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1. Introduction and notations

(Ankeny, Brauer and Chowla) ABC-polynomial family:
Pu(X) = XQ(X)(X —u) + 1 with Q(X) € Z[X] of degree q.

e Ankeny, Brauer and Chowla, 1956: the class number of the

number field Q[X]/(P,(X)Q[X]) can be large.
The Thue equation associated to ABC-polynomials

YIT2P,(X/Y) = X(YIQ(X/Y))(X —uY) +YIT2 =1 (1)



e Bombieri, Schmidt, 1989: in degree linear upper bound for the
number of solutions of Thue equations. (1) is nearly extremal.

e Mignotte and Tzanakis, 1991 as well as Mignotte 2000: solved
(1) for Q(X) =X —1.

e Pethd, 1991 as well as Mignotte, Pethd and Roth 1996 solved
(1) for Q(X) = (X —1)(X +1).

e Halter-Koch, Lettl, Pethd and Tichy, 1999:

IfQ(X) =X —-a1) - (X —an), ay,...,an pairwise different in-
tegers, then (1) has in general only "obvious" solutions (z,y) =
(1,0),(0,1),(a;,1),s = 1,...,n. The proof is conditional, de-
pends on the Land-Waldschmidt conjecture.

e Many other results on families of Thue equations: E. Thomas,
Heuberger, Lettl, Tichy, Lemmermeyer, Voutier, Ziegler, etc.



Let P(X) = XF—p, 1 XF1— . . —pgeZ[X], and Ag,...,A;_q1 €
Z. Then (Ay) is a linear recursive sequence with characteristic
polynomial P(X) and initial terms Aq,..., Ap_1 if

Aptr =pPk-14n4%-1+ ... +poAn, n > 0.



Popular question: Find all n,m with A,, = B,.

— Mignotte, 1978: If the characteristic polynomials of (A,) and
(Br) have dominant roots, which are multiplicatively independent
then A,, = B,, has only finitely many effectively computable
solutions. Many generalization.

— Laurent, 1987: A, = B,, ...can have infinitely many solutions
m,n only in the “obvious” cases.. Ineffective in general.

— Trend of the 21th century: complete solution: Luca, Ziegler,
Bravo, Sanches, Gomez, Marques, Ddamulira, Pink, Togbé, etc



— Peth6 and Tengely, 2025: Let (Fp(u)) be the Irs with initial
terms A, B,C € Z and with characteristic polynomial X3 — (u —
1)X2 — (u+ 2)X — 1, Shanks cubic. If at least one of A, B,C is
non-zero and Fp(u) = Fy(uw) holds for some u,n,m € Z,n #= m
then |n|, |m| < ¢ with effective c.



— Peth6 and Tengely, 2025: Let (Fp(u)) be the Irs with initial
terms A, B,C € Z and with characteristic polynomial
X3 - (u—1)X2— (u42)X — 1, Shanks cubic. If at least one of

A,B,C is non-zero and Fn(u) = F(u) holds for some u,n,m €
Z,n #= m then |n|,|m| < ¢ with effective c.

In this talk presented research was motivated by Halter-Koch,
Lettl, Pethd and Tichy as well as by Pethd and Tengely.



Theorem 1. Let Py(X) = XQ(X)(X —u) + 1, where Q(X) €
Z[X] is monic, separabel, and Q(0) = £1. Denote (An(u)) the
family of linear recursive sequences having characteristic poly-
nomial P,(X) and initial terms Ag,...,A,41 € Z. Set L =
max{|Ail,...,|Ag41]}, and assume L > 0. Then there exist effec-

tively computable constants ug, cog depending only on Q(X) and
L such that if

[An(u)]| = [Am(u)| (2)

holds for some integers u,n,m with u > ug and n #= m then

n|, |m| < co.



Plan of the proof

1 Localization of the zeroes of P,(X)

2 Properties of the Binet formula of (An(uw))
3 Treatment of the "simple” cases

4 Lower bound for |n|,|m| in term of

5 Finish with " Bakery”



Plan of the proof

1 Localization of the zeroes of Py (X)

2 Properties of the Binet formula of (An(uw))
3 Treatment of the "simple’” cases

4 Lower bound for |n|,|m| in term of wu

5 Finish with " Bakery”

Our dream was to prove similar theorem with Q(0) # 0, but our
method is not strong enough for this .

Our proof is not yet complete, it depends on the convergence of
some formal Puiseux expansions.



2. Localization of the zeroes of P,(X)

Let o = 0, 8441 = u, and [1,...,Bq the (pairwise distinct) zeroes
of Q(X). Our first lemma is due essentially to Ankeny, Brauer
and Chowla.



