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1. Introduction and notations

(Ankeny, Brauer and Chowla) ABC-polynomial family:

Pu(X) = XQ(X)(X − u) + 1 with Q(X) ∈ Z[X] of degree q.

• Ankeny, Brauer and Chowla, 1956: the class number of the

number field Q[X]/(Pu(X)Q[X]) can be large.

The Thue equation associated to ABC-polynomials

Y q+2Pu(X/Y ) = X(Y qQ(X/Y ))(X − uY ) + Y q+2 = 1. (1)



• Bombieri, Schmidt, 1989: in degree linear upper bound for the

number of solutions of Thue equations. (1) is nearly extremal.

• Mignotte and Tzanakis, 1991 as well as Mignotte 2000: solved

(1) for Q(X) = X − 1.

• Pethő, 1991 as well as Mignotte, Pethő and Roth 1996 solved

(1) for Q(X) = (X − 1)(X +1).

• Halter-Koch, Lettl, Pethő and Tichy, 1999:

If Q(X) = (X − a1) · · · (X − an), a1, . . . , an pairwise different in-

tegers, then (1) has in general only ”obvious” solutions (x, y) =

(1,0), (0,1), (ai,1), i = 1, . . . , n. The proof is conditional, de-

pends on the Land-Waldschmidt conjecture.

• Many other results on families of Thue equations: E. Thomas,

Heuberger, Lettl, Tichy, Lemmermeyer, Voutier, Ziegler, etc.



Let P (X) = Xk − pk−1X
k−1− . . .− p0 ∈ Z[X], and A0, . . . , Ak−1 ∈

Z. Then (An) is a linear recursive sequence with characteristic

polynomial P (X) and initial terms A0, . . . , Ak−1 if

An+k = pk−1An+k−1 + . . .+ p0An, n ≥ 0.



Popular question: Find all n,m with An = Bm.

− Mignotte, 1978: If the characteristic polynomials of (An) and

(Bn) have dominant roots, which are multiplicatively independent

then An = Bm has only finitely many effectively computable

solutions. Many generalization.

− Laurent, 1987: An = Bm ...can have infinitely many solutions

m,n only in the “obvious” cases.. Ineffective in general.

− Trend of the 21th century: complete solution: Luca, Ziegler,

Bravo, Sanches, Gómez, Marques, Ddamulira, Pink, Togbé, etc



− Pethő and Tengely, 2025: Let (Fn(u)) be the lrs with initial

terms A,B,C ∈ Z and with characteristic polynomial X3 − (u −
1)X2 − (u+ 2)X − 1, Shanks cubic. If at least one of A,B,C is

non-zero and Fn(u) = Fm(u) holds for some u, n,m ∈ Z, n ̸= m

then |n|, |m| < c with effective c.



− Pethő and Tengely, 2025: Let (Fn(u)) be the lrs with initial

terms A,B,C ∈ Z and with characteristic polynomial

X3 − (u− 1)X2 − (u+ 2)X − 1, Shanks cubic. If at least one of

A,B,C is non-zero and Fn(u) = Fm(u) holds for some u, n,m ∈
Z, n ̸= m then |n|, |m| < c with effective c.

In this talk presented research was motivated by Halter-Koch,

Lettl, Pethő and Tichy as well as by Pethő and Tengely.



Theorem 1. Let Pu(X) = XQ(X)(X − u) + 1, where Q(X) ∈
Z[X] is monic, separabel, and Q(0) = ±1. Denote (An(u)) the

family of linear recursive sequences having characteristic poly-

nomial Pu(X) and initial terms A0, . . . , Aq+1 ∈ Z. Set L =

max{|A1|, . . . , |Aq+1|}, and assume L > 0. Then there exist effec-

tively computable constants u0, c0 depending only on Q(X) and

L such that if

|An(u)| = |Am(u)| (2)

holds for some integers u, n,m with u > u0 and n ̸= m then

|n|, |m| < c0.



Plan of the proof

1 Localization of the zeroes of Pu(X)

2 Properties of the Binet formula of (An(u))

3 Treatment of the ”simple” cases

4 Lower bound for |n|, |m| in term of u

5 Finish with ”Bakery”
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Our dream was to prove similar theorem with Q(0) ̸= 0, but our

method is not strong enough for this .

