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Introduction

The purpose of this talk is to compare the Z, the GL2(Z) and the
Hermite equivalences following the paper Hermite equivalence of
polynomials (B.E.Gy.R.S. 2023)

Basic results:
Lagrange 1773: There are only finitely many
GL2(Z)-equivalence classes of quadratic polynomials in Z[X ]
with given non-zero discriminant. (effective)
Hermite 1851: There are only finitely many
GL2(Z)-equivalence classes of cubic polynomials in Z[X ]
with given non-zero discriminant. (effective)
Delone, Nagell 1930: There are only finitely many
Z-equivalence classes of cubic monic polynomials in Z[X ]
with given non-zero discriminant. (ineffective)
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Hermite’s attempt to extend his results
Hermite attempted to extend his theorem (1851) on cubic
polynomials to the case of arbitrary degree n ≥ 4, but without
success. Instead, he proved a theorem with a weaker equivalence.

Hermite 1857: There are only finitely many
Hermite equivalence classes of polynomials of degree n ≥ 2 in
Z[X ] with given non-zero discriminant.

Hermite’s original objective was finally achieved more than a
century later.

Birch and Merriman 1972: There are only finitely many
GL2(Z)-equivalence classes of polynomials of degree n ≥ 2 in
Z[X ] with given non-zero discriminant. (ineffective)
Independently: Győry 1973: There are only finitely many
Z-equivalence classes of monic polynomials of degree n ≥ 2 in
Z[X ] with given non-zero discriminant. (effective)
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Z-equivalence

Two monic polynomials f , g ∈ Z[X ] of degree n are said to be
Z-equivalent, if

g(X ) = εn · f (εX + z)

for some ε ∈ {1, −1} and z ∈ Z.

If f and g are Z-equivalent irreducible polynomials, β is a root of
g , then εβ + z is a root of f . So, f and g are Z-equivalent, iff
there exist α, β with f (α) = 0 = g(β) and α = εβ + z .

If f and g are Z-equivalent monic irreducible polynomials, and α
and β are their corresponding roots, then

f and g have the same discriminant,
Q(α) = Q(β); Z[α] = Z[β].
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GL2(Z)-equivalence
Two polynomials f , g ∈ Z[X ] of degree n are said to be
GL2(Z)-equivalent, if

g(X ) = ±(cX + d)n · f
(aX + b

cX + d

)
, for some

(
a b
c d

)
∈ GL2(Z).

If f and g are GL2(Z)-equivalent irreducible polynomials,
g(β) = 0, then f

(
aβ+b
cβ+d

)
= 0. So, f and g are GL2(Z)-equivalent,

iff there exist α, β with f (α) = 0 = g(β) and α = aβ+b
cβ+d .

If f , g are GL2(Z)-equivalent monic irreducible polynomials, and α
and β are their corresponding roots, then

f and g have the same discriminant,
Q(α) = Q(β); Z[α] = Z[β].
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Hermite equivalence
Let f (X ) = f0Xn + . . . + fn = f0(X − α1) · · · (X − αn) ∈ Z[X ]
Hermite associated the decomposable form below to f (X )

[f ](X ) = f n−1
0

n∏
i=1

(αn−1
i X1 + αn−2

i X2 + . . . + Xn),

where X = (X1, X2, . . . , Xn)T . Two polynomials f , g ∈ Z[X ] are
said to be Hermite equivalent, if there is a matrix U ∈ GLn(Z),
such that

[g ](X ) = [f ](UX ).
If f and g are irreducible and there exist α, β roots of f and g for
which

(βn−1, βn−2, . . . , 1) = (αn−1, αn−2, . . . , 1) · U,

then f and g are Hermite equivalent. I.e. if f and g are monic and
Z[α] = Z[β], then f and g are Hermite equivalent.
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If f and g are Hermite equivalent irreducible polynomials, then
f and g have the same discriminant,
Q[X ]/(f (X )) is isomorphic to Q[X ]/(g(X ))

Two monic polynomials f , g ∈ Z[X ] are Hermite equivalent if and
only if Z[α] ≃ Z[β]. So, if α = p(β) and β = q(α) for some
polynomials p, q ∈ Z[X ], then f , g ∈ Z[X ] are Hermite equivalent.
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Comparing monic equivalences
In general:

GL2(Z)-equivalent polynomials are Hermite equivalent
Z-equivalent polynomials are GL2(Z)-equivalent and thus
Hermite equivalent

Degree 2
Separable monic quadratic polynomials in Z[X ] are Hermite
equivalent if and only if they are Z-equivalent.

