\alpha \\
g_{6}(X)=X^{3}-11 X^{2}-102 X-181 & 4 \alpha^{2}-9 \alpha \\
g_{7}(X)=X^{3}-29 X^{2}+138 X-181 & 5 \alpha^{2}+4 \alpha \\
g_{8}(X)=X^{3}-40 X^{2}+391 X+181 & 9 \alpha^{2}-5 \alpha
\end{array}
$$

These nine polynomials belong to nine distinct \mathbb{Z}-equivalence classes. (Ljunggren, 1942 and Baulin, 1960)

Checking $G L_{2}(\mathbb{Z})$-equivalence

Let α and β be roots of the irreducible monic Hermite equivalent polynomials f and g, respectively, with $\mathbb{Q}(\alpha)=\mathbb{Q}(\beta)$. Then there exists $p \in \mathbb{Z}[X]$, such that $\beta=p(\alpha)$.

Assume that the action of the Galois group of $f(X)$ on the set of the roots of $f(X)$ is doubly transitive, then f and g are $G L_{2}(\mathbb{Z})$ equivalent if and only if there exist $a, b, c, d \in \mathbb{Z}$ integers, such that $a d-b c= \pm 1$ and

$$
\frac{a \alpha+b}{c \alpha+d}=p(\alpha)
$$

Remark

If the Galois group of $g(X)$ is not 2-transitive, then theoretically it may happen that there is a solution of the above equation only if there are two different conjugates of α in the equation.

Big quartic Hermite equivalence class

Let $f(X)=X^{4}-X^{3}-4 X^{2}+2 X+1$ and α be a root of $f(X)$, then there are $10 \mathbb{Z}$-inequivalent generators of $\mathbb{Z}[\alpha]$. (Gaál, 2019, p.300)

$$
\begin{aligned}
& \beta_{1}=\alpha^{3}-4 \alpha \\
& \beta_{2}=\alpha^{2}-2 \alpha \\
& \beta_{3}=2 \alpha^{2}-\alpha \\
& \beta_{4}=\alpha^{3}-\alpha^{2} \\
& \beta_{5}=\alpha \\
& \beta_{6}=\alpha^{2}+\alpha \\
& \beta_{7}=\alpha^{3}-\alpha^{2}-3 \alpha \\
& \beta_{8}=\alpha^{3}-\alpha^{2}-4 \alpha \\
& \beta_{9}=4 \alpha^{3}-4 \alpha^{2}-15 \alpha \\
& \beta_{10}=5 \alpha^{3}-\alpha^{2}-21 \alpha
\end{aligned}
$$

The Galois group of f is S_{4}, so by solving the equations

$$
\frac{a \beta_{i}+b}{c \beta_{i}+d}=\beta_{j}
$$

for $a, b, c, d \in \mathbb{Z}$, with $a d-b c= \pm 1$, and for all pairs $i, j=1, \ldots, 10$, we conclude that the Hermite equivalence class of α splits into three $G L_{2}(\mathbb{Z})$ equivalence classes:
$\left\{\beta_{1}, \beta_{5}, \beta_{8}\right\},\left\{\beta_{2}, \beta_{6}, \beta_{7}, \beta_{10}\right\},\left\{\beta_{3}, \beta_{4}, \beta_{9}\right\}$.

Big quintic and sextic Hermite equivalence classes

Quintic Hermite equivalence class (Gaál, Györy, 1999)

Let

$$
f(X)=X^{5}-5 X^{3}+X^{2}+3 X-1
$$

then the Galois group of f is S_{5} and the Hermite equivalence class of $f(X)$ consists of $39 \mathbb{Z}$-equivalence classes which form 10 $G L_{2}(\mathbb{Z})$-equivalence classes.