Our proof is not yet complete, it depends on the convergence of

some formal Puiseux expansions.*

*By Lemma 1 of W.M. Schmidt, Eisenstein’s theorem on power series ex-
pansions of algebraic functions, Acta Arith. 56 (1990), 161–179 have the
Puiseux expansion of all zeros of an equation F (X,Y ) = 0 positive radii of
convergence. Hence the proof of the Theorem is complete. 25.10.2025.



2. Localization of the zeroes of Pu(X)

Let β0 = 0, βq+1 = u, and β1, . . . , βq the (pairwise distinct) zeroes

of Q(X). Our first lemma is due essentially to Ankeny, Brauer

and Chowla.



Lemma 1. If u > u0 then

(i) the zeroes αj(u), 0 ≤ j ≤ q+1 of Pu(X) are pairwise distinct,

(ii) for a suitable arrangement of these roots

lim
u→∞u(αi(u)− βi) = bi, i = 0, . . . , q +1

hold with

b0 = Q(0)−1, bi =
1

βiQ′(βi)
̸= 0, i = 1, . . . , q +1,

(iii) Pu(X) is irreducible,

(iv) if, with the arrangement of (ii), βi is real, then αi(u) is real

too. In particular the numbers α0(u) and αq+1(u) are real.

(v) any two distinct roots are multiplicatively independent.



The next lemma allows us to localize α0(u)αq+1(u) quite pre-

cisely.

Lemma 2. Let X,X1, . . . , Xq be indeterminates and set Q(X) =∏q
j=1(X−Xj). Denote Q′(X) the derivative of Q(X) with respect

to X. Then

q∑
j=1

1

X2
j Q

′(Xj)
= (−1)q−1

∑q
i=1

∏q
j=1
j ̸=i

Xj∏q
j=1X

2
j

. (3)



The next lemma allows us to localize α0(u)αq+1(u) quite pre-

cisely.

Lemma 3. Let X,X1, . . . , Xq be indeterminates and set Q(X) =∏q
j=1(X−Xj). Denote Q′(X) the derivative of Q(X) with respect

to X. Then

q∑
j=1

1

X2
j Q

′(Xj)
= (−1)q−1

∑q
i=1

∏q
j=1
j ̸=i

Xj∏q
j=1X

2
j

. (4)

Corollary 1. If Q(0) = ±1 then

1

|α0(u)|αq+1(u)
= 1+

(−1)q+1Q′(0)

u
+ o

(
1

u

)
for all u > u0.



Corollary 2. If |Q(0)| = 1 then there exist constants κ1 ≥ 1, π >

0, u0 depending only on Q(X) such that either

1+
π

2uκ1
< |α0(u)|αq+1(u) < 1+

2π

uκ1

or

1+
π

2uκ1
<

1

|α0(u)|αq+1(u)
< 1+

2π

uκ1

hold for all u > u0.

If Q′(0) ̸= 0 then Corollary 1 yields the assertion.



Otherwise let

R(u,X) = ResY (Pu(X/Y ), Pu(Y )) ∈ Z[u,X].

One of its zeroes is α0(u)αq+1(u) for all u ∈ Z. The algebraic function
α0(u)αq+1(u) admits the Puiseux expansion

α0(u)αq+1(u) =
∞∑

j=N

πju
−j/r

with 1 ≤ r ∈ Z. Comparing this with Corollary 1 we see that N = 0, π0 = 1
and πj = 0 for j = 1, . . . , r. Let J be the smallest positive index with πJ ̸= 0,
then

α0(u)αq+1(u) = 1+
πJ

uJ/r
+O

(
1

u(J+1)/r

)
.

If πJ > 0 then we obtain

1 +
2πJ

uJ/r
< |α0(u)|αq+1(u) < 1+

πJ

2uJ/r

for all u ≥ u0.

Convergence of Puiseux expansion?



3. Properties of the Binet formula of (An(u))

Lemma 4.The sequence (An(u))n≥0 is linear recursive for n < 0

too with the characteristic polynomial Xq+2Pu(1/X).

There exist uniquely determined functions a0(u), . . . , aq+1(u) ∈
Q(α0(u), . . . , αq+1(u)), such that

An(u) = a0(u)α0(u)
n + . . .+ aq+1(u)αq+1(u)

n (5)

holds for all n ∈ Z. Binet formula.