Degree 3
Separable cubic polynomials in Z[X ] are Hermite equivalent if and
only if they are GL2(Z)-equivalent. Moreover, every Hermite
equivalence class of separable monic cubic polynomials in Z[X ] is a
union of at most 10 Z-equivalence classes. (Bennett, 2001)
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Degree 4
• Every Hermite equivalence class of separable quartic polynomials
in Z[X ] is a union of at most 10 GL2(Z)-equivalence classes, and
at most 7, if the discriminant is large enough. (Bhargava, 2022)
• Every Hermite equivalence class of separable monic quartic
polynomials in Z[X ] is a union of at most 2760 Z-equivalence
classes, and at most 182, if the discriminant is large enough.
(Akhtari, Bhargava, 2022)

Degree ≥ 5
Every Hermite equivalence class of separable monic polynomials of
degree n ≥ 5 in Z[X ] is a union of at most 24(n+5)(n−2)

Z-equivalence classes. (Evertse, 2011)
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Cubic Hermite equivalence class with many Z-classes

Let f (X ) = X 3 − X 2 − 2X + 1, then f (X ) is Hermite equivalent to
gi(X ) (i = 0, . . . , 8), where

g0(X ) = X 3 − X 2 − 2X + 1 α
g1(X ) = X 3 − 3X 2 − 4X − 1 α2 − 2α
g2(X ) = X 3 − 4X 2 + 3X + 1 α2 − α
g3(X ) = X 3 − 5X 2 + 6X − 1 α2

g4(X ) = X 3 − 6X 2 + 5X − 1 α2 + α
g5(X ) = X 3 − 9X 2 + 20X + 1 2α2 − α
g6(X ) = X 3 − 11X 2 − 102X − 181 4α2 − 9α
g7(X ) = X 3 − 29X 2 + 138X − 181 5α2 + 4α
g8(X ) = X 3 − 40X 2 + 391X + 181 9α2 − 5α

These nine polynomials belong to nine distinct Z-equivalence
classes. (Ljunggren, 1942 and Baulin, 1960)
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Checking GL2(Z)-equivalence
Let α and β be roots of the irreducible monic Hermite equivalent
polynomials f and g , respectively, with Q(α) = Q(β). Then there
exists p ∈ Z[X ], such that β = p(α).

Assume that the action of the Galois group of f (X ) on the set of
the roots of f (X ) is doubly transitive, then f and g are GL2(Z)
equivalent if and only if there exist a, b, c, d ∈ Z integers, such
that ad − bc = ±1 and

aα + b
cα + d = p(α).

Remark
If the Galois group of g(X ) is not 2-transitive, then theoretically it
may happen that there is a solution of the above equation only if
there are two different conjugates of α in the equation.
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Big quartic Hermite equivalence class
Let f (X ) = X 4 − X 3 − 4X 2 + 2X + 1 and α be a root of f (X ), then
there are 10 Z-inequivalent generators of Z[α]. (Gaál, 2019, p.300)

β1 = α3 − 4α
β2 = α2 − 2α
β3 = 2α2 − α
β4 = α3 − α2

β5 = α
β6 = α2 + α
β7 = α3 − α2 − 3α
β8 = α3 − α2 − 4α
β9 = 4α3 − 4α2 − 15α
β10 = 5α3 − α2 − 21α

The Galois group of f is S4, so by
solving the equations

aβi + b
cβi + d = βj

for a, b, c, d ∈ Z, with ad −bc = ±1,
and for all pairs i , j = 1, . . . , 10,
we conclude that the Hermite equiv-
alence class of α splits into three
GL2(Z) equivalence classes:

{β1, β5, β8}, {β2, β6, β7, β10}, {β3, β4, β9}.
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Big quintic and sextic Hermite equivalence classes
Quintic Hermite equivalence class (Gaál, Győry, 1999)
Let

f (X ) = X 5 − 5X 3 + X 2 + 3X − 1,

then the Galois group of f is S5 and the Hermite equivalence class
of f (X ) consists of 39 Z-equivalence classes which form 10
GL2(Z)-equivalence classes.

