Comparing equivalences of polynomials An addendum to the talk of K. Győry on reduction theory of integral polynomials

László Remete Joint work with M. Bhargava, J.-H. Evertse, K. Győry and A. Swaminathan

University of Debrecen

2023. 12. 01.

Introduction

The purpose of this talk is to compare the \mathbb{Z} , the $GL_2(\mathbb{Z})$ and the Hermite equivalences following the paper Hermite equivalence of polynomials (B.E.Gy.R.S. 2023)

Basic results:

- Lagrange 1773: There are only finitely many GL₂(ℤ)-equivalence classes of quadratic polynomials in ℤ[X] with given non-zero discriminant. (effective)
- Hermite 1851: There are only finitely many GL₂(ℤ)-equivalence classes of cubic polynomials in ℤ[X] with given non-zero discriminant. (effective)
- Delone, Nagell 1930: There are only finitely many ℤ-equivalence classes of cubic monic polynomials in ℤ[X] with given non-zero discriminant. (ineffective)

Hermite's attempt to extend his results

Hermite attempted to extend his theorem (1851) on cubic polynomials to the case of arbitrary degree $n \ge 4$, but without success. Instead, he proved a theorem with a weaker equivalence.

 Hermite 1857: There are only finitely many Hermite equivalence classes of polynomials of degree n ≥ 2 in ℤ[X] with given non-zero discriminant.

Hermite's original objective was finally achieved more than a century later.

- Birch and Merriman 1972: There are only finitely many $GL_2(\mathbb{Z})$ -equivalence classes of polynomials of degree $n \ge 2$ in $\mathbb{Z}[X]$ with given non-zero discriminant. (ineffective)
- Independently: Győry 1973: There are only finitely many Z-equivalence classes of monic polynomials of degree n ≥ 2 in ℤ[X] with given non-zero discriminant. (effective)

Two **monic** polynomials $f, g \in \mathbb{Z}[X]$ of degree *n* are said to be \mathbb{Z} -equivalent, if

$$g(X) = \varepsilon^n \cdot f(\varepsilon X + z)$$

for some $\varepsilon \in \{1, -1\}$ and $z \in \mathbb{Z}$.

If f and g are \mathbb{Z} -equivalent irreducible polynomials, β is a root of g, then $\varepsilon\beta + z$ is a root of f. So, f and g are \mathbb{Z} -equivalent, iff there exist α, β with $f(\alpha) = 0 = g(\beta)$ and $\alpha = \varepsilon\beta + z$.

If f and g are $\mathbb{Z}\text{-equivalent}$ monic irreducible polynomials, and α and β are their corresponding roots, then

- f and g have the same discriminant,
- $\mathbb{Q}(\alpha) = \mathbb{Q}(\beta); \mathbb{Z}[\alpha] = \mathbb{Z}[\beta].$

$GL_2(\mathbb{Z})$ -equivalence

Two polynomials $f, g \in \mathbb{Z}[X]$ of degree *n* are said to be $GL_2(\mathbb{Z})$ -equivalent, if

$$g(X) = \pm (cX + d)^n \cdot f\left(rac{aX + b}{cX + d}
ight)$$
, for some $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{Z})$.

If f and g are $GL_2(\mathbb{Z})$ -equivalent irreducible polynomials, $g(\beta) = 0$, then $f\left(\frac{a\beta+b}{c\beta+d}\right) = 0$. So, f and g are $GL_2(\mathbb{Z})$ -equivalent, iff there exist α, β with $f(\alpha) = 0 = g(\beta)$ and $\alpha = \frac{a\beta+b}{c\beta+d}$.

If f, g are $GL_2(\mathbb{Z})$ -equivalent monic irreducible polynomials, and α and β are their corresponding roots, then

• f and g have the same discriminant,

•
$$\mathbb{Q}(\alpha) = \mathbb{Q}(\beta); \mathbb{Z}[\alpha] = \mathbb{Z}[\beta].$$

