A kit for linear forms in three logarithms

Paul Voutier (with Maurice Mignotte)

Online Number Theory Seminar (2 June 2023)

History

- Hilbert's 7th problem (1900):
is α^{β} transcendental for algebraic $\alpha \neq 0,1$ and algebraic $\beta \notin \mathbb{Q}$?
Yes: Gelfond and Schneider, independently (1934).
- Equivalent to

$$
\beta \log (\alpha)+\log (\gamma) \neq 0
$$

for all algebraic numbers, γ.
This is a linear form in the logarithms of (two) algebraic numbers.

- if $\beta \log (\alpha)+\log (\gamma) \neq 0$, can we find lower bound for

$$
|\beta \log (\alpha)+\log (\gamma)| ?
$$

- Yes: Gelfond (1949).
- Question (Gelfond): how about a lower bound for

$$
\left|b_{1} \log \left(\alpha_{1}\right)+\cdots+b_{n} \log \left(\alpha_{n}\right)+\log (\gamma)\right| ?
$$

- Yes: Baker (1966).

Applications

- find all imaginary quadratic fields with class number 1 ,
- effective irrationality measures for arbitrary real algebraic numbers,
- bounds for size of integer solutions of Thue equations,
- same for elliptic, hyper- and super-elliptic equations,
- Key for last two: can be turned into unit equations in two variables: $a u_{1}+b u_{2}=c$ where u_{1}, u_{2} are variables, units in a number field.
- See Y. Bugeaud, "Linear Forms in Logarithms and Applications".

linear forms in two logs

- one can also use Schneider's approach too.
- Applied initially to linear forms in two logs: $b_{1} \log \alpha_{1}+b_{2} \log \alpha_{2}$ Mignotte and Waldschmidt (1978-1989)
- Laurent introduced his interpolation determinants. Improved estimates (1995 with Mignotte and Nesterenko; 2008).
- Lots of applications. 1995 paper has 139 citations. 2008 paper has 70.

linear forms in three logs

- Gelfond-Linnik (1948): effectively computable bounds for imaginary quadratic fields with class number 1.
- Tijdeman (1976): effectively computable bounds for Catalan's conjecture: $x^{p}-y^{q}=1$.
- Pethö and Shorey \& Stewart (1982/3): effective proof that only finitely many perfect powers in any binary recurrence sequence.
- Bugeaud, Mignotte and Siksek (2006): 0, 1, 8 and 144 are the only perfect powers in the Fibonacci sequence.
- interpolation determinant, Δ produces a multi-variable polynomial
- zero estimate gives conditions for polynomial to be non-zero
- Liouville gives lower bound for $|\Delta|$.
- assume linear form is small, analysis gives upper bound for $|\Delta|$.
- Upper and lower bounds for $|\Delta|$ contradict each other: lower bound for linear form.

Kit Outline

Context: have a problem that reduces to a linear form in 3 logs.
(1) obtain an upper bound for linear form in three logs.
(2) combine upper bound in (1) with lower bound of Matveev, obtain upper bound, B_{1}, for quantity associated with linear form.
(3) suppose linear form in three logs is non-degenerate, use interpolation determinants approach and upper bound B_{1} to obtain second upper bound, B_{2}.
If $B_{2}<B_{1}$, we proceed to step (4).
(4) suppose linear form in three logs is degenerate, consider it as a linear form in two logs, apply Laurent (2008) to it, and use upper bound B_{1}, to get a third upper bound B_{3}.
New upper bound: $B_{4}=\min \left\{B_{1}, \max \left\{B_{2}, B_{3}\right\}\right\}$.
(5) repeat steps (3) and (4) with B_{4} in place of B_{1} : make upper bound as small as possible.