Sextic Hermite equivalence class (Bilu, Gaál, Győry, 2004)
Let

f (X ) = X 6 − 5X 5 + 2X 4 + 18X 3 − 11X 2 − 19X + 1,

then the Galois group of f is S6 and the Hermite equivalence class
of f (X ) consists of 45 Z-equivalence classes which form 11
GL2(Z)-equivalence classes.
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Infinite families

The defining polynomials f and g of the algebraic integers α and β
are Hermite equivalent, if there exist p, q ∈ Z[X ], such that
β = p(α) and α = q(β).

This means that f (X ) | q(p(X )) − X . I.e. f (X ) · h(X ) + X must
be a polynomial of p(X ) for some h ∈ Z[X ]. If we can guarantee
that the Galois group of f (X ) is doubly transitive, and we can find
the polynomials above with deg p ≤ deg f − 2, then α and β can
not be in the same GL2(Z)-equivalence class, since the equation

aα + b
cα + d = p(α)

clearly has no solution with ad − bc = ±1 as the degree of α in
(cα + d) · p(α) − (aα + b) is less than the degree of f .
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Infinite quartic examples
Let p(X ) = X 2 − r and q(X ) = X 2 − s, where r , s ∈ Z. Then let

f (X ) = q(p(X )) − X = (X 2 − r)2 − X − s

• There exist infinitely many r , s ∈ Z, for which f (X ) is irreducible
and has Galois group S4. (Kappe, Warren, 1989). Lets consider
such parameters r , s.
• Let α be a root of f (X ), then β = p(α) = α2 − r is a root of
g(X ) = (X 2 − s)2 − X − r . The polynomials f (X ) and g(X ) are
clearly Hermite equivalent, but not GL2(Z)-equivalent, since
deg p ≤ deg f − 2. Indeed, if there would be a solution
(a, b, c, d) ∈ Z4, with ad − bc = ±1, of

aα + b
cα + d = α2 − r ,

then there would be a nonzero cubic polynomial in Z[X ] with root
α, which is not possible. (Bérczes, Evertse, Győry, 2013)
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Infinite examples of arbitrary degree n ≥ 4
Let us fix p(X ) = X − X 2. Our aim is to find f , h ∈ Z[X ], for
which f (X ) · h(X ) + X is a polynomial of X − X 2.

p(X ) = X − X 2 is not the simplest choice in the monic case, but it
can easily be extended to the nonmonic case. With p(X ) = X 2, it
is easier to find monic examples, but it can not be extended to the
nonmonic case.

We will assume that

f (n)(X ) = Xn − t · h(n)(1 − X ),

where t is a prime. This form is useful, since f is automatically
irreducible and h(n)(X ) · h(n)(1 − X ) is a polynomial of X − X 2.
So we only have to find h(n)(X ), such that

Xn · h(n)(X ) = r (n)(X − X 2) − X .
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Xn · h(n)(X ) = r (n)(X − X 2) − X .

On the left hand side the constant term is 0, so r (n)(0) is also 0.
Therefore we can write

Xn · h(n)(X ) = (X − X 2) · a(n)(X − X 2) − X

Xn−1 · h(n)(X ) = (1 − X ) · a(n)(X − X 2) − 1
We want to create an example for any n, so a(n)(X ) has to be a
partial sum of a power series C(X ), for which

(1 − X ) · C(X − X 2) − 1 = 0.

It is true for the well known generating function C(X ) of the
Catalan numbers:

C(X ) =
∞∑

j=0

1
j + 1

(
2j
j

)
· X j
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Let a(n)(X ) be the n − 2-nd partial sum of the generating function
C(X ) of the Catalan numbers, and let

h(n)(X ) = (1 − X ) · a(n)(X − X 2) − 1
Xn−1 ,

k(n)(X ) := −h(n)(1 − X ) = −X · a(n)(X − X 2) − 1
(1 − X )n−1 ,

f (n)(X ) = Xn − t · h(n)(1 − X ) = Xn + t · k(n)(X ).
Then

f (n)(X ) · h(n)(X ) + X = q(X − X 2),
where

q(X ) = X · a(n)(X ) − t · X · a(n)(X )2 − a(n)(X ) + 1
Xn−1

Fortunately, C(X ) satisfies X · C(X )2 − C(X ) + 1 = 0, so q(X ) is
also an integer polynomial and therefore Z[α] = Z[α − α2].
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Prooving irreducibility of k (n)(X )
One can show that

h(n)(−X ) = −1
n

(
2n − 2
n − 1

)
·

n−2∑
i=0

(
n
i

)
· (n − 1 − i)(n − i)

(n − 1 + i)(n + i) · X i .