The three equivalences Examples

Hermite equivalence

Let $f(X) = f_0 X^n + \ldots + f_n = f_0(X - \alpha_1) \cdots (X - \alpha_n) \in \mathbb{Z}[X]$ Hermite associated the decomposable form below to f(X)

$$[f](\underline{X}) = f_0^{n-1} \prod_{i=1}^n (\alpha_i^{n-1} X_1 + \alpha_i^{n-2} X_2 + \ldots + X_n),$$

where $\underline{X} = (X_1, X_2, ..., X_n)^T$. Two polynomials $f, g \in \mathbb{Z}[X]$ are said to be **Hermite equivalent**, if there is a matrix $U \in GL_n(\mathbb{Z})$, such that

$$[g](\underline{X}) = [f](U\underline{X}).$$

If f and g are irreducible and there exist α,β roots of f and g for which

$$(\beta^{n-1},\beta^{n-2},\ldots,1)=(\alpha^{n-1},\alpha^{n-2},\ldots,1)\cdot U,$$

then f and g are Hermite equivalent. I.e. if f and g are monic and $\mathbb{Z}[\alpha] = \mathbb{Z}[\beta]$, then f and g are Hermite equivalent.

If f and g are Hermite equivalent irreducible polynomials, then

- f and g have the same discriminant,
- $\mathbb{Q}[X]/(f(X))$ is isomorphic to $\mathbb{Q}[X]/(g(X))$

Two monic polynomials $f, g \in \mathbb{Z}[X]$ are Hermite equivalent if and only if $\mathbb{Z}[\alpha] \simeq \mathbb{Z}[\beta]$. So, if $\alpha = p(\beta)$ and $\beta = q(\alpha)$ for some polynomials $p, q \in \mathbb{Z}[X]$, then $f, g \in \mathbb{Z}[X]$ are Hermite equivalent.

Comparing monic equivalences

In general:

- $GL_2(\mathbb{Z})$ -equivalent polynomials are Hermite equivalent
- \mathbb{Z} -equivalent polynomials are $GL_2(\mathbb{Z})$ -equivalent and thus Hermite equivalent

Degree 2

Separable monic quadratic polynomials in $\mathbb{Z}[X]$ are Hermite equivalent if and only if they are \mathbb{Z} -equivalent.

Degree 3

Separable cubic polynomials in $\mathbb{Z}[X]$ are Hermite equivalent if and only if they are $GL_2(\mathbb{Z})$ -equivalent. Moreover, every Hermite equivalence class of separable monic cubic polynomials in $\mathbb{Z}[X]$ is a union of at most 10 \mathbb{Z} -equivalence classes. (Bennett, 2001)

Monic case The three equivalences
Nonmonic case Examples

Degree 4

• Every Hermite equivalence class of separable quartic polynomials in $\mathbb{Z}[X]$ is a union of at most 10 $GL_2(\mathbb{Z})$ -equivalence classes, and at most 7, if the discriminant is large enough. (Bhargava, 2022) • Every Hermite equivalence class of separable monic quartic polynomials in $\mathbb{Z}[X]$ is a union of at most 2760 \mathbb{Z} -equivalence classes, and at most 182, if the discriminant is large enough. (Akhtari, Bhargava, 2022)

Degree ≥ 5

Every Hermite equivalence class of separable monic polynomials of degree $n \ge 5$ in $\mathbb{Z}[X]$ is a union of at most $2^{4(n+5)(n-2)}$ \mathbb{Z} -equivalence classes. (Evertse, 2011)

Cubic Hermite equivalence class with many \mathbb{Z} -classes

Let $f(X) = X^3 - X^2 - 2X + 1$, then f(X) is Hermite equivalent to $g_i(X)$ (i = 0, ..., 8), where

$$\begin{array}{ll} g_0(X) = X^3 - X^2 - 2X + 1 & \alpha \\ g_1(X) = X^3 - 3X^2 - 4X - 1 & \alpha^2 - 2\alpha \\ g_2(X) = X^3 - 4X^2 + 3X + 1 & \alpha^2 - \alpha \\ g_3(X) = X^3 - 5X^2 + 6X - 1 & \alpha^2 \\ g_4(X) = X^3 - 6X^2 + 5X - 1 & \alpha^2 \\ g_5(X) = X^3 - 9X^2 + 20X + 1 & 2\alpha^2 - \alpha \\ g_6(X) = X^3 - 11X^2 - 102X - 181 & 4\alpha^2 - 9\alpha \\ g_7(X) = X^3 - 29X^2 + 138X - 181 & 5\alpha^2 + 4\alpha \\ g_8(X) = X^3 - 40X^2 + 391X + 181 & 9\alpha^2 - 5\alpha \end{array}$$

These nine polynomials belong to nine distinct \mathbb{Z} -equivalence classes. (Ljunggren, 1942 and Baulin, 1960)

Checking $GL_2(\mathbb{Z})$ -equivalence

Let α and β be roots of the irreducible monic Hermite equivalent polynomials f and g, respectively, with $\mathbb{Q}(\alpha) = \mathbb{Q}(\beta)$. Then there exists $p \in \mathbb{Z}[X]$, such that $\beta = p(\alpha)$.

