The r-Fubini-Lah numbers and polynomials

Gabriella Rácz

Number Theory and Algebra Seminar 21 April 2023

Bell numbers and polynomials

Stirling numbers of the second kind

$\left\{\begin{array}{l}n \\ k\end{array}\right\}$: the number of partitions of a set with n elements into k subsets

Bell numbers and polynomials

Stirling numbers of the second kind

$\left\{\begin{array}{l}n \\ k\end{array}\right\}$: the number of partitions of a set with n elements into k subsets

Bell numbers

B_{n} : the number of partitions of a set with n elements

Bell numbers and polynomials

Stirling numbers of the second kind

$\left\{\begin{array}{l}n \\ k\end{array}\right\}$: the number of partitions of a set with n elements into k subsets

Bell numbers

B_{n} : the number of partitions of a set with n elements

$$
B_{n}=\sum_{k=0}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}
$$

Bell numbers and polynomials

Stirling numbers of the second kind

$\left\{\begin{array}{l}n \\ k\end{array}\right\}$: the number of partitions of a set with n elements into k subsets

Bell numbers

B_{n} : the number of partitions of a set with n elements

$$
B_{n}=\sum_{k=0}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}
$$

Bell polynomials

$$
B_{n}(x)=\sum_{k=0}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} x^{k}
$$

Summed Lah numbers and Lah polynomials

Lah numbers
$\left\lfloor\left.\begin{array}{l}n \\ k\end{array} \right\rvert\,\right.$: the number of partitions of a set with n elements into k ordered subsets

Summed Lah numbers and Lah polynomials

Lah numbers

$\left\lfloor\left.\begin{array}{l}n \\ k\end{array} \right\rvert\,\right.$: the number of partitions of a set with n elements into k ordered subsets

Summed Lah numbers

L_{n} : the number of partitions of a set with n elements into ordered subsets

Summed Lah numbers and Lah polynomials

Lah numbers

$\left\lfloor\left.\begin{array}{l}n \\ k\end{array} \right\rvert\,\right.$: the number of partitions of a set with n elements into k ordered subsets

Summed Lah numbers

L_{n} : the number of partitions of a set with n elements into ordered subsets

$$
L_{n}=\sum_{k=0}^{n}\left\lfloor\begin{array}{l}
n \\
k
\end{array}\right\rfloor
$$

Summed Lah numbers and Lah polynomials

Lah numbers

$\left\lfloor\begin{array}{l}n \\ k\end{array}\right\rfloor$: the number of partitions of a set with n elements into k ordered subsets

Summed Lah numbers

L_{n} : the number of partitions of a set with n elements into ordered subsets

$$
L_{n}=\sum_{k=0}^{n}\left\lfloor\begin{array}{l}
n \\
k
\end{array}\right\rfloor
$$

Lah polynomials

$$
L_{n}(x)=\sum_{k=0}^{n}\left\lfloor\begin{array}{l}
n \\
k
\end{array}\right\rfloor x^{k}
$$

Fubini numbers and polynomials

Fubini numbers

F_{n} : the number of ordered partitions of a set with n elements

Fubini numbers and polynomials

Fubini numbers

F_{n} : the number of ordered partitions of a set with n elements

$$
F_{n}=\sum_{k=0}^{n} k!\left\{\begin{array}{l}
n \\
k
\end{array}\right\}
$$

Fubini numbers and polynomials

Fubini numbers

F_{n} : the number of ordered partitions of a set with n elements

$$
F_{n}=\sum_{k=0}^{n} k!\left\{\begin{array}{l}
n \\
k
\end{array}\right\}
$$

Fubini polynomials

$$
F_{n}(x)=\sum_{k=0}^{n} k!\left\{\begin{array}{l}
n \\
k
\end{array}\right\} x^{k}
$$

r-generalizations

r-generalizations

- $\left\{\begin{array}{l}n \\ k\end{array}\right\}_{r}$: r-Stirling numbers of the second kind
(L. Carlitz, A. Z. Broder, R. Merris)