Sextic Hermite equivalence class (Bilu, Gaál, Győry, 2004)

Let

$$
f(X)=X^{6}-5 X^{5}+2 X^{4}+18 X^{3}-11 X^{2}-19 X+1
$$

then the Galois group of f is S_{6} and the Hermite equivalence class of $f(X)$ consists of $45 \mathbb{Z}$-equivalence classes which form 11 $G L_{2}(\mathbb{Z})$-equivalence classes.

Infinite families

The defining polynomials f and g of the algebraic integers α and β are Hermite equivalent, if there exist $p, q \in \mathbb{Z}[X]$, such that $\beta=p(\alpha)$ and $\alpha=q(\beta)$.

This means that $f(X) \mid q(p(X))-X$. I.e. $f(X) \cdot h(X)+X$ must be a polynomial of $p(X)$ for some $h \in \mathbb{Z}[X]$. If we can guarantee that the Galois group of $f(X)$ is doubly transitive, and we can find the polynomials above with $\operatorname{deg} p \leq \operatorname{deg} f-2$, then α and β can not be in the same $G L_{2}(\mathbb{Z})$-equivalence class, since the equation

$$
\frac{a \alpha+b}{c \alpha+d}=p(\alpha)
$$

clearly has no solution with $a d-b c= \pm 1$ as the degree of α in $(c \alpha+d) \cdot p(\alpha)-(a \alpha+b)$ is less than the degree of f.

Infinite quartic examples

Let $p(X)=X^{2}-r$ and $q(X)=X^{2}-s$, where $r, s \in \mathbb{Z}$. Then let

$$
f(X)=q(p(X))-X=\left(X^{2}-r\right)^{2}-X-s
$$

- There exist infinitely many $r, s \in \mathbb{Z}$, for which $f(X)$ is irreducible and has Galois group S_{4}. (Kappe, Warren, 1989). Lets consider such parameters r, s.
- Let α be a root of $f(X)$, then $\beta=p(\alpha)=\alpha^{2}-r$ is a root of $g(X)=\left(X^{2}-s\right)^{2}-X-r$. The polynomials $f(X)$ and $g(X)$ are clearly Hermite equivalent, but not $G L_{2}(\mathbb{Z})$-equivalent, since $\operatorname{deg} p \leq \operatorname{deg} f-2$. Indeed, if there would be a solution $(a, b, c, d) \in \mathbb{Z}^{4}$, with $a d-b c= \pm 1$, of

$$
\frac{a \alpha+b}{c \alpha+d}=\alpha^{2}-r
$$

then there would be a nonzero cubic polynomial in $\mathbb{Z}[X]$ with root α, which is not possible. (Bérczes, Evertse, Győry, 2013)

Infinite examples of arbitrary degree $n \geq 4$

Let us fix $p(X)=X-X^{2}$. Our aim is to find $f, h \in \mathbb{Z}[X]$, for which $f(X) \cdot h(X)+X$ is a polynomial of $X-X^{2}$.
$p(X)=X-X^{2}$ is not the simplest choice in the monic case, but it can easily be extended to the nonmonic case. With $p(X)=X^{2}$, it is easier to find monic examples, but it can not be extended to the nonmonic case.

We will assume that

$$
f^{(n)}(X)=X^{n}-t \cdot h^{(n)}(1-X)
$$

where t is a prime. This form is useful, since f is automatically irreducible and $h^{(n)}(X) \cdot h^{(n)}(1-X)$ is a polynomial of $X-X^{2}$. So we only have to find $h^{(n)}(X)$, such that

$$
X^{n} \cdot h^{(n)}(X)=r^{(n)}\left(X-X^{2}\right)-X
$$

$$
X^{n} \cdot h^{(n)}(X)=r^{(n)}\left(X-X^{2}\right)-X
$$

On the left hand side the constant term is 0 , so $r^{(n)}(0)$ is also 0 . Therefore we can write

$$
\begin{aligned}
& X^{n} \cdot h^{(n)}(X)=\left(X-X^{2}\right) \cdot a^{(n)}\left(X-X^{2}\right)-X \\
& X^{n-1} \cdot h^{(n)}(X)=(1-X) \cdot a^{(n)}\left(X-X^{2}\right)-1
\end{aligned}
$$