Assume that the action of the Galois group of f(X) on the set of the roots of f(X) is doubly transitive, then f and g are $GL_2(\mathbb{Z})$ equivalent if and only if there exist $a, b, c, d \in \mathbb{Z}$ integers, such that $ad - bc = \pm 1$ and

$$\frac{a\alpha+b}{c\alpha+d}=p(\alpha).$$

Remark

If the Galois group of g(X) is not 2-transitive, then theoretically it may happen that there is a solution of the above equation only if there are two different conjugates of α in the equation.

Monic case The three equivalence Nonmonic case Examples

Big quartic Hermite equivalence class

Let $f(X) = X^4 - X^3 - 4X^2 + 2X + 1$ and α be a root of f(X), then there are 10 \mathbb{Z} -inequivalent generators of $\mathbb{Z}[\alpha]$. (Gaál, 2019, p.300)

 $\beta_{1} = \alpha^{3} - 4\alpha$ $\beta_{2} = \alpha^{2} - 2\alpha$ $\beta_{3} = 2\alpha^{2} - \alpha$ $\beta_{4} = \alpha^{3} - \alpha^{2}$ $\beta_{5} = \alpha$ $\beta_{6} = \alpha^{2} + \alpha$ $\beta_{7} = \alpha^{3} - \alpha^{2} - 3\alpha$ $\beta_{8} = \alpha^{3} - \alpha^{2} - 4\alpha$ $\beta_{9} = 4\alpha^{3} - 4\alpha^{2} - 15\alpha$ $\beta_{10} = 5\alpha^{3} - \alpha^{2} - 21\alpha$

The Galois group of f is S_4 , so by solving the equations

$$\frac{a\beta_i+b}{c\beta_i+d}=\beta_j$$

for $a, b, c, d \in \mathbb{Z}$, with $ad - bc = \pm 1$, and for all pairs $i, j = 1, \ldots, 10$, we conclude that the Hermite equivalence class of α splits into three $GL_2(\mathbb{Z})$ equivalence classes:

 $\{\beta_1,\beta_5,\beta_8\},\{\beta_2,\beta_6,\beta_7,\beta_{10}\},\{\beta_3,\beta_4,\beta_9\}.$

 Monic case
 The three equivalences

 Nonmonic case
 Examples

Big quintic and sextic Hermite equivalence classes

Quintic Hermite equivalence class (Gaál, Győry, 1999)

Let

$$f(X) = X^5 - 5X^3 + X^2 + 3X - 1,$$

then the Galois group of f is S_5 and the Hermite equivalence class of f(X) consists of 39 \mathbb{Z} -equivalence classes which form 10 $GL_2(\mathbb{Z})$ -equivalence classes.

Sextic Hermite equivalence class (Bilu, Gaál, Győry, 2004)

Let

$$f(X) = X^{6} - 5X^{5} + 2X^{4} + 18X^{3} - 11X^{2} - 19X + 1,$$

then the Galois group of f is S_6 and the Hermite equivalence class of f(X) consists of 45 \mathbb{Z} -equivalence classes which form 11 $GL_2(\mathbb{Z})$ -equivalence classes.

The defining polynomials f and g of the algebraic integers α and β are Hermite equivalent, if there exist $p, q \in \mathbb{Z}[X]$, such that $\beta = p(\alpha)$ and $\alpha = q(\beta)$.

This means that f(X) | q(p(X)) - X. I.e. $f(X) \cdot h(X) + X$ must be a polynomial of p(X) for some $h \in \mathbb{Z}[X]$. If we can guarantee that the Galois group of f(X) is doubly transitive, and we can find the polynomials above with deg $p \leq \deg f - 2$, then α and β can not be in the same $GL_2(\mathbb{Z})$ -equivalence class, since the equation

$$\frac{a\alpha+b}{c\alpha+d}=p(\alpha)$$

clearly has no solution with $ad - bc = \pm 1$ as the degree of α in $(c\alpha + d) \cdot p(\alpha) - (a\alpha + b)$ is less than the degree of f.

