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Preliminaries

Sk(x) =142k (x—1)k

1

Sk(x) = PR (Bk+1(x) — Bi+1)

where By (x) denotes the kth Bernoulli polynomial and By = Bi(0).

Sk(x) = x(x = 1)(2x — 1) Tk(x), k is even

Sk(x) = x*(x —1)2Ty(x), k> 1isodd
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Earlier times

A classical example (cannonball problem):
24224+ (x—1)2=y?

All the solutions are (x, y) = (2,1), (25,70)
Lucas, 1875, conjecture

Watson, 1918, proof
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Earlier times, the general case, ineffective

Sk(x) =1 42k (x—1)k=y"

k is a fixed positive integer, x, y, n are unknown integers with
x>2,y>1,n>1

Schaffer, 1956

Apart from the cases

(k,n) €{(1,2),(3,2),(3,4),(5,2)}

the equation Sk(x) = y" has only finitely many solutions in x and y
for every fixed exponent n > 2 and fixed k > 1.
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Exceptional cases
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Generalizations, effective results

Gyéry, Tijdeman, Voorhoeve, 1980

Let kK > 2 and r be a fixed integers with k ¢ {3,5} if r =0, and let
s be a squarefree odd integer. Then the equation

sSk(x) +r=y"

in positive integers x,y > 2, n > 2 has only finitely many solutions,
and all these can effectively determined.
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A surprising generalization

Voorhoeve, Gyéry, Tijdeman, 1979

Let R(x) be a fixed polynomial with integer coefficients, and let
k > be a fixed integer such that k ¢ {3,5}. Then the equation

Sk(x) + R(x) = y"

in integers x,y > 2, n > 2 has only finitely many solutions, and an
effective upper bound can be given for n.
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Common effective generalization

Set A=Z[X],k = (k+1)[I,_1) (k1) P (p prime) and

FOY)=QumY™+...+ QY + Q € A[Y].

Consider the equation

F(Sk(x)) = y"
in integers x,y > 2,n > 2.
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Brindza, 1984

If Qi(x)=0 (mod k') for i =2,....,m; Qi(x) ==+l (mod 4),
and k ¢ {1,2,3,5} then all solutions of the previous equation
satisfy max(x, y, n) < c1, where ¢; is an effectively computable
constant depending only on F and k.

Remarks.

1. Effective by Brindza's effective LeVeque for superelliptic
equations

2. If Q(x)=...Qm(x) =0and Qi(x) =s, where s is an odd
integer, then we have an effective version of the surprising
generalization.
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sSk(x) + r = y" without condition

Rakaczki, 2012

Let k > 1,r,s # 0 be fixed integers. Then apart from the cases
when (i) k = 3 and eitherr =0 or s + 64r =0, and (ii) k =5 and
either r = 0 or s — 324r = 0, the equation

sk (x—1D))Fr=y"

in integers x > 0, |y| > 2, and n > 2 has only finitely many
solutions which can be effectively determined.
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Other analogues

Urbanowicz, 1988

periodic function analogue

Dilcher, 1986

quadratic residue class character analogue
A cute equation with characters:

1k -3k 45k — L (x—3)f - (ax— 1)k =xy"
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Dilcher’s equation

Dilcher, 1986

For fixed k > 3 with k ¢ {4,5} the equation

16— 3k 5k — 4 (ax —3)F — (4x — 1) = £y"

has only finitely many solutions in integers x,y > 2 and n > 2, with
effective upper bounds for x, y, n.
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Common roots of the proofs

f(x) = y",x,y, n are unknown integers with |y| > 1 and n > 2

@ Schinzel-Tijdeman Theorem for the exponent n
o Effective LeVeque's theorem by Brindza

@ Zero-structure of f, e.g. three simple zero
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Schéffer’s conjecture

Schiffer’'s conjecture, 1956

For k > 1 and n > 2 with

(k) ¢ {(1,2),(3,2),(3,4),(5,2)},

equation

1kpok 4 (x—1)k=y"
has only one non-trivial solution, namely (k, n, x, y) = (2,2, 25,70).

Remarks. Trivial solution (x,y) = (2,1). k, n, x, y are unknows.
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The first candle

Bennett, Gydry, P, 2004

For 1 < k <11 and

(k,n) {(1,2),(3,2),(3,4),(5,2)},

equation

ok (x—1)f=y"

has only one non-trivial solution, namely (k, n, x,y) = (2,2,25,70).
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Some special cases |

Jacobson, Walsh, P, 2003

For n = 2 and even values of k with k < 58, equation

kp2k o (x—1Dk=y"

has only the trivial solution except in the case k = 2, when there is
the anomalous solution (x,y) = (25,70).
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Some (very) special cases Il

P, 2007

For odd values of k with 1 < k < 170, the equation

1k 2kp  (x—1)k=y?"

in positive integers x, y, n with n > 2 has only the trivial solution
(x,y) = (2,1).
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Bottlenecks for larger k

For n > 2: our approach is based on modular method. The
modular method is based on the calculation of coefficients of
several newforms. For larger k the level of the corresponding
newforms is too high for computational purpose. For example:

3617
B> = Bis =

23 5 7 13> T 23517

For n = 2: we have to calculate the fundamental solution to the
Pell equation x? — ay? = 1 for LARGE a (a > 10%).
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An upper bound for n

P, 1997

All the solutions x, y, n to equation

kb (x—1Dk=y"

with x > 103(k/2)k+%,y > 1 and n > 2 satisfy

n < oklog2k,

where ¢, is an effectively computable absolute constant.
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Detour: Erdés-Moser conjecture

Erdés, Moser, 1950's
The unique solution of the equation

k4 2k 4 (x—1k=xk
is (k,x) = (1,3).

