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Preliminaries

Sk(x) = 1k + 2k + . . .+ (x − 1)k

Sk(x) =
1

k + 1
(Bk+1(x)− Bk+1) ,

where Bk(x) denotes the kth Bernoulli polynomial and Bk = Bk(0).

Sk(x) = x(x − 1)(2x − 1)Tk(x), k is even

Sk(x) = x2(x − 1)2Tk(x), k > 1 is odd
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Earlier times

A classical example (cannonball problem):

12 + 22 + . . .+ (x − 1)2 = y2

All the solutions are (x , y) = (2, 1), (25, 70)

Lucas, 1875, conjecture

Watson, 1918, proof
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Earlier times, the general case, ine�ective

Sk(x) = 1k + 2k + . . .+ (x − 1)k = yn

k is a �xed positive integer, x , y , n are unknown integers with
x > 2, y > 1, n > 1

Schä�er, 1956

Apart from the cases

(k , n) ∈ {(1, 2), (3, 2), (3, 4), (5, 2)}

the equation Sk(x) = yn has only �nitely many solutions in x and y
for every �xed exponent n ≥ 2 and �xed k ≥ 1.
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Exceptional cases

S1(x) =
1
2
x(x − 1) = y2,

S3(x) =
1
4
x2(x − 1)2 = y2,

S3(x) =
1
4
x2(x − 1)2 = y4,

S5(x) =
1
12

x2(x − 1)2(2x2 − 2x − 1) = y2.

Ákos Pintér Power sums and diophantine equations



Generalizations, e�ective results

Gy®ry, Tijdeman, Voorhoeve, 1980

Let k ≥ 2 and r be a �xed integers with k /∈ {3, 5} if r = 0, and let
s be a squarefree odd integer. Then the equation

sSk(x) + r = yn

in positive integers x , y ≥ 2, n ≥ 2 has only �nitely many solutions,
and all these can e�ectively determined.
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A surprising generalization

Voorhoeve, Gy®ry, Tijdeman, 1979

Let R(x) be a �xed polynomial with integer coe�cients, and let
k ≥ be a �xed integer such that k /∈ {3, 5}. Then the equation

Sk(x) + R(x) = yn

in integers x , y ≥ 2, n ≥ 2 has only �nitely many solutions, and an
e�ective upper bound can be given for n.
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Common e�ective generalization

Set A = Z[X ], κ = (k + 1)
∏

p−1|(k+1)! p (p prime) and

F (Y ) = QmY
m + . . .+ Q1Y + Q0 ∈ A[Y ].

Consider the equation

F (Sk(x)) = yn

in integers x , y ≥ 2, n ≥ 2.
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Brindza, 1984

If Qi (x) ≡ 0 (mod κi ) for i = 2, . . . ,m ; Q1(x) ≡ ±1 (mod 4),
and k /∈ {1, 2, 3, 5} then all solutions of the previous equation
satisfy max(x , y , n) < c1, where c1 is an e�ectively computable
constant depending only on F and k .

Remarks.

1. E�ective by Brindza's e�ective LeVeque for superelliptic
equations
2. If Q2(x) = . . .Qm(x) = 0 and Q1(x) = s, where s is an odd
integer, then we have an e�ective version of the surprising
generalization.
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sSk(x) + r = y n without condition

Rakaczki, 2012

Let k > 1, r , s ̸= 0 be �xed integers. Then apart from the cases
when (i) k = 3 and eitherr = 0 or s + 64r = 0, and (ii) k = 5 and
either r = 0 or s − 324r = 0, the equation

s(1k + 2k + . . .+ (x − 1)k) + r = yn

in integers x > 0, |y | ≥ 2, and n ≥ 2 has only �nitely many
solutions which can be e�ectively determined.
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Other analogues

Urbanowicz, 1988

periodic function analogue

Dilcher, 1986

quadratic residue class character analogue
A cute equation with characters:

1k − 3k + 5k − . . .+ (4x − 3)k − (4x − 1)k = ±yn
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Dilcher's equation