Infinite quartic examples

Let $p(X) = X^2 - r$ and $q(X) = X^2 - s$, where $r, s \in \mathbb{Z}$. Then let $f(X) = q(p(X)) - X = (X^2 - r)^2 - X - s$

• There exist infinitely many $r, s \in \mathbb{Z}$, for which f(X) is irreducible and has Galois group S_4 . (Kappe, Warren, 1989). Lets consider such parameters r, s.

• Let α be a root of f(X), then $\beta = p(\alpha) = \alpha^2 - r$ is a root of $g(X) = (X^2 - s)^2 - X - r$. The polynomials f(X) and g(X) are clearly Hermite equivalent, but not $GL_2(\mathbb{Z})$ -equivalent, since deg $p \leq \deg f - 2$. Indeed, if there would be a solution $(a, b, c, d) \in \mathbb{Z}^4$, with $ad - bc = \pm 1$, of

$$\frac{a\alpha+b}{c\alpha+d}=\alpha^2-r,$$

then there would be a nonzero cubic polynomial in $\mathbb{Z}[X]$ with root α , which is not possible. (Bérczes, Evertse, Győry, 2013)

Infinite examples of arbitrary degree $n \ge 4$

Let us fix $p(X) = X - X^2$. Our aim is to find $f, h \in \mathbb{Z}[X]$, for which $f(X) \cdot h(X) + X$ is a polynomial of $X - X^2$.

 $p(X) = X - X^2$ is not the simplest choice in the monic case, but it can easily be extended to the nonmonic case. With $p(X) = X^2$, it is easier to find monic examples, but it can not be extended to the nonmonic case.

We will assume that

$$f^{(n)}(X) = X^n - t \cdot h^{(n)}(1 - X),$$

where t is a prime. This form is useful, since f is automatically irreducible and $h^{(n)}(X) \cdot h^{(n)}(1-X)$ is a polynomial of $X - X^2$. So we only have to find $h^{(n)}(X)$, such that

$$X^{n} \cdot h^{(n)}(X) = r^{(n)}(X - X^{2}) - X.$$

$$X^n \cdot h^{(n)}(X) = r^{(n)}(X - X^2) - X.$$

On the left hand side the constant term is 0, so $r^{(n)}(0)$ is also 0. Therefore we can write

$$X^{n} \cdot h^{(n)}(X) = (X - X^{2}) \cdot a^{(n)}(X - X^{2}) - X$$
$$X^{n-1} \cdot h^{(n)}(X) = (1 - X) \cdot a^{(n)}(X - X^{2}) - 1$$

We want to create an example for any n, so $a^{(n)}(X)$ has to be a partial sum of a power series C(X), for which

$$(1-X) \cdot C(X-X^2) - 1 = 0.$$

It is true for the well known generating function C(X) of the Catalan numbers:

$$C(X) = \sum_{j=0}^{\infty} \frac{1}{j+1} {\binom{2j}{j}} \cdot X^{j}$$

Let $a^{(n)}(X)$ be the n-2-nd partial sum of the generating function C(X) of the Catalan numbers, and let

$$h^{(n)}(X) = \frac{(1-X) \cdot a^{(n)}(X-X^2) - 1}{X^{n-1}},$$

$$k^{(n)}(X) := -h^{(n)}(1-X) = -\frac{X \cdot a^{(n)}(X-X^2) - 1}{(1-X)^{n-1}}$$

$$f^{(n)}(X) = X^n - t \cdot h^{(n)}(1-X) = X^n + t \cdot k^{(n)}(X).$$

Then

$$f^{(n)}(X) \cdot h^{(n)}(X) + X = q(X - X^2),$$

where

$$q(X) = X \cdot a^{(n)}(X) - t \cdot \frac{X \cdot a^{(n)}(X)^2 - a^{(n)}(X) + 1}{X^{n-1}}$$

Fortunately, C(X) satisfies $X \cdot C(X)^2 - C(X) + 1 = 0$, so q(X) is also an integer polynomial and therefore $\mathbb{Z}[\alpha] = \mathbb{Z}[\alpha - \alpha^2]$.