Remark. If x is a solution then x > 101’ (Gallot, Moree, Zudilin,
2011).
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The number of solutions for n = 2

Brindza, P, 2000

For k > 2 even, the equation

1k ok 4 (x—1)k=y?

has at most max{cs, 9%} solutions in integers x and y, where c3 is
an effectively computable absolute constant.
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The number of solutions for n > 2

Brindza, P, 2000
Apart from the case (k, n) = (3,4), the equation

ok (x—1)f=y"

has at most max{cy, e3¢} solutions in positive integers x,y > 1,
and n > 2, where ¢4 is an effectively computable absolute constant.

Remark. nis unknown.
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Schéffer’'s conjecture for fixed x

Bérczes, Hajdu, Miyazaki, Pink, 2016

All solutions of the equation

Ik ok b (x—1)k=y"

in positive integers x, k, y, n with x < 26 and n > 3 are given by

(x, k,y,n)=(2,k,1,n),(9,3,6,4).
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A variant of Schéffer's problem

Bartoli, Soydan, 2020
Let k, /¢ be fixed integers such that k > 2,k # 3, and £ > 2. Then
all solutions of the equation

(x+Df +(x+2)k+.. () =y"

in integers x,y, n with x,y > 2, n > 2 satisfy max{x, y, n} < cs,
where cs is an effectively computable constant depending only on ¢
and k.
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New age

There are only finite number of terms on the left-hand side. A
typical example:
Zhang 2014, Bennett, Patel, Siksek, 2016

The only solutions to the equation

(x —Df+xK 4+ (x+ 1) =y" k€ {2,3,4,5,6},x,y,n€Z,n>2

are (x,y, k,n) =
(1,£3,3,2),(2,£6,3,2)(24,+204, 3,2)(+4, £6, 3,3), (0,0, 5, n).

Nirvana Coppola, Mar Curcé-lranzo, Maleeha Khawaja, Vandita
Patel, Ozge Ulkem, 2023, arXiv:2306.05168
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Simple zeros of Bernoulli polynomials

Gyéry, P, 2027

For every k > 3 and b € C the polynomial B(X) + b has at least
three simple zeros apart from the cases

(o) (5 ) (-8 ()
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Simple zeros of Euler polynomials

Gyéry, P, 2027

Let k > 3 be an integer and b € C. Then the shifted Euler
polynomial Ex(x) + b has at least three simple zeros, apart from
the cases

(k.b) = (3.£5).(0.3) . (4.~ 5) .(5.0).(6. 1)
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Simple zeros of generalized Bernoulli polynomials

Gyory, P. 2027

Let x be the unique quadratic character with conductor f = 4 and
B;E(X) be the kth generalized Bernoulli polynomial belonging to x.
Let kK > 4 be an integer and b € C. Then the shifted generalized
Bernoulli polynomial B;(‘(X) + b has at least three simple zeros,
apart from the cases

(K, b) = (4, 4), (5, ~10), (5, 225> (6,0), (7,224).
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A generalization of Dilcher’s result

Gyéry, P

Let r be a fixed rational number and k > 3 be a fixed integer.
Apart from the cases

(k,r) € {(3,11),(4,0), (4’ _29> (5,0), (67 1§5>}

the equation
1k -3k 5k (x =3 —(@x -1+ r=1by"
has only finitely many solutions in integers x, |y| > 1,n > 2 and
max(x, |yl n) < c,

where ¢ is an effectively computable constant depending on k, r
and b.
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The exceptional cases

(k,r) = (3,£1) : —(2x F1)(4x £1)?,
(k,r) = (4,0) : —16x2(8x% — 3), Dilcher, 1986,
(kor) = (4,-9/2) : (165~ 3),
(k,r) = (5,0) : —2x(16x? — 5)2, Dilcher, 1986

(k,r) = (6,125/2) - —%(16x2 _5)2.
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The proof

The proof is based on a simple observation.

_ X+1
BY(X) = —2"2kEx 4 <2> ;
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Corollary (preliminary version)

Set T(x) =1k -3k 455k — . 4+ (4x —3)k — (4x — 1)* + r and
F(X) € Q[X],deg F > 2 and F is irreducible over Q.

Gyéry, P, 2027

The equation F(T(x)) = by" in integers x > 1,y >1and n>2
has only finitely many solutions, and

max(x, y, n) < cr,

where ¢7 is an effectively computable constant depending only on
k,F and b.
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Homework

There is a Hungarian mathematical journal for secondary schools
with a mathematical competition.

B. 4472. Prove that the sum of the squares of seven consecutive
integers cannot be a perfect square.

B. 5290. Solve the following equation over the set of positive

integers:
3"+4"+ .+ (n+2)"=(n+3)".
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Thank you for your attention!
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