We want to create an example for any n, so $a^{(n)}(X)$ has to be a partial sum of a power series $C(X)$, for which

$$
(1-X) \cdot C\left(X-X^{2}\right)-1=0
$$

It is true for the well known generating function $C(X)$ of the Catalan numbers:

$$
C(X)=\sum_{j=0}^{\infty} \frac{1}{j+1}\binom{2 j}{j} \cdot X^{j}
$$

Let $a^{(n)}(X)$ be the $n-2$-nd partial sum of the generating function $C(X)$ of the Catalan numbers, and let

$$
\begin{gathered}
h^{(n)}(X)=\frac{(1-X) \cdot a^{(n)}\left(X-X^{2}\right)-1}{X^{n-1}} \\
k^{(n)}(X):=-h^{(n)}(1-X)=-\frac{X \cdot a^{(n)}\left(X-X^{2}\right)-1}{(1-X)^{n-1}} \\
f^{(n)}(X)=X^{n}-t \cdot h^{(n)}(1-X)=X^{n}+t \cdot k^{(n)}(X)
\end{gathered}
$$

Then

$$
f^{(n)}(X) \cdot h^{(n)}(X)+X=q\left(X-X^{2}\right)
$$

where

$$
q(X)=X \cdot a^{(n)}(X)-t \cdot \frac{X \cdot a^{(n)}(X)^{2}-a^{(n)}(X)+1}{X^{n-1}}
$$

Fortunately, $C(X)$ satisfies $X \cdot C(X)^{2}-C(X)+1=0$, so $q(X)$ is also an integer polynomial and therefore $\mathbb{Z}[\alpha]=\mathbb{Z}\left[\alpha-\alpha^{2}\right]$.

Prooving irreducibility of $k^{(n)}(X)$

One can show that

$$
h^{(n)}(-X)=-\frac{1}{n}\binom{2 n-2}{n-1} \cdot \sum_{i=0}^{n-2}\binom{n}{i} \cdot \frac{(n-1-i)(n-i)}{(n-1+i)(n+i)} \cdot X^{i} .
$$

Let $n<r<6 n / 5$ and $6 n / 5<s<36 n / 25$ be primes. If $n>24$, then there exist such primes (Nagura, 1952). Furthermore, it is easy to construct the r - and s-Newton polygons of $h^{(n)}(-X)$:

These polygons consist of three primitive edges of length $r-n, 1,2 n-r-3$ and $s-n, 1,2 n-s-3$ respectively.

Dumas's irreducibility criterion (1906)

The degree of any nontrivial factor of $f(X) \in \mathbb{Z}[X]$ must be the sum of lengths of the primitive edges of the Newton polygons of $f(X)$ with respect to any prime.

- In our case an irreducible factor of $h^{(n)}(-X)$ must be the sum of some of the numbers $r-n, 1,2 n-r-3$ and also the sum of some of the numbers $s-n, 1,2 n-s-3$.
- This implies that if $h^{(n)}(-X) \in \mathbb{Q}[X]$ is reducible, then it has a rational root. But it can be shown that $h^{(n)}(-X)$ does not have a rational root, so it is irreducible for any $n \geq 4$ and so is $k^{(n)}(X)$.