Prooving irreducibility of $k^{(n)}(X)$

One can show that

$$h^{(n)}(-X) = -\frac{1}{n} \binom{2n-2}{n-1} \cdot \sum_{i=0}^{n-2} \binom{n}{i} \cdot \frac{(n-1-i)(n-i)}{(n-1+i)(n+i)} \cdot X^{i}.$$

Monic case

Nonmonic case

Let n < r < 6n/5 and 6n/5 < s < 36n/25 be primes. If n > 24, then there exist such primes (Nagura, 1952). Furthermore, it is easy to construct the r- and s-Newton polygons of $h^{(n)}(-X)$:

These polygons consist of three primitive edges of length r - n, 1, 2n - r - 3 and s - n, 1, 2n - s - 3 respectively.

Dumas's irreducibility criterion (1906)

The degree of any nontrivial factor of $f(X) \in \mathbb{Z}[X]$ must be the sum of lengths of the primitive edges of the Newton polygons of f(X) with respect to any prime.

• In our case an irreducible factor of $h^{(n)}(-X)$ must be the sum of some of the numbers r - n, 1, 2n - r - 3 and also the sum of some of the numbers s - n, 1, 2n - s - 3.

• This implies that if $h^{(n)}(-X) \in \mathbb{Q}[X]$ is reducible, then it has a rational root. But it can be shown that $h^{(n)}(-X)$ does not have a rational root, so it is irreducible for any $n \ge 4$ and so is $k^{(n)}(X)$.

Prooving $GL_2(\mathbb{Z})$ -inequivalence of α and $p(\alpha) = \alpha - \alpha^2$

• By the Frobenius's or the Chebotarev's density theorem, there are infinitely many primes p, such that $k^{(n)}(X)$ has no root modulo p. • Finally let t be a prime with $t \equiv -C_{n-1}^{-1} \pmod{p}$, where p is a prime for which $k^{(n+1)}(X)$ has no root modulo p.

• If the Galois group of $f^{(n)}(X)$ would not be 2-transitive, then there would be a root of $k^{(n+1)}(X)$ modulo p, which is a contradiction. Therefore, α and $\alpha - \alpha^2$ are not $GL_2(\mathbb{Z})$ -equivalent.

$$f^{(4)}(X) = X^{4} + t \cdot (2X^{2} + 2X + 1)$$

$$f^{(5)}(X) = X^{5} + t \cdot (5X^{3} + 5X^{2} + 3X + 1)$$

$$f^{(6)}(X) = X^{6} + t \cdot (14X^{4} + 14X^{3} + 9X^{2} + 4X + 1)$$

$$f^{(7)}(X) = X^{7} + t \cdot (42X^{5} + 42X^{4} + 28X^{3} + 14X^{2} + 5X + 1)$$

Nonmonic equivalences

$GL_2(\mathbb{Z})$ -equivalence

Two polynomials $f, g \in \mathbb{Z}[X]$ of degree *n* are said to be $GL_2(\mathbb{Z})$ -equivalent, if

$$g(X) = \pm (cX + d)^n \cdot f\left(\frac{aX + b}{cX + d}\right)$$
, for some $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{Z})$.

A polynomial is called properly nonmonic, if it is not $GL_2(\mathbb{Z})$ equivalent to a monic polynomial.

Hermite equivalence

Two polynomials $f, g \in \mathbb{Z}[X]$ are said to be **Hermite equivalent**, if there is a matrix $U \in GL_n(\mathbb{Z})$, such that

 $[g](\underline{X}) = [f](U\underline{X}).$

If f and g are irreducible and there exist α,β roots of f and g for which

$$(\beta^{n-1},\beta^{n-2},\ldots,1)=(\alpha^{n-1},\alpha^{n-2},\ldots,1)\cdot U,$$

then f and g are Hermite equivalent. I.e. if the \mathbb{Z} -modules

$$\mathbb{Z}\left\langle 1,lpha,\ldots,lpha^{n-1}
ight
angle$$
 and $\mathbb{Z}\left\langle 1,eta,\ldots,eta^{n-1}
ight
angle$

are equal, then f and g are Hermite equivalent. (The converse is not true in general.)