Denote (b1, . . . ,bd) the matrix having columns b1, . . . ,bd. Fur-

ther set

A = (A0, . . . , Aq+1)
t,

vj = (αj(u)
0, . . . , αj(u)

q+1)t, j = 0, . . . , q +1,

D(u) = det(v0, . . . ,vq+1) and

Dj(u) = det(v0, . . . ,vj−1,A,vj+1, . . . ,vq+1), j = 0, . . . , q +1.



Denote (b1, . . . ,bd) the matrix having columns b1, . . . ,bd. Fur-

ther set

A = (A0, . . . , Aq+1)
t,

vj = (αj(u)
0, . . . , αj(u)

q+1)t, j = 0, . . . , q +1,

D(u) = det(v0, . . . ,vq+1) and

Dj(u) = det(v0, . . . ,vj−1,A,vj+1, . . . ,vq+1), j = 0, . . . , q +1.

Lemma 5. The following assertions are true for all u ∈ Z
(i) aj(u) ̸= 0 for all j = 0, . . . , q +1,

(ii) D(u), D0(u), Dq+1(u), a0(u) and aq+1(u) are real functions,

(iii)

aq+1(u)

a0(u)
=

Dq+1(u)

D0(u)
.



Lemma 6. There exist easily computable constants c1, c2, c3, c4
depending only on L and on the degree and the roots of Q(X)

such that

c1αq+1(u)
q+1 ≤ |D(u)| ≤ c2αq+1(u)

q+1

c3αq+1(u)
1−q2 ≤ |Dj(u)| ≤ c4αq+1(u)

q+1, j = 0, . . . , q

c5αq+1(u)
−q(q+1) ≤ |Dq+1(u)| ≤ c6

hold for all u ≥ u0.



Let

D′
0 = lim

u→∞D0(u)/αq+1(u)
q+1, D′

q+1 = lim
u→∞Dq+1(u).

Because of β0(u) → 0 we have

D′
q+1 =

∣∣∣∣∣∣∣∣∣∣
1 1 . . . 1 A0
0 β1 . . . βq A1
. . . . . . . . . . . . . . .

0 β
q+1
1 . . . β

q+1
q Aq+1

∣∣∣∣∣∣∣∣∣∣
= β1 · · ·βq

∣∣∣∣∣∣∣∣∣
1 . . . 1 A1
β1 . . . βq A2
. . . . . . . . . . . .
β
q
1 . . . β

q
q Aq+1

∣∣∣∣∣∣∣∣∣ .
Setting

dq+1 =

∣∣∣∣∣∣∣∣∣
1 . . . 1 A1
β1 . . . βq A2
. . . . . . . . . . . .
β
q
1 . . . β

q
q Aq+1

∣∣∣∣∣∣∣∣∣
we get D′

q+1 = (−1)qQ(0)dq+1.



Similarly Lemma 1 (ii) yields

D′
0 =

∣∣∣∣∣∣∣∣∣∣∣∣

A0 1 . . . 1 0
A1 β1 . . . βq 0
. . . . . . . . . . . . . . .
Aq β

q
1 . . . β

q
q 0

Aq+1 β
q+1
1 . . . β

q+1
q 1

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
A0 1 . . . 1
A1 β1 . . . βq
. . . . . . . . . . . .
Aq β

q
1 . . . β

q
q

∣∣∣∣∣∣∣∣∣ = d0.

Unfortunately d0 = 0 or/and dq+1 = 0 can happen!



If d0, dq+1 ̸= 0 then the next (key) lemma can be proved with

κ = q +1 by elementary algebra and analysis.

Lemma 7.There exist effective constants κ, κ2 ∈ Q, φ, µ ∈ R, |φ|, µ >

0 depending only on Q,L such that

lim
u→∞Φ(u) = lim

u→∞uκ
Dq+1(u)

D0(u)
= φ.

Moreover, if Φ(u) is not ultimately constant, then

µ

2uκ2
< |Φ(u)− φ| <

2µ

uκ2

holds for all u ≥ u0, u ∈ Z.



Outline of the proof if d0 or dq+1 is zero.

With D0(u), Dq+1(u) is D0(u)/Dq+1(u) too a real algebraic func-

tion. It admits a formal Puiseux expansion, i.e. there exist inte-

gers J, r and non-zero complex numbers πJ such that

Dq+1(u)

D0(u)
=

∞∑
j=J

πju
−j/r.