Our linear forms

- Three distinct non-zero algebraic numbers α_{1}, α_{2} and α_{3}, positive rational integers b_{1}, b_{2}, b_{3} with $\operatorname{gcd}\left(b_{1}, b_{2}, b_{3}\right)=1$, and the linear form

$$
\Lambda=b_{1} \log \alpha_{1}+b_{2} \log \alpha_{2}-b_{3} \log \alpha_{3}
$$

- the real case: α_{1}, α_{2} and α_{3} are real numbers greater than 1 , and the logarithms of the α_{i} 's are all real and positive.
- the imaginary case: α_{1}, α_{2} and α_{3} are complex numbers $\neq 1$ of modulus one.
Note the logarithms will be purely imaginary.
- Not a restriction since

$$
|\Lambda| \geq \max \{|\operatorname{Re}(\Lambda)|,|\operatorname{Im}(\Lambda)|\}
$$

Our matrices

- Let

$$
\Lambda=b_{1} \log \left(\alpha_{1}\right)+b_{2} \log \left(\alpha_{2}\right)-b_{3} \log \left(\alpha_{3}\right)
$$

- K, L, R, S, T are positive rational integers with $K, L \geq 2$. $N=K(K+1) L / 2$ and we assume that $R S T \geq N$.
- $d_{1}=\operatorname{gcd}\left(b_{1}, b_{3}\right)$ and $d_{2}=\operatorname{gcd}\left(b_{2}, b_{3}\right)$, put $b_{1}=d_{1} b_{1}^{\prime}, b_{2}=d_{2} b_{2}^{\prime \prime}, b_{3}=d_{1} b_{3}^{\prime}=d_{2} b_{3}^{\prime \prime}$.

$$
\Delta=\operatorname{det}\left(\binom{r_{j} b_{3}^{\prime}+t_{j} b_{1}^{\prime}}{k_{i}}\binom{s_{j} b_{3}^{\prime \prime}+t_{j} b_{2}^{\prime \prime}}{m_{i}} \alpha_{1}^{\ell_{i} r_{j}} \alpha_{2}^{\ell_{i} s_{j}} \alpha_{3}^{\ell_{i} t_{j}}\right),
$$

where $\left(k_{i}, m_{i}, \ell_{i}\right)$ runs through all triples of integers with $0 \leq k_{i}, m_{i}, 0 \leq k_{i}+m_{i} \leq K-1$ and $0 \leq \ell_{i} \leq L-1$. r_{j}, s_{j} and t_{j} are non-negative integers less than R, S and T, respectively, such that $\left(r_{j}, s_{j}, t_{j}\right)$ runs over N distinct triples.

- If $\Delta=0$, then $P\left(r b_{3}^{\prime}+t b_{1}^{\prime}, s b_{3}^{\prime \prime}+t b_{2}^{\prime \prime}, \alpha_{1}^{r} \alpha_{2}^{s} \alpha_{3}^{t}\right)=0$ for all (r, s, t).

Zero estimate

Proposition (Gouillon (2003))

Let \mathbb{K} be an algebraically closed field with $\operatorname{char}(\mathbb{K})=0$. Suppose that K and L are positive integers and that Σ_{1}, Σ_{2} and Σ_{3} are non-empty finite subsets of $\mathbb{K}^{2} \times \mathbb{K}^{\times}$such that

$$
\begin{gathered}
\begin{cases}\text { Card }\left\{\lambda x_{1}+\mu x_{2}:\left(x_{1}, x_{2}, y\right) \in \Sigma_{1}\right\} \\
\operatorname{Card}\left\{y:\left(x_{1}, x_{2}, y\right) \in \Sigma_{1}\right\}\end{cases} \\
>L, \\
\begin{cases}\text { Card }\left\{\left(\lambda x_{1}+\mu x_{2}, y\right):\left(x_{1}, x_{2}, y\right) \in \Sigma_{2}\right\} & >2 K L, \\
\text { Card }\left\{\left(x_{1}, x_{2}\right):\left(x_{1}, x_{2}, y\right) \in \Sigma_{2}\right\} & >K^{2},\end{cases}
\end{gathered}
$$

for all $(\lambda, \mu) \in \mathbb{K}^{2} \backslash\{(0,0)\}$, and also that

$$
\operatorname{Card} \Sigma_{3}>3 K^{2} L
$$

If $0 \neq P \in \mathbb{K}\left[X_{1}, X_{2}, Y\right]$ with $\operatorname{deg}_{X_{1}}(P)+\operatorname{deg}_{X_{2}}(P) \leq K$ and $\operatorname{deg}_{Y}(P) \leq L$, then P does not vanish on all of $\Sigma_{1}+\Sigma_{2}+\Sigma_{3}$.