If $\beta = p(\alpha)$ for some $p \in \mathbb{Z}[X]$, then it is not necessarily true, that

$$p(\alpha)^k \in \mathbb{Z}\left\langle 1, \alpha, \dots, \alpha^{n-1} \right\rangle.$$

Lemma

If the leading coefficient of f(X) is c and $p(X) = X \cdot s(cX)$ for some $s \in \mathbb{Z}[X]$, then $p(\alpha)^k \in \mathbb{Z} \langle 1, \alpha, \dots, \alpha^{n-1} \rangle$ for each $k = 0, 1, \dots, n-1$. Compared to the monic case, the only difference is that now we want to find $p, q \in \mathbb{Z}[X]$ polynomials of the form $p(X) = X \cdot s(f_0X)$ and $q(X) = X \cdot r(g_0X)$, where f_0 and g_0 are the leading coefficients of f and g and $r, s \in \mathbb{Z}[X]$. For these p, q polynomials we have to find $h \in \mathbb{Z}[X]$, such that

$$f(X) \cdot h(X) = q(p(X)) - X.$$

By the previous lemma, in this case f and g are Hermite equivalent, but if we can choose p(X) such that deg $p \leq \deg(f) - 2$, then f and g are not $GL_2(\mathbb{Z})$ -equivalent. In this way, we can create infinite examples for Hermite equivalence classes that split into at least two $GL_2(\mathbb{Z})$ -equivalence classes.

Example of degree 4

Let $s\in\mathbb{Z}$ be an integer such that $s\equiv 1\pmod{15}$ and let

$$f(X) = 2X^4 + 8X^2 + 2sX - 2s^2 + 9.$$

 $\begin{array}{l} f(X) \equiv 2(X+1)(X^3+2X^2+2X+2) \pmod{3} \\ f(X) \equiv 2(X^2+X+2)(X+1)(X+3) \pmod{5} \end{array} \right\} Gal(f) \simeq S_4.$

Let α be a root of f(X), and $\beta = \alpha + 2\alpha^2$. Then

$$1,\beta,\beta^{2},\beta^{3}\in\mathbb{Z}\left\langle 1,\alpha,\alpha^{2},\alpha^{3}\right\rangle .$$

The integer defining polynomial g(X) of β also has a leading coefficient 2, and q(X) is also of the form $X \cdot r(2X)$. Therefore

$$1, \alpha, \alpha^{2}, \alpha^{3} \in \mathbb{Z}\left\langle 1, \beta, \beta^{2}, \beta^{3} \right\rangle,$$

so α and β are Hermite equivalent, but not $GL_2(\mathbb{Z})$ -equivalent, since deg $p \leq \deg f - 2$.

Example of degree 5

Let $s\in\mathbb{Z}$ be an integer such that $s\equiv$ 71 (mod 110) and let

$$2X^5 + (-800s^2 - 278s - 24)X + 800s^2 + 253s + 20.$$

$$\begin{array}{l} f(X) \equiv 2X^5 + 3X + 3 \pmod{5} \\ f(X) \equiv 2X(X^2 + 9)(X + 3)(X + 8) \pmod{11} \end{array} \right\} \, Gal(f) \simeq S_5.$$

Let α be a root of f(X), and $\beta = \alpha + 2\alpha^2$. Then

$$1, \beta, \beta^2, \beta^3, \beta^4 \in \mathbb{Z}\left\langle 1, \alpha, \alpha^2, \alpha^3, \alpha^4 \right\rangle.$$

The integer defining polynomial g(X) of β also has a leading coefficient 2, and q(X) is also of the form $X \cdot r(2X)$. Therefore

$$1, \alpha, \alpha^2, \alpha^3, \alpha^4 \in \mathbb{Z}\left\langle 1, \beta, \beta^2, \beta^3, \beta^4 \right\rangle,$$

so α and β are Hermite equivalent, but not $GL_2(\mathbb{Z})$ -equivalent.

Monic case The two equivalence Nonmonic case Examples

Infinite examples of arbitrary degree $n \ge 4$

We could generalize the infinite monic examples based on the generating function of the Catalan numbers to the (properly) nonmonic case. Let again $a^{(n)}(X)$ be the n-2-nd partial sum of the generating function C(X) of the Catalan numbers, t and c be prime numbers, and let

$$h^{(n)}(X) = \frac{(1-X) \cdot a^{(n)}(X-X^2) - 1}{X^{n-1}}, \qquad k^{(n)}(X) = -h^{(n)}(1-X),$$
$$f^{(n)}(X) = cX^n + t \cdot k^{(n)}(cX).$$

