Online Number Theory Seminar

5 April 2024. - 17:00-17:50

H. Pasten: The greatest prime factor of $n^{2}+1$

Let $P(k)$ be the greatest prime factor of the integer k. It is an old problem dating back to the 30 's to give lower bounds for $P\left(n^{2}+1\right)$. This number $P\left(n^{2}+1\right)$ can be smaller than n (for instance with $n=117$ we get $\left.P\left(n^{2}+1\right)=37\right)$ and the problem is to show that it cannot be too small. Work of Chowla from 1934 gave the lower bound $P\left(n^{2}+1\right) \gg \log \log n$ and since then, not much progress has been obtained. In this talk I will outline the proof of a lower bound roughly of size $(\log \log n)^{2}$. In addition I will give improved bounds in subexponential (unconditional) results towards the $A B C$ conjecture. The main ingredients come from two different worlds: transcendence theory, and arithmetic of Shimura curves.