Lemma 1. If u > ug then
(i) the zeroes a;j(u), 0 < j < q+1 of P,(X) are pairwise distinct,
(ii) for a suitable arrangement of these roots

hold with
bO — Q(O)_la b’L —

(iii) Py, (X) is irreducible,

(iv) if, with the arrangement of (ii), B; is real, then «o;(u) is real
too. In particular the numbers ag(u) and a,41(u) are real.

1
B:Q'(5;)

*0,i1=1,...,9+1,

(v) any two distinct roots are multiplicatively independent.



The next lemma allows us to localize ag(u)ay41(u) quite pre-
cisely.

Lemma 2. Let X, X4,...,Xq be indeterminates and set Q(X) =

H?:l(X—Xj). Denote Q'(X) the derivative of Q(X) with respect
to X. Then

¢ 14 |
g . >i=11lj=1X;
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The next lemma allows us to localize ag(u)ag41(u) quite pre-
cisely.

Lemma 3. Let X, X4,...,Xq be indeterminates and set Q(X) =
ngl(X—Xj). Denote Q'(X) the derivative of Q(X) with respect
to X. Then

= (—1 g—1 J7 . 4
D s (a)

i 1

Corollary 1. If Q(0) = £+1 then

co@laga@ T

for all u > ug.

1 (-1)7t1Q'(0) to (1)

Uu



Corollary 2. If |Q(0)| = 1 then there exist constants k1 > 1,7 >
0,uqg depending only on Q(X) such that either

27

ufl

14— < Jag(u)]agr(u) < 1+

T
2uhl1
or

7 1 21

1+

<
2uft  Jag(u)|agy(u) uh1
hold for all u > ug.

If Q'(0) #% 0 then Corollary 1 yields the assertion.



Otherwise let
R(u, X) = Resy(P,(X/Y),P,(Y)) € Z[u, X].

One of its zeroes is ap(u)ay+i1(u) for all w € Z. The algebraic function
ao(u)ag+1(u) admits the Puiseux expansion

ao(u)agyi1(u) = Z Wju_j/r
—

with 1 < r € Z. Comparing this with Corollary 1 we see that N =0,7g =1
and m; =0 for 5 =1,...,r. Let J be the smallest positive index with m; # 0,
then

. T 1
ap(u)ag+1(u) =1+ )T + O (m) :

If 77 > 0 then we obtain

21

T
1+ =77 < lao(w)|agri(u) < 1+ 5
Uu

2ul/T

for all u > ug.
Convergence of Puiseux expansion?



3. Properties of the Binet formula of (A,(u))

Lemma 4. The sequence (An(u)),>0 iS linear recursive for n < 0
too with the characteristic polynomial X912P,(1/X).

There exist uniquely determined functions ag(u),...,a,41(u) €
Q(ag(u),...,aq41(u)), such that
An(u) = ap(W)ao(w)" + ... + agy1(Wagr1 ()" (5)

holds for all n € Z. Binet formula.



Denote (bq,...,bg) the matrix having columns bq,...,by. Fur-
ther set

A' (AO7"'7Aq+1)t7
A\ (aj(u)oa'-'aaj(u)q+1)t7 J=0,...,9+ 1,
D(u) = det(vg,...,vs41) and
D;(u) det(vo,.--,Vvj—1, A, Vjqy1,---,Vg41), 7=0,...,g+ 1.



Denote (bq,...,bg) the matrix having columns bq,...,by. Fur-
ther set

A‘ (AO7"'7Aq+1)t7
Vi = (aj(u)oa°°°7aj(u)q+1)t7 J=0,...,9+ 1,
D(u) det(vg,...,v441) and
Dj(u) = det(vg,...,vj—1,A,Vit1,--,Vg41), 7=0,...,q+ 1.

Lemma 5. The following assertions are true for all u € Z
(i) aj(u) 70 for all j =0,...,q+ 1,
(ii) D(u), Do(u), Dyy1(u),ao(u) and a,41(u) are real functions,
(iii)
ag+1(u)  Dgyq1(u)
ap(u) Do(u)




Lemma 6. There exist easily computable constants cq,cp,c3,ca
depending only on L and on the degree and the roots of Q(X)
such that

crag41(w)?T < |D(w)| < cpagyq(u)?T
2 |
c3ag1(u)'™ < [Dj(u)] < cqagr1 ()T, j=0,....q
csgr1(uw) 99T < Dy (W) < e

hold for all u > ug.