The choice κ = J/r, φ = πJ proves the first statement, because

Φ(u) = uκ
Dq+1(u)

Du(u)
= φ+

∞∑
j=1

πJ+ju
−j/r.

If Φ(u) is not ultimately constant, then there exists j > 0 with

πJ+j ̸= 0 too. Choosing J0 the smallest such index, the assertion

holds with µ = |πJ+J0|, κ2 = J0/r.



Lemma 8. Assume that u, n ∈ Z, n ≥ 0, u > u0, Set

F = 2max{|β1|±1, . . . , |βq|±1}. If n ≥ n2 then

||An(u)| − |aq+1(u)αq+1(u)
n|| < c8F

n. (6)

and

||A−n(u)| − |a0(u)α0(u)
−n|| < c8F

n. (7)

In particular (|An(u)|), (|A−n(u)|) are ultimately strictly mono-

tone increasing.



4. Proof of Theorem 1

Let u0, u1 be so large that

• For all u ≥ u0 αq+1(u) and 1/α0(u) is dominant among the

zeroes of Pu(X) as well as of the zeroes of Xq+2(1/X) respec-

tively.

• For all u ≥ u1 ≥ u0 αq+1(u) and α0(u) are multiplicatively

independent.

Our equation to be solved

|An(u)| = |Am(u)|

compress three equations. Assume that u, n,m ∈ Z, n ̸= m is a

solution of it. Then either n,m ≥ 0 or n,m < 0 or n ≥ 0,m < 0.



4.1 Treatment of the ”simple” cases

Case n,m ≥ 0 If u ≥ u0 then αq+1(u) is dominant −→ (|An(u)|
is strictly monotone increasing whenever n > n0 −→ no solution

if n > n1 or m > n1.

Case n,m < 0 The same argumentation with α0(u) instead of

αq+1(u).



4.2 The ”hard” case, n ≥ 0,m < 0

Let u2 ≥ u1 and u1 ≤ u ≤ u2 then αq+1(u) and 1/α0(u) are

dominant zeroes and multiplicatively independent −→ (2) has

finitely many effectively computable solutions by Mignotte, 1986.

If u ≥ u0 and n,−m are large enough then (6), (7) yield

−c8(F
n + F−m) <

∣∣∣|aq+1|αn
q+1 − |a0α0|m

∣∣∣ < |An| < c8(F
n + F−m).

If |α0(u)|αq+1(u) > 1 then n < −m+ c9, otherwise −m < n+ c9.



In the first case we obtain∣∣∣|aq+1|αn
q+1 − |a0αm

0 |
∣∣∣ < c10F

−m.

After division by |a0αm
0 | and using that F is a constant we get

∣∣∣|Φ(u)| (|α0|αq+1)
n−κ|α0|−m−n+κ − 1

∣∣∣ < |α0|−m/2 (8)

with

Φ = Φ(u) = uκ
aq+1

a0
= uκ

Dq+1(u)

D0(u)

and κ ∈ Q.



4.3 Lower bound for n, |m| in term of u

Lemma 9. Assume that (n,m.u) ∈ Z3 is a solution of (2) such

that n ≥ 0,m < 0. If u > u2 then n+m− κ ≤ 0 and equality may

only hold if |Φ(u)| < 1 and κ1 < κ2. Moreover there exists an

effectively computable constant c such that

n = −m+ κ >

{
cuκ1−κ2, if κ1 < κ2
cu logu, otherwise.

If n+m− κ > 0 then −m > cu logu.



The proof is technically involved and is divided into several cases.

Case 1, |Φ(u)| ≥ 1. If n+m− κ ≥ 0 then

|Φ(u)| (|α0|αq+1)
n−κ|α0|−m−n+κ ≥ |α0|αq+1 > 1+

1

2uκ1

by Corollary 2, but this contradicts (8). Hence, in this case,

n+m− κ < 0.

Taking logarithm of (8), after some simplification we obtain

(n− κ) log(|α0|αq+1) > (m+ n− κ)| log |α0|| − log |Φ(u)| − 2|α0|−m/2

>

∣∣∣∣∣log |α0|
e(|φ|+1)

∣∣∣∣∣
Here we used that 2|α0|−m/2 < 1 and |Φ(u)| < |φ|+1.