Zero estimate application

- Define our Σ_{j} 's:
$\Sigma_{j}=\left\{\left(r+t \beta_{1}, s+t \beta_{2}, \alpha_{1}^{r} \alpha_{2}^{s} \alpha_{3}^{t}\right): 0 \leq r \leq R_{j}, 0 \leq s \leq S_{j}, 0 \leq t \leq T_{j}\right\}$ where $R_{j}, S_{j}, T_{j} \in \mathbb{Z}_{>0}, \beta_{1}=b_{1} / b_{3}$ and $\beta_{2}=b_{2} / b_{3}$.
- Use Gouillon's zero estimate to get conditions on our parameters.
- If, for some positive real number χ,
(i) $\left(R_{1}+1\right)\left(S_{1}+1\right)\left(T_{1}+1\right)>$ $K \cdot \max \left\{R_{1}+S_{1}+1, S_{1}+T_{1}+1, R_{1}+T_{1}+1, \chi \mathcal{V}\right\}$,
(ii) Card $\left\{\alpha_{1}^{r} \alpha_{2}^{s} \alpha_{3}^{t}: 0 \leq r \leq R_{1}, 0 \leq s \leq S_{1}, 0 \leq t \leq T_{1}\right\}>L$,
(iii) $\left(R_{2}+1\right)\left(S_{2}+1\right)\left(T_{2}+1\right)>K^{2}$,
(iv) Card $\left\{\alpha_{1}^{r} \alpha_{2}^{s} \alpha_{3}^{t}: 0 \leq r \leq R_{2}, 0 \leq s \leq S_{2}, 0 \leq t \leq T_{2}\right\}>2 K L$ and
(v) $\left(R_{3}+1\right)\left(S_{3}+1\right)\left(T_{3}+1\right)>3 K^{2} L$,
all hold, then either $\Delta \neq 0$ or a degeneracy occurs.
- $R=R_{1}+R_{2}+R_{3}+1, S=S_{1}+S_{2}+S_{3}+1$ and $T=T_{1}+T_{2}+T_{3}+1$.

Liouville estimate

Let $f(X) \in \mathbb{Z}[X]$ with $\operatorname{deg}(f)=d$ and suppose $f(p / q) \neq 0$ for $p / q \in \mathbb{Q}$. Then $|f(p / q)| \geq 1 /|q|^{d}=\exp (-d \log |q|)$.

Lemma

If α_{1}, α_{2} and α_{3} be non-zero algebraic numbers and $f \in \mathbb{Z}\left[X_{1}, X_{2}, X_{3}\right]$ such that $f\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \neq 0$, then

$$
\begin{aligned}
\left|f\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)\right| \geq & |f|^{-\mathcal{D}+1}\left(\alpha_{1}^{*}\right)^{d_{1}}\left(\alpha_{2}^{*}\right)^{d_{2}}\left(\alpha_{3}^{*}\right)^{d_{3}} \\
& \times \exp \left\{-\mathcal{D}\left(d_{1} \mathrm{~h}\left(\alpha_{1}\right)+d_{2} \mathrm{~h}\left(\alpha_{2}\right)+d_{3} \mathrm{~h}\left(\alpha_{3}\right)\right)\right\}
\end{aligned}
$$

where $\mathcal{D}=\left[\mathbb{Q}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right): \mathbb{Q}\right] /\left[\mathbb{R}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right): \mathbb{R}\right]$,
$d_{i}=\operatorname{deg}_{X_{i}} f, i=1,2,3$,

$$
|f|=\max \left\{\left|f\left(z_{1}, z_{2}, z_{3}\right)\right|:\left|z_{i}\right| \leq 1, \quad i=1,2,3\right\},
$$

$\mathrm{h}(\alpha)$ is the absolute logarithmic height of α and $\alpha^{*}=\max \{1,|\alpha|\}$.

Lower Bound for $|\triangle|$

$$
\begin{array}{ll}
g=\frac{1}{4}-\frac{N}{12 R S T}, & G_{1}=\frac{N L R}{2} g, \quad G_{2}=\frac{N L S}{2} g, \quad G_{3}=\frac{N L T}{2} g \\
M_{1}=\frac{L-1}{2} \sum_{j=1}^{N} r_{j}, \quad M_{2}=\frac{L-1}{2} \sum_{j=1}^{N} s_{j}, \quad M_{3}=\frac{L-1}{2} \sum_{j=1}^{N} t_{j},
\end{array}
$$

$$
b=\left(b_{3}^{\prime}\left(\frac{R-1}{2}+\beta_{1} \frac{T-1}{2}\right)\right)\left(b_{3}^{\prime \prime}\left(\frac{S-1}{2}+\beta_{2} \frac{T-1}{2}\right)\right)\left(\prod_{k=1}^{K-1}(k!)^{K-k}\right)^{-\frac{12}{K(K-1)(K+1)}} .
$$