r-generalizations

- $\left\{\begin{array}{l}n \\ k\end{array}\right\}_{r}: r$-Stirling numbers of the second kind
(L. Carlitz, A. Z. Broder, R. Merris)
- $B_{n, r}, B_{n, r}(x)$: r-Bell numbers and polynomials
(L. Carlitz, I. Mezó)

r-generalizations

- $\left\{\begin{array}{l}n \\ k\end{array}\right\}_{r}: r$-Stirling numbers of the second kind
(L. Carlitz, A. Z. Broder, R. Merris)
- $B_{n, r}, B_{n, r}(x)$: r-Bell numbers and polynomials
(L. Carlitz, I. Mezó)
- $\left\lfloor\begin{array}{l}n \\ k\end{array}\right\rfloor_{r}: r$-Lah numbers
(G. Nyul, G. Rácz)

r-generalizations

- $\left\{\begin{array}{l}n \\ k\end{array}\right\}_{r}: r$-Stirling numbers of the second kind
(L. Carlitz, A. Z. Broder, R. Merris)
- $B_{n, r}, B_{n, r}(x)$: r-Bell numbers and polynomials
(L. Carlitz, I. Mezó)
- $\left\lfloor\begin{array}{l}n \\ k\end{array}\right\rfloor_{r}: r$-Lah numbers
(G. Nyul, G. Rácz)
- $L_{n, r}, L_{n, r}(x)$: summed r-Lah numbers and r-Lah polynomials (G. Nyul, G. Rácz)

r-generalizations

- $\left\{\begin{array}{l}n \\ k\end{array}\right\}_{r}: r$-Stirling numbers of the second kind
(L. Carlitz, A. Z. Broder, R. Merris)
- $B_{n, r}, B_{n, r}(x)$: r-Bell numbers and polynomials
(L. Carlitz, I. Mezó)
- $\left\lfloor\begin{array}{l}n \\ k\end{array}\right\rfloor_{r}: r$-Lah numbers
(G. Nyul, G. Rácz)
- $L_{n, r}, L_{n, r}(x)$: summed r-Lah numbers and r-Lah polynomials (G. Nyul, G. Rácz)
- $F_{n, r}, F_{n, r}(x)$: r-Fubini numbers and polynomials (I. Mező, G. Nyul)

r-Fubini-Lah numbers and polynomials

r-Fubini-Lah numbers and polynomials

Definition of the r-Fubini-Lah numbers

$F L_{n, r}$: the number of ordered partitions of an $(n+r)$-element set into ordered subsets such that r distinguished elements belong to distinct ordered blocks ($n, r \geq 0$)

r-Fubini-Lah numbers and polynomials

Definition of the r-Fubini-Lah numbers

$F L_{n, r}$: the number of ordered partitions of an $(n+r)$-element set into ordered subsets such that r distinguished elements belong to distinct ordered blocks ($n, r \geq 0$)

$$
F L_{n, r}=\sum_{k=0}^{n}(k+r)!\left\lfloor\begin{array}{l}
n \\
k
\end{array}\right\rfloor_{r}
$$

r-Fubini-Lah numbers and polynomials

Definition of the r-Fubini-Lah polynomials

$$
\left.F L_{n, r}(x)=\sum_{k=0}^{n}(k+r)!\left\lvert\, \begin{array}{l}
n \\
k
\end{array}\right.\right]_{r} x^{k}
$$

r-Fubini-Lah numbers and polynomials

Definition of the r-Fubini-Lah polynomials

$$
\left.F L_{n, r}(x)=\sum_{k=0}^{n}(k+r)!\left\lvert\, \begin{array}{l}
n \\
k
\end{array}\right.\right]_{r} x^{k}
$$