Corollary 2 yields |α0|αq+1 < 1+ 2B′
u < 3

2 as well, but then

log(|α0|αq+1) <
4B′

u
.

Hence

−m > n− κ >
u

4B|

∣∣∣∣∣log |α0|
e(φ+1)

∣∣∣∣∣ > u

4|B′|
log

u

2e(|φ|+1)
.

Case 2, |Φ(u)| < 1.

Subcase 2a, κ1 ≤ κ2 and |Φ(u)| ≥ 1− τ
uκ1 . There is a constant

d, such that |Φ(u)| (|α0|αq+1)
d > 1 −→ replace Φ by this product.

Subcase 2b, κ1 > κ2. If n + m − κ = 0 and n < cuκ1−κ2 then∣∣∣|Φ(u)| (|α0|αq+1)
n−κ − 1

∣∣∣ contradicts (8).



4.4 Final argumentation

We know

|Γ(u)− 1| < |α0(u)|−m/2 (9)

with

Γ(u) =

∣∣∣∣∣aq+1(u)

a0(u)

∣∣∣∣∣ |α0(u)|mαq+1(u)
n,

−m > n+ c9 and −m > cuf with c, c9, f = κ1 − κ2 > 0 constants.

If u > u0 then Γ(u) ̸= 1: simple −→ apply Bakery for fixed u > u2.



Lemma 10 (Matveev,2000). Let K be an algebraic number field

of degree dK and let η1, η2, . . . , ηt ∈ K \ {0}, and e1, . . . , et be

nonzero integers. Put

E = max{|e1|, . . . , |et|,3} and Γ =
t∏

i=1

η
ei
i .

Let F1, . . . , Ft be such that

Fj ≥ max{dKh(ηj), | log ηj|,0.16}, for j = 1, . . . t.

If Γ ̸= 1, then

log |Γ−1| > −3·30t+4(t+1)5.5d2K(1+log dK)(1+log tE)F1F2 · · ·Ft.



In our case t = 3, K = Q(α0(u), . . . , αq+1(u)), hence dK ≤ (q+2)!,

η1 =

∣∣∣∣∣aq+1(u)

a0(u)

∣∣∣∣∣ , η2 = |α0(u)|, η3 = αq+1(u),

and e1 = 1, e2 = m, e3 = n and E = max{n, |m|} = |m| − c9.

Plainly h(η2) = h(η3), and

h(η3) = h(αq+1) =
1

q +2

log(αq+1)− log(|α0|) +
q∑

j=1

max{1, log |αj|}


≤ c14 log(αq+1).

h(η1) = h

(
aq+1(u)

a0(u)

)
= h

(
Dq+1(u)

D0(u)

)
≤ h(Dq+1(u)) + h(D0(u)) ≤ c15 log

q+1(αq+1(u)).



The choice F1 = F2 = F3 = c16 log
q+1(αq+1(u)) is allowed, and

Matveev’s theorem yields

log(|Γ| − 1) > −c17(1 + log(3|m|))c316 log
3(q+1)(αq+1(u))

> −c18(log |m|) log3(q+1)(αq+1(u)).

In c17 we incorporated that t = 3 and the estimations for dK,
which depends only on q.

Comparing this with the upper bound (9) we obtain

|m|
log |m|

< 2c18 log
3q+2(αq+1(u)),

which implies

|m| < c19 log
3(q+1)(αq+1(u))

after some simple and obvious transformation.



On the other hand Lemma 9 gives us a lower bound for |m|,
which yields

cuf < |m| < c19 log
3(q+1)(αq+1(u)),

with positive constants c, f . This inequality yields u < c20, but

the |m| and n are bounded too.



Remarks and problems

• If d0 ̸= 0 and dq+1 ̸= 0 then the proof is complete, otherwise it

depends on the convergence assumption of the formal Puiseux

expansion.

• Does there exist Q(X) ∈ Z[X] separabel, Q(0) = ±1, and with

leading coefficient 1 such that Pu(X) or Xq+2Pu(1/X) does not

have dominant root? Yes, then there is presently no effective

estimate.

• Does there exist Q(X) ∈ Z[X] separabel, Q(0) = ±1, and

with leading coefficient 1 such that Pu(X) has multiplicatively

dependent roots? Yes, then our equation may have infinitely

many solutions!

• What if |Q(0)| > 1?



Thank you

for your attention!