Prooving $G L_{2}(\mathbb{Z})$-inequivalence of α and $p(\alpha)=\alpha-\alpha^{2}$

- By the Frobenius's or the Chebotarev's density theorem, there are infinitely many primes p, such that $k^{(n)}(X)$ has no root modulo p. - Finally let t be a prime with $t \equiv-C_{n-1}^{-1}(\bmod p)$, where p is a prime for which $k^{(n+1)}(X)$ has no root modulo p.
- If the Galois group of $f^{(n)}(X)$ would not be 2-transitive, then there would be a root of $k^{(n+1)}(X)$ modulo p, which is a contradiction. Therefore, α and $\alpha-\alpha^{2}$ are not $G L_{2}(\mathbb{Z})$-equivalent.

$$
\begin{aligned}
& f^{(4)}(X)=X^{4}+t \cdot\left(2 X^{2}+2 X+1\right) \\
& f^{(5)}(X)=X^{5}+t \cdot\left(5 X^{3}+5 X^{2}+3 X+1\right) \\
& f^{(6)}(X)=X^{6}+t \cdot\left(14 X^{4}+14 X^{3}+9 X^{2}+4 X+1\right) \\
& f^{(7)}(X)=X^{7}+t \cdot\left(42 X^{5}+42 X^{4}+28 X^{3}+14 X^{2}+5 X+1\right)
\end{aligned}
$$

Nonmonic equivalences

$G L_{2}(\mathbb{Z})$-equivalence

Two polynomials $f, g \in \mathbb{Z}[X]$ of degree n are said to be $G L_{2}(\mathbb{Z})$-equivalent, if

$$
g(X)= \pm(c X+d)^{n} \cdot f\left(\frac{a X+b}{c X+d}\right), \text { for some }\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G L_{2}(\mathbb{Z})
$$

A polynomial is called properly nonmonic, if it is not $G L_{2}(\mathbb{Z})$ equivalent to a monic polynomial.

Hermite equivalence

Two polynomials $f, g \in \mathbb{Z}[X]$ are said to be Hermite equivalent, if there is a matrix $U \in G L_{n}(\mathbb{Z})$, such that

$$
[g](\underline{X})=[f](U \underline{X}) .
$$

If f and g are irreducible and there exist α, β roots of f and g for which

$$
\left(\beta^{n-1}, \beta^{n-2}, \ldots, 1\right)=\left(\alpha^{n-1}, \alpha^{n-2}, \ldots, 1\right) \cdot U
$$

then f and g are Hermite equivalent. I.e. if the \mathbb{Z}-modules

$$
\mathbb{Z}\left\langle 1, \alpha, \ldots, \alpha^{n-1}\right\rangle \text { and } \mathbb{Z}\left\langle 1, \beta, \ldots, \beta^{n-1}\right\rangle
$$

are equal, then f and g are Hermite equivalent. (The converse is not true in general.)
If $\beta=p(\alpha)$ for some $p \in \mathbb{Z}[X]$, then it is not necessarily true, that

$$
p(\alpha)^{k} \in \mathbb{Z}\left\langle 1, \alpha, \ldots, \alpha^{n-1}\right\rangle .
$$

Lemma

If the leading coefficient of $f(X)$ is c and $p(X)=X \cdot s(c X)$ for some $s \in \mathbb{Z}[X]$, then $p(\alpha)^{k} \in \mathbb{Z}\left\langle 1, \alpha, \ldots, \alpha^{n-1}\right\rangle$ for each $k=0,1, \ldots, n-1$.

Infinite examples

Compared to the monic case, the only difference is that now we want to find $p, q \in \mathbb{Z}[X]$ polynomials of the form $p(X)=X \cdot s\left(f_{0} X\right)$ and $q(X)=X \cdot r\left(g_{0} X\right)$, where f_{0} and g_{0} are the leading coefficients of f and g and $r, s \in \mathbb{Z}[X]$.
For these p, q polynomials we have to find $h \in \mathbb{Z}[X]$, such that

$$
f(X) \cdot h(X)=q(p(X))-X
$$

By the previous lemma, in this case f and g are Hermite equivalent, but if we can choose $p(X)$ such that $\operatorname{deg} p \leq \operatorname{deg}(f)-2$, then f and g are not $G L_{2}(\mathbb{Z})$-equivalent. In this way, we can create infinite examples for Hermite equivalence classes that split into at least two $G L_{2}(\mathbb{Z})$-equivalence classes.