Combinatorial interpretation

$F L_{n, r}(c)$ counts the number of ordered partitions of a set with $n+r$ elements into ordered subsets and colourings of the ordered subsets with c colours such that r distinguished elements belong to distinct ordered blocks and their ordered blocks are not coloured ($c \geq 1$).

r-Fubini-Lah numbers and polynomials

Small values of r

- If $n \geq 1$, then

$$
\begin{gathered}
F L_{n, 0}(x)=n!x(x+1)^{n-1}, \\
F L_{n, 0}=n!2^{n-1} .
\end{gathered}
$$

r-Fubini-Lah numbers and polynomials

Small values of r

- If $n \geq 1$, then

$$
\begin{gathered}
F L_{n, 0}(x)=n!x(x+1)^{n-1}, \\
F L_{n, 0}=n!2^{n-1} .
\end{gathered}
$$

- If $n \geq 0$, then

$$
\begin{gathered}
x F L_{n, 1}(x)=F L_{n+1,0}(x), \\
F L_{n, 1}=F L_{n+1,0} .
\end{gathered}
$$

r-Fubini-Lah numbers and polynomials

Recurrence

If $n \geq 0$ and $r \geq 1$, then

$$
\begin{gathered}
F L_{n, r}(x)=r \sum_{k=0}^{n}\binom{n}{k}(n-k+1)!F L_{k, r-1}(x)+x \sum_{k=0}^{n-1}\binom{n}{k}(n-k)!F L_{k, r}(x), \\
F L_{n, r}=r \sum_{k=0}^{n}\binom{n}{k}(n-k+1)!F L_{k, r-1}+\sum_{k=0}^{n-1}\binom{n}{k}(n-k)!F L_{k, r} .
\end{gathered}
$$

r-Fubini-Lah numbers and polynomials

Recurrence

If $n \geq 0$ and $r \geq 1$, then

$$
\begin{gathered}
F L_{n, r}(x)=r \sum_{k=0}^{n}\binom{n}{k}(n-k+1)!F L_{k, r-1}(x)+x \sum_{k=0}^{n-1}\binom{n}{k}(n-k)!F L_{k, r}(x), \\
F L_{n, r}=r \sum_{k=0}^{n}\binom{n}{k}(n-k+1)!F L_{k, r-1}+\sum_{k=0}^{n-1}\binom{n}{k}(n-k)!F L_{k, r} .
\end{gathered}
$$

Another recurrence for the polynomials

If $n, r \geq 0$, then

$$
F L_{n+1, r}(x)=((r+1) x+n+2 r) F L_{n, r}(x)+\left(x^{2}+x\right) F L_{n, r}^{\prime}(x) .
$$

r-Fubini-Lah numbers and polynomials

Dobiński type formula

If $n, r \geq 0$, then

$$
\begin{gathered}
F L_{n, r}(x)=\frac{1}{(x+1) x^{r}} \sum_{k=0}^{\infty}(k+r)^{\bar{n}} k^{\underline{r}}\left(\frac{x}{x+1}\right)^{k} \\
F L_{n, r}=\sum_{k=0}^{\infty} \frac{(k+r)^{\bar{n}} k^{\underline{r}}}{2^{k+1}}
\end{gathered}
$$

r-Fubini-Lah numbers and polynomials

Exponential generating function

If $r \geq 0$, then

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{F L_{n, r}(x)}{n!} y^{n} & =\frac{r!}{(1-y)^{r-1}(1-y-x y)^{r+1}} \\
\sum_{n=0}^{\infty} \frac{F L_{n, r}}{n!} y^{n} & =\frac{r!}{(1-y)^{r-1}(1-2 y)^{r+1}}
\end{aligned}
$$

r-Fubini-Lah numbers and polynomials

Connection with the r-Fubini numbers and polynomials
If $n, r \geq 0$, then

$$
\begin{aligned}
F L_{n, r}(x) & =\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{r} F_{k, r}(x), \\
F L_{n, r} & =\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{r} F_{k, r} .
\end{aligned}
$$

