A kit for linear forms in three logarithms

Paul Voutier (with Maurice Mignotte)

Online Number Theory Seminar (2 June 2023)

History

• Hilbert's 7th problem (1900):

is α^{β} transcendental for algebraic $\alpha \neq 0, 1$ and algebraic $\beta \notin \mathbb{Q}$? Yes: Gelfond and Schneider, independently (1934).

• Equivalent to

$$\beta \log(\alpha) + \log(\gamma) \neq 0,$$

for all algebraic numbers, γ .

This is a linear form in the logarithms of (two) algebraic numbers.

• if $\beta \log(\alpha) + \log(\gamma) \neq 0$, can we find lower bound for

 $|\beta \log(\alpha) + \log(\gamma)|?$

- Yes: Gelfond (1949).
- Question (Gelfond): how about a lower bound for

$$|b_1 \log (\alpha_1) + \cdots + b_n \log (\alpha_n) + \log(\gamma)|?$$

• Yes: Baker (1966).

. . .

- find all imaginary quadratic fields with class number 1,
- effective irrationality measures for arbitrary real algebraic numbers,
- bounds for size of integer solutions of Thue equations,
- same for elliptic, hyper- and super-elliptic equations,
- Key for last two: can be turned into unit equations in two variables: $au_1 + bu_2 = c$ where u_1, u_2 are variables, units in a number field.
- See Y. Bugeaud, "Linear Forms in Logarithms and Applications".

- one can also use Schneider's approach too.
- Applied initially to linear forms in two logs: $b_1 \log \alpha_1 + b_2 \log \alpha_2$ Mignotte and Waldschmidt (1978–1989)
- Laurent introduced his interpolation determinants. Improved estimates (1995 with Mignotte and Nesterenko; 2008).
- Lots of applications.
 1995 paper has 139 citations. 2008 paper has 70.

- Gelfond-Linnik (1948): effectively computable bounds for imaginary quadratic fields with class number 1.
- Tijdeman (1976): effectively computable bounds for Catalan's conjecture: x^p y^q = 1.
- Pethö and Shorey & Stewart (1982/3): effective proof that only finitely many perfect powers in any binary recurrence sequence.
- Bugeaud, Mignotte and Siksek (2006): 0, 1, 8 and 144 are the only perfect powers in the Fibonacci sequence.

- interpolation determinant, Δ produces a multi-variable polynomial
- zero estimate gives conditions for polynomial to be non-zero
- Liouville gives lower bound for $|\Delta|$.
- assume linear form is small, analysis gives upper bound for $|\Delta|$.
- Upper and lower bounds for |Δ| contradict each other: lower bound for linear form.

Kit Outline

Context: have a problem that reduces to a linear form in 3 logs.

(1) obtain an upper bound for linear form in three logs.

(2) combine upper bound in (1) with lower bound of Matveev, obtain upper bound, B_1 , for quantity associated with linear form.

(3) suppose linear form in three logs is *non-degenerate*, use interpolation determinants approach and upper bound B_1 to obtain second upper bound, B_2 .

If $B_2 < B_1$, we proceed to step (4).

(4) suppose linear form in three logs is *degenerate*, consider it as a linear form in two logs, apply Laurent (2008) to it, and use upper bound B_1 , to get a third upper bound B_3 . New upper bound: $B_4 = \min \{B_1, \max \{B_2, B_3\}\}$.

(5) repeat steps (3) and (4) with B_4 in place of B_1 : make upper bound as small as possible.

Three distinct non-zero algebraic numbers α₁, α₂ and α₃, positive rational integers b₁, b₂, b₃ with gcd (b₁, b₂, b₃) = 1, and the linear form

$$\Lambda = b_1 \log \alpha_1 + b_2 \log \alpha_2 - b_3 \log \alpha_3.$$

- the real case: α₁, α₂ and α₃ are real numbers greater than 1, and the logarithms of the α_i's are all real and positive.
- the imaginary case: α_1 , α_2 and α_3 are complex numbers $\neq 1$ of modulus one.

Note the logarithms will be purely imaginary.

Not a restriction since

 $\left|\Lambda\right|\geq \max\left\{\left|\mathsf{Re}(\Lambda)\right|,\left|\mathsf{Im}(\Lambda)\right|\right\}.$

Our matrices

Let

$$\Lambda = b_1 \log (\alpha_1) + b_2 \log (\alpha_2) - b_3 \log (\alpha_3).$$

• K, L, R, S, T are positive rational integers with $K, L \ge 2$. N = K(K+1)L/2 and we assume that $RST \ge N$.

•
$$d_1 = \text{gcd}(b_1, b_3)$$
 and $d_2 = \text{gcd}(b_2, b_3)$, put
 $b_1 = d_1b'_1$, $b_2 = d_2b''_2$, $b_3 = d_1b'_3 = d_2b''_3$.

$$\Delta = \det\left(\binom{r_jb'_3 + t_jb'_1}{k_i}\binom{s_jb''_3 + t_jb''_2}{m_i}\alpha_1^{\ell_i r_j}\alpha_2^{\ell_i s_j}\alpha_3^{\ell_i t_j}\right),$$

where (k_i, m_i, ℓ_i) runs through all triples of integers with $0 \le k_i, m_i, 0 \le k_i + m_i \le K - 1$ and $0 \le \ell_i \le L - 1$. r_j, s_j and t_j are non-negative integers less than R, S and T, respectively, such that (r_j, s_j, t_j) runs over N distinct triples.