Example of degree 4

Let $s \in \mathbb{Z}$ be an integer such that $s \equiv 1(\bmod 15)$ and let

$$
\left.\begin{array}{c}
f(X)=2 X^{4}+8 X^{2}+2 s X-2 s^{2}+9 \\
f(X) \equiv 2(X+1)\left(X^{3}+2 X^{2}+2 X+2\right) \quad(\bmod 3) \\
f(X) \equiv 2\left(X^{2}+X+2\right)(X+1)(X+3) \quad(\bmod 5)
\end{array}\right\} G a l(f) \simeq S_{4}
$$

Let α be a root of $f(X)$, and $\beta=\alpha+2 \alpha^{2}$. Then

$$
1, \beta, \beta^{2}, \beta^{3} \in \mathbb{Z}\left\langle 1, \alpha, \alpha^{2}, \alpha^{3}\right\rangle
$$

The integer defining polynomial $g(X)$ of β also has a leading coefficient 2 , and $q(X)$ is also of the form $X \cdot r(2 X)$. Therefore

$$
1, \alpha, \alpha^{2}, \alpha^{3} \in \mathbb{Z}\left\langle 1, \beta, \beta^{2}, \beta^{3}\right\rangle
$$

so α and β are Hermite equivalent, but not $G L_{2}(\mathbb{Z})$-equivalent, since $\operatorname{deg} p \leq \operatorname{deg} f-2$.

Example of degree 5

Let $s \in \mathbb{Z}$ be an integer such that $s \equiv 71(\bmod 110)$ and let

$$
\left.\begin{array}{l}
2 X^{5}+\left(-800 s^{2}-278 s-24\right) X+800 s^{2}+253 s+20 . \\
f(X) \equiv 2 X^{5}+3 X+3 \quad(\bmod 5) \\
f(X) \equiv 2 X\left(X^{2}+9\right)(X+3)(X+8) \quad(\bmod 11)
\end{array}\right\} G a l(f) \simeq S_{5} .
$$

Let α be a root of $f(X)$, and $\beta=\alpha+2 \alpha^{2}$. Then

$$
1, \beta, \beta^{2}, \beta^{3}, \beta^{4} \in \mathbb{Z}\left\langle 1, \alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}\right\rangle .
$$

The integer defining polynomial $g(X)$ of β also has a leading coefficient 2 , and $q(X)$ is also of the form $X \cdot r(2 X)$. Therefore

$$
1, \alpha, \alpha^{2}, \alpha^{3}, \alpha^{4} \in \mathbb{Z}\left\langle 1, \beta, \beta^{2}, \beta^{3}, \beta^{4}\right\rangle,
$$

so α and β are Hermite equivalent, but not $G L_{2}(\mathbb{Z})$-equivalent.

Infinite examples of arbitrary degree $n \geq 4$

We could generalize the infinite monic examples based on the generating function of the Catalan numbers to the (properly) nonmonic case. Let again $a^{(n)}(X)$ be the $n-2$-nd partial sum of the generating function $C(X)$ of the Catalan numbers, t and c be prime numbers, and let

$$
\begin{gathered}
h^{(n)}(X)=\frac{(1-X) \cdot a^{(n)}\left(X-X^{2}\right)-1}{X^{n-1}}, \quad k^{(n)}(X)=-h^{(n)}(1-X), \\
f^{(n)}(X)=c X^{n}+t \cdot k^{(n)}(c X)
\end{gathered}
$$

Then we have

$$
f^{(n)}(X) \cdot h^{(n)}(c X)+X=q\left(X-c X^{2}\right)
$$

where

$$
q(X)=X \cdot a^{(n)}(c X)-c^{n-2} t \cdot \frac{c X \cdot a^{(n)}(c X)^{2}-a^{(n)}(c X)+1}{(c X)^{n-1}}
$$

$$
f^{(n)}(X)=c X^{n}+t \cdot k^{(n)}(c X)
$$

- If $c=1$, then we get back the family of monic examples. But if c is a prime, then

$$
f^{(n)}(X) \equiv t \quad(\bmod c)
$$

so if t is chosen to be a non n-th power remainder modulo c, then there is no integer solution to $F^{(n)}(X, Y)=Y^{n} \cdot f^{(n)}(X / Y)= \pm 1$, hence $f^{(n)}(X)$ is properly nonmonic and primitive.