Then we have

$$f^{(n)}(X) \cdot h^{(n)}(cX) + X = q(X - cX^2),$$

where

$$q(X) = X \cdot a^{(n)}(cX) - c^{n-2}t \cdot \frac{cX \cdot a^{(n)}(cX)^2 - a^{(n)}(cX) + 1}{(cX)^{n-1}}$$

$$f^{(n)}(X) = cX^n + t \cdot k^{(n)}(cX)$$

• If c = 1, then we get back the family of monic examples. But if c is a prime, then

$$f^{(n)}(X) \equiv t \pmod{c},$$

so if t is chosen to be a non n-th power remainder modulo c, then there is no integer solution to $F^{(n)}(X, Y) = Y^n \cdot f^{(n)}(X/Y) = \pm 1$, hence $f^{(n)}(X)$ is properly nonmonic and primitive.

• Let α be a root of $f^{(n)}(X)$, then α and $\alpha - c\alpha^2$ are Hermite equivalent but not $GL_2(\mathbb{Z})$ -equivalent algebraic numbers.

•This family of examples is infinite for every degree $n \ge 4$ and for every leading coefficient c, since there are infinitely many possible choices for t, and the discriminant of $f^{(n)}(X) \to \infty$ as $t \to \infty$.

- For $n \ge 4$, the notions of Hermite and $GL_2(\mathbb{Z})$ -equivalence of polynomials of degree n are different in general. More precisely:
 - For every integer n ≥ 4, there exists an infinite collection of Hermite equivalence classes, each containing two monic polynomials f and g that are not GL₂(ℤ)-equivalent.
 - For every integer n ≥ 4, there exists an infinite collection of Hermite equivalence classes, each containing two primitive polynomials f and g that are properly nonmonic and not GL₂(ℤ)-equivalent.

References

- Bhargava M., Evertse J.-H., Győry K., R. L., Swaminathan.
 A.A. (2023), *Hermite equivalence of polynomials*, Acta Arith.
 209, 17–58.
- Bennett M.A. (2001), On the representation of unity by binary cubic forms, Trans. Amer. Math. Soc. **353**, 1507–1534.
- Bérczes A., Evertse J.-H. and Győry K. (2013), *Multiply monogenic orders*, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 12, No. 2, 467–497.
- Bilu Y., Gaál I. and Győry K. (2004), Index form equations in sextic fields: a hard computation, Acta Arith. 115, No. 1, 85–96.
- Birch B.J. and Merriman J.R. (1972), *Finiteness theorems for binary forms with given discriminant*, Proc. Lond. Math. Soc. (3) 24, 385–394.

- Delaunay B. (1930), Über die Darstellung der Zahlen durch die binären kubischen Formen von negativer Diskriminante, Math. Z. **31**, 1–26.
- Evertse J.-H. (2011), A survey on monogenic orders, Publ. Math. 79, No. 3–4, 411–422.
- Evertse J.-H. and Győry K. (2017), Discriminant equations in Diophantine number theory, Cambridge University Press, 2017.
- Gaál I. (2019), Diophantine equations and power integral bases. Theory and algorithms 2nd edition, BirkhĤuser, 2019.
- Gaál I. and Győry K. (1999), *Index form equations in quintic fields*, Acta Arith. **89**, No. 4, 379–396.
- Győry K. (1973), Sur les polynômes à coefficients entiers et de discriminant donné, Acta Arith. **23**, 419–426.

Monic case The two equivalence Nonmonic case Examples

- Hermite C. (1851), *Sur l'introduction des variables continues dans la théorie des nombres*, J. Reine Angew. Math. **41**, 191–216.
- Hermite C. (1857), Extrait d'une lettre de M. C. Hermite à M. Borchardt sur le nombre limité d'irrationalités auxquelles se réduisent les racines des équations à coefficients entiers complexes d'un degré et d'un discriminant donnés, J. Reine Angew. Math. 53, 182–192.
- Kappe L.-C. and Warren B. (1989), An elementary test for the Galois group of a quartic polynomial, Amer. Math. Monthly, **96**, 133–137.
- Lagrange J.L. (1773), Recherches d'arithmétiques, Nonv. Mém. Acad. Berlin, 265–312; Oeuvres III, 693–758.
- Nagell T. (1930), Zur Theorie der kubischen Irrationalitäten, Acta Math. **55**, 33–65.