Proposition

If $\Delta \neq 0$, then

$$
\begin{aligned}
\log |\Delta| \geq & -\frac{\mathcal{D}-1}{3}(K-1) N \log (b)+\sum_{i=1}^{3}\left(M_{i}+G_{i}\right) \log \left|\alpha_{i}\right| \\
& -2 \mathcal{D} \sum_{i=1}^{3} G_{i} \mathrm{~h}\left(\alpha_{i}\right)-\frac{\mathcal{D}-1}{2} N \log (N) .
\end{aligned}
$$

Upper Bound for $|\Delta|$: Overview

- We can write

$$
\Delta=\alpha_{1}^{M_{1}} \alpha_{2}{ }^{M_{2}} \alpha_{3} M_{\mathcal{I}} \sum_{\mathcal{I} \subseteq \mathcal{N}}\left(\Lambda^{\prime}\right)^{N-|\mathcal{I}|} \Delta_{\mathcal{I}}
$$

where \mathcal{I} runs over all subsets of $\mathcal{N}=\{1, \ldots, N\}, \Lambda^{\prime}$ is "almost" Λ and $\Delta_{\mathcal{I}}=\Psi_{\mathcal{I}}(1)$ where $\Psi_{\mathcal{I}}(x)$ is a determinant (and an analytic function).

- Schwarz' Lemma: for $\rho>1$,

$$
\left|\Psi_{\mathcal{I}}(1)\right| \leq \rho^{-J_{\mathcal{I}}} \cdot \max _{|x|=\rho}\left|\Psi_{\mathcal{I}}(x)\right|,
$$

where $J_{\mathcal{I}}=\operatorname{ord}_{x=0}\left(\Psi_{\mathcal{I}}(x)\right)$.

- Assume that $\Lambda^{\prime}<\rho^{-K L}$ and obtain upper bound for $|\Delta|$.

Upper Bound for $|\Delta|$: Result

Proposition

Suppose K and L are two integers satisfying $K \geq 3$ and $L \geq 5$. If

$$
\Lambda^{\prime}<\rho^{-K L}
$$

holds for some real number $\rho \geq 2$, then

$$
\begin{aligned}
\log |\Delta|< & \sum_{i=1}^{3} M_{i} \log \left|\alpha_{i}\right|+\rho \sum_{i=1}^{3} G_{i}\left|\log \alpha_{i}\right|+\frac{N}{3}(K-1) \log b \\
& -\frac{N^{2}}{2 K}\left(1-\frac{2}{3 L}-\frac{2}{3 K L}-\frac{1}{3 L^{3}}-\frac{16}{3 K^{2} L}\right) \log \rho \\
& +\log (N!)+N \log 2+0.001 .
\end{aligned}
$$

Synthesis

Proposition

With the previous notation, if $K \geq 3, L \geq 5, \rho \geq 2$, and if $\Delta \neq 0$ then

$$
\Lambda^{\prime} \geq \rho^{-K L}
$$

provided that

$$
\begin{aligned}
& \left(\frac{K L}{2}+\frac{L}{2}-0.37 K-2\right) \log \rho \\
\geq & \frac{2 \mathcal{D}(K-1) \log b}{3}+g L\left(a_{1} R+a_{2} S+a_{3} T\right)+(\mathcal{D}+1) \log N,
\end{aligned}
$$

where the a_{i} are positive real numbers which satisfy

$$
a_{i} \geq \rho\left|\log \alpha_{i}\right|-\log \left|\alpha_{i}\right|+2 \mathcal{D} h\left(\alpha_{i}\right) \quad \text { for } i=1,2,3
$$

Laurent et al:
$K(L-1) \log \rho \geq \mathcal{D}(K-1) \log b+g L\left(a_{1} R+a_{2} S\right)+(\mathcal{D}+1) \log N$,