Let

)it Dl = lim Dy (u).

U— 00

Dy = lim Do(u)/cg41(u

U— 00

Because of Sp(u) — 0 we have

1 1 1 Ap 1 ... 1 A1
0O B; ... B Aq A
Dopr=|__ . 0 T =8B 51 Bq o
1 1
o gItt oIt oA, B ... BI Ayiq
Setting
1 ... 1 A
g _ B ... Bg Ao
g+l = .
B ... Bi Ay+1

we get D(/J‘l‘l = (-1)9Q(0)dy41-




Similarly Lemma 1 (ii) yields

Ap 1 1 0 A .
A1 B1 ... [Bq 0 AO

A le—l 54%1 ) A, Bl
Ag+1 5611 53 1 1

Unfortunately dg = 0 or/and dg+1 = 0 can happen!

1
B

4




If dg,dy4+1 7 O then the next (key) lemma can be proved with
k= q+ 1 by elementary algebra and analysis.

Lemma 7. There exist effective constants k, ko € Q, o, u € R, ||, u >
O depending only on @), L such that

im o) = lim w2t

U—> 00 U—> 00 DO(U)

Moreover, if ®(u) is not ultimately constant, then

7 2p
S < [P (u) — | < e

holds for all u > ug,u € Z.




Outline of the proof if dg or dq_|_1 IS zero.

With Dg(u), Dy41(u) is Dg(u)/D441(u) too a real algebraic func-
tion. It admits a formal Puiseux expansion, i.e. there exist inte-
gers J,r and non-zero complex numbers 77 such that

Dypr (W) _ % e
Do(u) j=J
The choice k = J/r,p = wj proves the first statement, because

K;DCH‘l (u)
Dy (u)

m .
p— SO_I_ Z 7TJ_|_]"U,_]/T.
j=1

d(u) = u

If &(u) is not ultimately constant, then there exists 7 > 0 with
T4 =% 0 too. Choosing Jg the smallest such index, the assertion
holds with pu = |m ;4 s |, k2 = Jo/T.



Lemma 8. Assume that u,n € Z,n > 0,u > ug, Set

F =2max{|B1|TL,...,|8q|Ft}. If n > no then
[[An(uw)| = lag41(uw)ag1(w)"|| < cgF™. (6)
and
[|A—n(u)| — |ap(u)ap(u) "] < cgF™. (7)

In particular (|An(u)|), (|A—n(u)|) are ultimately strictly mono-
tone increasing.



4. Proof of Theorem 1

Let upg,u; be so large that

e For all w > ug ay41(u) and 1/ag(u) is dominant among the
zeroes of Py(X) as well as of the zeroes of X972(1/X) respec-
tively.

e For all u > uy > ug ag41(u) and ag(u) are multiplicatively
independent.

Our equation to be solved

[An(u)| = [Am(u)

compress three equations. Assume that u,n,m € Z,n = m is a
solution of it. Then eithernnm>0orn,m <0 orn > 0,m < 0.



4.1 Treatment of the "simple’” cases

Case n,m > 0 If u > ug then a,41(u) is dominant — (|An(u)]
is strictly monotone increasing whenever n > ng — no solution
if n>mnqy orm>nq.

Case n,m < 0 The same argumentation with ag(u) instead of
ag41(u).



4.2 The "hard” case, n>0,m <0

Let up > w1 and u; < u < up then o yq(u) and 1/ag(u) are
dominant zeroes and multiplicatively independent — (2) has
finitely many effectively computable solutions by Mignotte, 1986.

If u> ug and n,—m are large enough then (6), (7) yield

—cg(F" 4+ F™™) < |lag1lafyq — laoao|™| < |An| < cg(F™ 4+ F™™).

If |ag(u)|ag41(u) > 1 then n < —m + cg, Ootherwise —m < n + cg.



In the first case we obtain

’|aq_|_1|ag_|_1 — \aoagb” < cioF™™.

After division by |apa'| and using that F' is a constant we get

D (w)| (ool arg1)" " laol ™" = 1] < Jag| /2
with

CD — Cb(’U,) — ulia'Q+1 — uI{DQ+1(U)
ag Do(u)

and k € Q.

(8)



4.3 Lower bound for n,|m| in term of u

Lemma 9. Assume that (n,m.u) € Z3 is a solution of (2) such
that n > 0,m < 0. Ifu>wuy then n+m —kx <0 and equality may

only hold if |®(u)| < 1 and k1 < kp. Moreover there exists an
effectively computable constant ¢ such that

K1—kKD if

cu / K K

n=-m-=+krx> ’ . 1< k2
culogu, otherwise.