- Let α be a root of $f^{(n)}(X)$, then α and $\alpha-c \alpha^{2}$ are Hermite equivalent but not $G L_{2}(\mathbb{Z})$-equivalent algebraic numbers.
-This family of examples is infinite for every degree $n \geq 4$ and for every leading coefficient c, since there are infinitely many possible choices for t, and the discriminant of $f^{(n)}(X) \rightarrow \infty$ as $t \rightarrow \infty$.

Conclusion

For $n \geq 4$, the notions of Hermite and $G L_{2}(\mathbb{Z})$-equivalence of polynomials of degree n are different in general. More precisely:

- For every integer $n \geq 4$, there exists an infinite collection of Hermite equivalence classes, each containing two monic polynomials f and g that are not $G L_{2}(\mathbb{Z})$-equivalent.
- For every integer $n \geq 4$, there exists an infinite collection of Hermite equivalence classes, each containing two primitive polynomials f and g that are properly nonmonic and not $G L_{2}(\mathbb{Z})$-equivalent.

References

- Bhargava M., Evertse J.-H., Győry K., R. L., Swaminathan. A.A. (2023), Hermite equivalence of polynomials, Acta Arith. 209, 17-58.
- Bennett M.A. (2001), On the representation of unity by binary cubic forms, Trans. Amer. Math. Soc. 353, 1507-1534.
- Bérczes A., Evertse J.-H. and Győry K. (2013), Multiply monogenic orders, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 12, No. 2, 467-497.
- Bilu Y., Gaál I. and Györy K. (2004), Index form equations in sextic fields: a hard computation, Acta Arith. 115, No. 1, 85-96.
- Birch B.J. and Merriman J.R. (1972), Finiteness theorems for binary forms with given discriminant, Proc. Lond. Math. Soc. (3) 24, 385-394.
- Delaunay B. (1930), Über die Darstellung der Zahlen durch die binären kubischen Formen von negativer Diskriminante, Math. Z. 31, 1-26.
- Evertse J.-H. (2011), A survey on monogenic orders, Publ. Math. 79, No. 3-4, 411-422.
- Evertse J.-H. and Györy K. (2017), Discriminant equations in Diophantine number theory, Cambridge University Press, 2017.
- Gaál I. (2019), Diophantine equations and power integral bases. Theory and algorithms 2nd edition, BirkhĂ ouser, 2019.
- Gaál I. and Győry K. (1999), Index form equations in quintic fields, Acta Arith. 89, No. 4, 379-396.
- Győry K. (1973), Sur les polynômes à coefficients entiers et de discriminant donné, Acta Arith. 23, 419-426.
- Hermite C. (1851), Sur l'introduction des variables continues dans la théorie des nombres, J. Reine Angew. Math. 41, 191-216.
- Hermite C. (1857), Extrait d'une lettre de M. C. Hermite à M. Borchardt sur le nombre limité d'irrationalités auxquelles se réduisent les racines des équations à coefficients entiers complexes d'un degré et d'un discriminant donnés, J. Reine Angew. Math. 53, 182-192.
- Kappe L.-C. and Warren B. (1989), An elementary test for the Galois group of a quartic polynomial, Amer. Math. Monthly, 96, 133-137.
- Lagrange J.L. (1773), Recherches d'arithmétiques, Nonv. Mém. Acad. Berlin, 265-312; Oeuvres III, 693-758.
- Nagell T. (1930), Zur Theorie der kubischen Irrationalitäten, Acta Math. 55, 33-65.