Let n < r < 6n/5 and 6n/5 < s < 36n/25 be primes. If n > 24,
then there exist such primes (Nagura, 1952). Furthermore, it is
easy to construct the r− and s−Newton polygons of h(n)(−X ):

These polygons consist of three primitive edges of length
r − n, 1, 2n − r − 3 and s − n, 1, 2n − s − 3 respectively.
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Dumas’s irreducibility criterion (1906)
The degree of any nontrivial factor of f (X ) ∈ Z[X ] must be the
sum of lengths of the primitive edges of the Newton polygons of
f (X ) with respect to any prime.

• In our case an irreducible factor of h(n)(−X ) must be the sum of
some of the numbers r − n, 1, 2n − r − 3 and also the sum of
some of the numbers s − n, 1, 2n − s − 3.
• This implies that if h(n)(−X ) ∈ Q[X ] is reducible, then it has a
rational root. But it can be shown that h(n)(−X ) does not have a
rational root, so it is irreducible for any n ≥ 4 and so is k(n)(X ).
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Prooving GL2(Z)-inequivalence of α and p(α) = α − α2

• By the Frobenius’s or the Chebotarev’s density theorem, there are
infinitely many primes p, such that k(n)(X ) has no root modulo p.
• Finally let t be a prime with t ≡ −C−1

n−1 (mod p), where p is a
prime for which k(n+1)(X ) has no root modulo p.
• If the Galois group of f (n)(X ) would not be 2-transitive, then
there would be a root of k(n+1)(X ) modulo p, which is a
contradiction. Therefore, α and α − α2 are not GL2(Z)-equivalent.

f (4)(X ) = X 4 + t · (2X 2 + 2X + 1)
f (5)(X ) = X 5 + t · (5X 3 + 5X 2 + 3X + 1)
f (6)(X ) = X 6 + t · (14X 4 + 14X 3 + 9X 2 + 4X + 1)
f (7)(X ) = X 7 + t · (42X 5 + 42X 4 + 28X 3 + 14X 2 + 5X + 1)

...
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Nonmonic equivalences
GL2(Z)-equivalence
Two polynomials f , g ∈ Z[X ] of degree n are said to be
GL2(Z)-equivalent, if

g(X ) = ±(cX + d)n · f
(aX + b

cX + d

)
, for some

(
a b
c d

)
∈ GL2(Z).

A polynomial is called properly nonmonic, if it is not GL2(Z)
equivalent to a monic polynomial.

Hermite equivalence
Two polynomials f , g ∈ Z[X ] are said to be Hermite equivalent,
if there is a matrix U ∈ GLn(Z), such that

[g ](X ) = [f ](UX ).
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If f and g are irreducible and there exist α, β roots of f and g for
which

(βn−1, βn−2, . . . , 1) = (αn−1, αn−2, . . . , 1) · U,

then f and g are Hermite equivalent. I.e. if the Z-modules
Z
〈
1, α, . . . , αn−1

〉
and Z

〈
1, β, . . . , βn−1

〉
are equal, then f and g are Hermite equivalent. (The converse is
not true in general.)
If β = p(α) for some p ∈ Z[X ], then it is not necessarily true, that

p(α)k ∈ Z
〈
1, α, . . . , αn−1

〉
.

Lemma
If the leading coefficient of f (X ) is c and p(X ) = X · s(cX ) for
some s ∈ Z[X ], then p(α)k ∈ Z

〈
1, α, . . . , αn−1〉 for each

k = 0, 1, . . . , n − 1.
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Infinite examples

Compared to the monic case, the only difference is that now we
want to find p, q ∈ Z[X ] polynomials of the form
p(X ) = X · s(f0X ) and q(X ) = X · r(g0X ), where f0 and g0 are the
leading coefficients of f and g and r , s ∈ Z[X ].
For these p, q polynomials we have to find h ∈ Z[X ], such that

f (X ) · h(X ) = q(p(X )) − X .