Degeneracies

- At least one of the following conditions (C1) or (C2) holds. (C1) $\left|b_{1}\right| \leq \max \left\{R_{1}, R_{2}\right\},\left|b_{2}\right| \leq \max \left\{S_{1}, S_{2}\right\}$ and $\left|b_{3}\right| \leq \max \left\{T_{1}, T_{2}\right\}$.
(C2) There exist $u_{1}, u_{2}, u_{3} \in \mathbb{Z}$, not all zero, such that

$$
u_{1} b_{1}+u_{2} b_{2}+u_{3} b_{3}=0
$$

with $\operatorname{gcd}\left(u_{1}, u_{2}, u_{3}\right)=1$,

$$
\begin{aligned}
& \left|u_{1}\right| \leq \frac{\left(S_{1}+1\right)\left(T_{1}+1\right)}{\mathcal{M}-\max \left\{S_{1}, T_{1}\right\}}, \quad\left|u_{2}\right| \leq \frac{\left(R_{1}+1\right)\left(T_{1}+1\right)}{\mathcal{M}-\max \left\{R_{1}, T_{1}\right\}} \quad \text { and } \\
& \left|u_{3}\right| \leq \frac{\left(R_{1}+1\right)\left(S_{1}+1\right)}{\mathcal{M}-\max \left\{R_{1}, S_{1}\right\}}
\end{aligned}
$$

Here

$$
\mathcal{M}=\max \left\{R_{1}+S_{1}+1, S_{1}+T_{1}+1, R_{1}+T_{1}+1, \chi \mathcal{V}\right\}
$$

where

$$
\mathcal{V}=\left(\left(R_{1}+1\right)\left(S_{1}+1\right)\left(T_{1}+1\right)\right)^{1 / 2}
$$

- Use to reduce to linear form in two logs. Apply Laurent (2008).
- Four key parameters: L, m, ρ and χ.
- $K=\left\lfloor m L a_{1} a_{2} a_{3}\right\rfloor$.
- $R_{j}=\left\lfloor c_{j} a_{2} a_{3}\right\rfloor, \quad S_{j}=\left\lfloor c_{j} a_{1} a_{3}\right\rfloor, \quad T_{j}=\left\lfloor c_{j} a_{1} a_{2}\right\rfloor$.

$$
\begin{aligned}
c_{1} & =\max \left\{2^{1 / 3},(\chi m L)^{2 / 3},\left(\frac{2 m L}{a}\right)^{1 / 2}\right\}, \\
c_{2} & =\max \left\{(m L)^{2 / 3}, \sqrt{m / a} L\right\}, \\
c_{3} & =\left(3 m^{2}\right)^{1 / 3} L, \\
a & =\min \left\{a_{1}, a_{2}, a_{3}\right\} .
\end{aligned}
$$

- Question: how to choose L, m, ρ and χ ?
- Brute force search.
- Good news: We have Pari code for this. Pari code to share!

Example

- Bennett, Györy, Mignotte, Pintér (2006): found all solutions of $A X^{n}-B Y^{n}= \pm 1$ where $n \geq 3$ and A, B are S-units for $S=\{p, q\}$ with $2 \leq p<q \leq 13$.
linear forms in logs for:
$2^{\alpha} X^{n}-5^{\beta} Y^{n}=1$ where $2 \leq \alpha \leq 3,1 \leq \beta \leq n-1$.
Old kit: $n<59 \cdot 10^{6}$.
New kit: $n<17.5 \cdot 10^{6}$.

iteration	bound for n	L	m	ρ	χ	new bound for n
1	$5.4 \cdot 10^{11}$	87	12.5	7.5	0.8	$41 \cdot 10^{6}$
2	$41 \cdot 10^{6}$	56	12.0	8.0	1.075	$19.1 \cdot 10^{6}$
3	$19.1 \cdot 10^{6}$	55	16.0	7.0	1.1	$17.8 \cdot 10^{6}$
4	$17.8 \cdot 10^{6}$	55	16.0	7.0	1.125	$17.5 \cdot 10^{6}$

Non-degenerate case alone: $n<11.5 \cdot 10^{6}$.

Closing

- The Pari code: https://github.com/PV-314/lfl3-kit
- The preprint: https://arxiv.org/abs/2205.08899
- Please contact us with any questions, issues or suggestions.

We are very happy to help.

Thank You

Dekitifying Issues

Whack-a-mole!

- an alternative degenerate case approach due to Waldschmidt.
- good for the non-degenerate case: not good for degenerate case. And vice versa.
- Consequence: weaker results. But in progress.