Dilcher, 1986

For �xed k ≥ 3 with k /∈ {4, 5} the equation

1k − 3k + 5k − . . .+ (4x − 3)k − (4x − 1)k = ±yn

has only �nitely many solutions in integers x , y ≥ 2 and n ≥ 2, with
e�ective upper bounds for x , y , n.
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Common roots of the proofs

f (x) = yn, x , y , n are unknown integers with |y | > 1 and n ≥ 2

Schinzel-Tijdeman Theorem for the exponent n

E�ective LeVeque's theorem by Brindza

Zero-structure of f , e.g. three simple zero
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Schä�er's conjecture

Schä�er's conjecture, 1956

For k ≥ 1 and n ≥ 2 with

(k , n) /∈ {(1, 2), (3, 2), (3, 4), (5, 2)},

equation

1k + 2k + . . . (x − 1)k = yn

has only one non-trivial solution, namely (k , n, x , y) = (2, 2, 25, 70).

Remarks. Trivial solution (x , y) = (2, 1). k, n, x , y are unknows.
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The �rst candle

Bennett, Gy®ry, P, 2004

For 1 ≤ k ≤ 11 and

(k , n) /∈ {(1, 2), (3, 2), (3, 4), (5, 2)},

equation

1k + 2k + . . .+ (x − 1)k = yn

has only one non-trivial solution, namely (k , n, x , y) = (2, 2, 25, 70).
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Some special cases I

Jacobson, Walsh, P, 2003

For n = 2 and even values of k with k ≤ 58, equation

1k + 2k + . . .+ (x − 1)k = yn

has only the trivial solution except in the case k = 2, when there is
the anomalous solution (x , y) = (25, 70).
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Some (very) special cases II

P, 2007

For odd values of k with 1 ≤ k < 170, the equation

1k + 2k + . . .+ (x − 1)k = y2n

in positive integers x , y , n with n > 2 has only the trivial solution
(x , y) = (2, 1).
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Bottlenecks for larger k

For n > 2: our approach is based on modular method. The
modular method is based on the calculation of coe�cients of
several newforms. For larger k the level of the corresponding
newforms is too high for computational purpose. For example:
B12 = − 691

2·3·5·7·13 ,B16 = − 3617

2·3·5·17

For n = 2: we have to calculate the fundamental solution to the
Pell equation x2 − ay2 = 1 for LARGE a (a > 1020).
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An upper bound for n

P, 1997

All the solutions x , y , n to equation

1k + 2k + . . .+ (x − 1)k = yn

with x > 103(k/2)k+
5

2 , y > 1 and n ≥ 2 satisfy

n < c2k log 2k ,

where c2 is an e�ectively computable absolute constant.

Ákos Pintér Power sums and diophantine equations



Detour: Erd®s-Moser conjecture

Erd®s, Moser, 1950's

The unique solution of the equation

1k + 2k + . . .+ (x − 1)k = xk

is (k , x) = (1, 3).

Remark. If x is a solution then x > 1010
9

(Gallot, Moree, Zudilin,
2011).
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The number of solutions for n = 2

Brindza, P, 2000

For k ≥ 2 even, the equation

1k + 2k + . . .+ (x − 1)k = y2

has at most max{c3, 9k} solutions in integers x and y , where c3 is
an e�ectively computable absolute constant.
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The number of solutions for n > 2

Brindza, P, 2000
Apart from the case (k , n) = (3, 4), the equation

1k + 2k + . . .+ (x − 1)k = yn

has at most max{c4, e3k} solutions in positive integers x , y > 1,
and n > 2, where c4 is an e�ectively computable absolute constant.

Remark. n is unknown.
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Schä�er's conjecture for �xed x

Bérczes, Hajdu, Miyazaki, Pink, 2016

All solutions of the equation

1k + 2k + . . .+ (x − 1)k = yn

in positive integers x , k , y , n with x < 26 and n ≥ 3 are given by

(x , k , y , n) = (2, k, 1, n), (9, 3, 6, 4).
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A variant of Schä�er's problem

Bartoli, Soydan, 2020

Let k , ℓ be �xed integers such that k ≥ 2, k ̸= 3, and ℓ ≥ 2. Then
all solutions of the equation

(x + 1)k + (x + 2)k + . . .+ (ℓx)k = yn

in integers x , y , n with x , y ≥ 2, n ≥ 2 satisfy max{x , y , n} < c5,
where c5 is an e�ectively computable constant depending only on ℓ
and k .