By the previous lemma, in this case f and g are Hermite
equivalent, but if we can choose p(X ) such that
deg p ≤ deg(f ) − 2, then f and g are not GL2(Z)-equivalent. In
this way, we can create infinite examples for Hermite equivalence
classes that split into at least two GL2(Z)-equivalence classes.
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Example of degree 4
Let s ∈ Z be an integer such that s ≡ 1 (mod 15) and let

f (X ) = 2X 4 + 8X 2 + 2sX − 2s2 + 9.

f (X ) ≡ 2(X + 1)(X 3 + 2X 2 + 2X + 2) (mod 3)
f (X ) ≡ 2(X 2 + X + 2)(X + 1)(X + 3) (mod 5)

}
Gal(f ) ≃ S4.

Let α be a root of f (X ), and β = α + 2α2. Then

1, β, β2, β3 ∈ Z
〈
1, α, α2, α3

〉
.

The integer defining polynomial g(X ) of β also has a leading
coefficient 2, and q(X ) is also of the form X · r(2X ). Therefore

1, α, α2, α3 ∈ Z
〈
1, β, β2, β3

〉
,

so α and β are Hermite equivalent, but not GL2(Z)-equivalent,
since deg p ≤ deg f − 2.
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Example of degree 5
Let s ∈ Z be an integer such that s ≡ 71 (mod 110) and let

2X 5 + (−800s2 − 278s − 24)X + 800s2 + 253s + 20.

f (X ) ≡ 2X 5 + 3X + 3 (mod 5)
f (X ) ≡ 2X (X 2 + 9)(X + 3)(X + 8) (mod 11)

}
Gal(f ) ≃ S5.

Let α be a root of f (X ), and β = α + 2α2. Then

1, β, β2, β3, β4 ∈ Z
〈
1, α, α2, α3, α4

〉
.

The integer defining polynomial g(X ) of β also has a leading
coefficient 2, and q(X ) is also of the form X · r(2X ). Therefore

1, α, α2, α3, α4 ∈ Z
〈
1, β, β2, β3, β4

〉
,

so α and β are Hermite equivalent, but not GL2(Z)-equivalent.
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Infinite examples of arbitrary degree n ≥ 4
We could generalize the infinite monic examples based on the
generating function of the Catalan numbers to the (properly)
nonmonic case. Let again a(n)(X ) be the n − 2-nd partial sum of
the generating function C(X ) of the Catalan numbers, t and c be
prime numbers, and let

h(n)(X ) = (1 − X ) · a(n)(X − X 2) − 1
Xn−1 , k(n)(X ) = −h(n)(1−X ),

f (n)(X ) = cXn + t · k(n)(cX ).
Then we have

f (n)(X ) · h(n)(cX ) + X = q(X − cX 2),

where

q(X ) = X · a(n)(cX ) − cn−2t · cX · a(n)(cX )2 − a(n)(cX ) + 1
(cX )n−1
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f (n)(X ) = cXn + t · k(n)(cX )

• If c = 1, then we get back the family of monic examples. But if
c is a prime, then

f (n)(X ) ≡ t (mod c),

so if t is chosen to be a non n−th power remainder modulo c, then
there is no integer solution to F (n)(X , Y ) = Y n · f (n)(X/Y ) = ±1,
hence f (n)(X ) is properly nonmonic and primitive.

• Let α be a root of f (n)(X ), then α and α − cα2 are Hermite
equivalent but not GL2(Z)-equivalent algebraic numbers.

•This family of examples is infinite for every degree n ≥ 4 and for
every leading coefficient c, since there are infinitely many possible
choices for t, and the discriminant of f (n)(X ) → ∞ as t → ∞.
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Conclusion

For n ≥ 4, the notions of Hermite and GL2(Z)-equivalence of
polynomials of degree n are different in general. More precisely:

For every integer n ≥ 4, there exists an infinite collection of
Hermite equivalence classes, each containing two monic
polynomials f and g that are not GL2(Z)-equivalent.
For every integer n ≥ 4, there exists an infinite collection of
Hermite equivalence classes, each containing two primitive
polynomials f and g that are properly nonmonic and not
GL2(Z)-equivalent.
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