Ifn4+m-—kx >0 then —m > culogu.



The proof is technically involved and is divided into several cases.

Case 1, [©®(u)| > 1. If n4+m — k >0 then

@ (u)] (Jaolag4+1)" Flaol ™" > Jaglagpr > 1+ o

by Corollary 2, but this contradicts (8). Hence, in this case,
n+m-—kr <O0.

Taking logarithm of (8), after some simplification we obtain

(n — k) 1og(laglagt1) > (m+n—k)|log|ag|| — log | (u)| — 2|ag| "/
> liog g
e(lel +1)

Here we used that 2|ag| ™2 < 1 and |®(u)| < |p| + 1.



Corollary 2 yields |ao|aq_|_1 <1+ QTB/ < % as well, but then

4B’
IOg(|aO|aq—|-1> < u
Hence
—m>n—m>i‘log Ll > “ log ¢ :
4B|[ " e(p+1)| 7 4B 2e(lp| + 1)

Case 2, |[P(u)| < 1.

Subcase 2a, k1 < xp and |®(u)| > 1 — . There is a constant
d, such that |®(u)| (|a0|aq_|_1)d > 1 — replace $ by this product.

Subcase 2b, k1 > ko. If n+m—k =0 and n < cu™17"2 then
)|<I>(u)| (Jaolag4-1)" 77 — 1‘ contradicts (8).



4.4 Final argumentation

We know
M (u) = 1] < |ag(w)| 72 (9)
with
ag+1(u)
ag(u)
—m >n-+cg and —m > cuf with ¢, cg, f = k1 — ko > 0 constants.

M(u) =

ao(u) ™ agyq (w)™,

If u > ug then IN'(u) # 1: simple — apply Bakery for fixed u > u».



Lemma 10 (Matveev,2000). Let K be an algebraic number field
of degree dx and let ni,mo,....,m € K\ {0}, and eq,...,er be
nonzero integers. Put

EzmaX{|€1|,...,|€t|,3} and [ = H n-ei.

Let Fq,...,F; be such that

F; > max{dgh(n;),|logn;|,0.16}, for j=1,...t
If " %=1, then

log [F—1| > —3-30"T4(t4+1)°%d% (1 +log dg) (1 +10g tE)Fy Fy - - - F.



Inourcaset =3, K= Q(ap(u),...,a,41(u)), hence dx < (¢+2)!,

aq—l—l(u)
ag(u)
and e;1 = 1,e0 = m,e3 =n and £ = max{n,|m|} = |m| — cg.

N =

, M2 = |ag(u)], 13 = agq1(u),

Plainly h(no) = h(n3), and
h(nz) = h(ozq+1)=qJ%2 (Iog(aq+1)log(lao)+zma><{1,log ajl})

< cialog(agt).

_ aq+1(U)>: <Dq+1(U)>
M) h( w@ ) =" Do)

< h(Dyy1(u)) + h(Do(w)) < c1510g7 (g1 ().

=1




The choice Fy} = Fy = F3 = ¢1610997 1 (o1 (w)) is allowed, and
Matveev's theorem yields
log(IM| = 1) > —c17(1 4 109(3|m|))eig log3 ) (agy 1 (u))
> —c1g(log |m|) 10g> T (agy 1 (u)),

In c17 we incorporated that ¢t = 3 and the estimations for dy,
which depends only on gq.

Comparing this with the upper bound (9) we obtain

m|

log |m)|

< 2c18 |093q+2(04q—|-1(u)),
which implies

m| < e191093 T (a4 1 (u))

after some simple and obvious transformation.



On the other hand Lemma 9 gives us a lower bound for |m|,
which vyields

cul < Im| < c19 |093(q+1)(04q—|—1(u)>7

with positive constants ¢, f. This inequality vields u < ¢pg, but
the |m| and n are bounded too.



Remarks and problems

e If dyg # 0 and dq_|_1 # 0 then the proof is complete, otherwise it
depends on the convergence assumption of the formal Puiseux
expansion.

e Does there exist Q(X) € Z[X] separabel, Q(0) = +1, and with
leading coefficient 1 such that Py(X) or X972P,(1/X) does not
have dominant root? Yes, then there is presently no effective
estimate.

e Does there exist Q(X) € Z[X] separabel, Q(0) = +1, and
with leading coefficient 1 such that P,(X) has multiplicatively
dependent roots? Yes, then our equation may have infinitely
many solutions!

e What if |Q(0)| > 17



T hank you
for your attention!