Ákos Pintér Power sums and diophantine equations



New age

There are only �nite number of terms on the left-hand side. A
typical example:
Zhang 2014, Bennett, Patel, Siksek, 2016

The only solutions to the equation

(x − 1)k + xk + (x + 1)k = yn, k ∈ {2, 3, 4, 5, 6}, x , y , n ∈ Z, n ≥ 2

are (x , y , k , n) =
(1,±3, 3, 2), (2,±6, 3, 2)(24,±204, 3, 2)(±4,±6, 3, 3), (0, 0, 5, n).

Nirvana Coppola, Mar Curcó-Iranzo, Maleeha Khawaja, Vandita
Patel, Özge Ülkem, 2023, arXiv:2306.05168
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Simple zeros of Bernoulli polynomials

Gy®ry, P, 202?

For every k ≥ 3 and b ∈ C the polynomial Bk(X ) + b has at least
three simple zeros apart from the cases

(k , b)=

(
3,± 1

12
√
3

)
,

(
4,

1
30

)
,

(
4,− 7

240

)
,

(
6,− 1

42

)
,

(
6,− 1

189

)
.
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Simple zeros of Euler polynomials

Gy®ry, P , 202?

Let k ≥ 3 be an integer and b ∈ C. Then the shifted Euler
polynomial Ek(x) + b has at least three simple zeros, apart from
the cases
(k , b) =

(
3,±1

4

)
,
(
4, 1

4

)
,
(
4,− 5

16

)
, (5, 0), (6,−1).
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Simple zeros of generalized Bernoulli polynomials

Györy, P. 202?

Let χ be the unique quadratic character with conductor f = 4 and
Bk
χ(X ) be the kth generalized Bernoulli polynomial belonging to χ.

Let k ≥ 4 be an integer and b ∈ C. Then the shifted generalized
Bernoulli polynomial Bk

χ(X ) + b has at least three simple zeros,
apart from the cases

(k, b) = (4,∓4), (5,−10),

(
5,

25
2

)
, (6, 0), (7, 224).
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A generalization of Dilcher's result

Gy®ry, P

Let r be a �xed rational number and k ≥ 3 be a �xed integer.
Apart from the cases

(k, r) ∈
{
(3,±1), (4, 0),

(
4,

−9
2

)
, (5, 0),

(
6,

125
2

)}
the equation

1k − 3k + 5k − . . .+ (4x − 3)k − (4x − 1)k + r = byn

has only �nitely many solutions in integers x , |y | > 1, n ≥ 2 and

max(x , |y |, n) < c6,

where c6 is an e�ectively computable constant depending on k, r
and b.
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The exceptional cases

(k , r) = (3,±1) : −(2x ∓ 1)(4x ± 1)2,

(k , r) = (4, 0) : −16x2(8x2 − 3),Dilcher , 1986,

(k , r) = (4,−9/2) : −1
2
(16x2 − 3)2,

(k , r) = (5, 0) : −2x(16x2 − 5)2,Dilcher , 1986

(k, r) = (6, 125/2) : −1
2
(16x2 − 5)3.
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The proof

The proof is based on a simple observation.

Bk
χ(X ) = −2k−2kEk−1

(
X + 1
2

)
,

Bk
χ = −1

2
kEk−1.
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Corollary (preliminary version)

Set T (x) = 1k − 3k + 5k − . . .+ (4x − 3)k − (4x − 1)k + r and
F (X ) ∈ Q[X ], deg F ≥ 2 and F is irreducible over Q.

Gy®ry, P, 202?

The equation F (T (x)) = byn in integers x > 1, y > 1 and n ≥ 2
has only �nitely many solutions, and

max(x , y , n) < c7,

where c7 is an e�ectively computable constant depending only on
k ,F and b.
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Homework

There is a Hungarian mathematical journal for secondary schools
with a mathematical competition.

B. 4472. Prove that the sum of the squares of seven consecutive
integers cannot be a perfect square.

B. 5290. Solve the following equation over the set of positive
integers:

3n + 4n + . . .+ (n + 2)n = (n + 3)n.
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Thank you for your attention!
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