• If $\Delta = 0$, then $P(rb'_3 + tb'_1, sb''_3 + tb''_2, \alpha'_1\alpha_2^s\alpha_3^t) = 0$ for all (r, s, t).

Proposition (Gouillon (2003))

Let \mathbb{K} be an algebraically closed field with char(\mathbb{K}) = 0. Suppose that K and L are positive integers and that Σ_1 , Σ_2 and Σ_3 are non-empty finite subsets of $\mathbb{K}^2 \times \mathbb{K}^{\times}$ such that

$$\begin{cases} \mathsf{Card} \left\{ \lambda x_1 + \mu x_2 : (x_1, x_2, y) \in \Sigma_1 \right\} > K, \\ \mathsf{Card} \left\{ y : (x_1, x_2, y) \in \Sigma_1 \right\} > L, \end{cases}$$

$$\begin{cases} \mathsf{Card} \left\{ (\lambda x_1 + \mu x_2, y) : (x_1, x_2, y) \in \Sigma_2 \right\} > 2\mathsf{KL}, \\ \mathsf{Card} \left\{ (x_1, x_2) : (x_1, x_2, y) \in \Sigma_2 \right\} > \mathsf{K}^2, \end{cases}$$

for all $(\lambda,\mu)\in\mathbb{K}^2\setminus\{(0,0)\}$, and also that

Card $\Sigma_3 > 3K^2L$.

If $0 \neq P \in \mathbb{K}[X_1, X_2, Y]$ with $\deg_{X_1}(P) + \deg_{X_2}(P) \leq K$ and $\deg_Y(P) \leq L$, then P does not vanish on all of $\Sigma_1 + \Sigma_2 + \Sigma_3$.

Zero estimate application

• Define our Σ_j 's:

$$\Sigma_j = \left\{ \left(r + t\beta_1, s + t\beta_2, \alpha_1^r \alpha_2^s \alpha_3^t \right) : 0 \le r \le R_j, 0 \le s \le S_j, 0 \le t \le T_j \right\}$$

where $R_j, S_j, T_j \in \mathbb{Z}_{>0}$, $\beta_1 = b_1/b_3$ and $\beta_2 = b_2/b_3$.

- Use Gouillon's zero estimate to get conditions on our parameters.
- If, for some positive real number χ ,

(i)
$$(R_1 + 1)(S_1 + 1)(T_1 + 1) > K \cdot \max\{R_1 + S_1 + 1, S_1 + T_1 + 1, R_1 + T_1 + 1, \chi \mathcal{V}\},\$$

(ii) Card $\{\alpha_1^r \alpha_2^s \alpha_3^t : 0 \le r \le R_1, 0 \le s \le S_1, 0 \le t \le T_1\} > L,\$
(iii) $(R_2 + 1)(S_2 + 1)(T_2 + 1) > K^2,\$
(iv) Card $\{\alpha_1^r \alpha_2^s \alpha_3^t : 0 \le r \le R_2, 0 \le s \le S_2, 0 \le t \le T_2\} > 2KL$ and
(v) $(R_3 + 1)(S_3 + 1)(T_3 + 1) > 3K^2L,\$
all hold, then either $\Delta \neq 0$ or a degeneracy occurs.

•
$$R = R_1 + R_2 + R_3 + 1$$
, $S = S_1 + S_2 + S_3 + 1$ and $T = T_1 + T_2 + T_3 + 1$.

Liouville estimate

Let $f(X) \in \mathbb{Z}[X]$ with deg(f) = d and suppose $f(p/q) \neq 0$ for $p/q \in \mathbb{Q}$. Then $|f(p/q)| \ge 1/|q|^d = \exp(-d \log |q|)$.

Lemma

If α_1 , α_2 and α_3 be non-zero algebraic numbers and $f \in \mathbb{Z}[X_1, X_2, X_3]$ such that $f(\alpha_1, \alpha_2, \alpha_3) \neq 0$, then

$$\begin{aligned} |f(\alpha_1, \alpha_2, \alpha_3)| \geq &|f|^{-\mathcal{D}+1} \left(\alpha_1^*\right)^{d_1} \left(\alpha_2^*\right)^{d_2} \left(\alpha_3^*\right)^{d_3} \\ &\times \exp\left\{-\mathcal{D}\left(d_1 \operatorname{h}\left(\alpha_1\right) + d_2 \operatorname{h}\left(\alpha_2\right) + d_3 \operatorname{h}\left(\alpha_3\right)\right)\right\}, \end{aligned}$$

where $\mathcal{D} = [\mathbb{Q}(\alpha_1, \alpha_2, \alpha_3) : \mathbb{Q}] / [\mathbb{R}(\alpha_1, \alpha_2, \alpha_3) : \mathbb{R}],$ $d_i = \deg_{X_i} f, i = 1, 2, 3,$

$$|f| = \max \{ |f(z_1, z_2, z_3)| : |z_i| \le 1, i = 1, 2, 3 \},\$$

 $h(\alpha)$ is the absolute logarithmic height of α and $\alpha^* = \max\{1, |\alpha|\}.$

Lower Bound for $|\Delta|$

$$g = \frac{1}{4} - \frac{N}{12RST}, \quad G_1 = \frac{NLR}{2}g, \quad G_2 = \frac{NLS}{2}g, \quad G_3 = \frac{NLT}{2}g,$$
$$M_1 = \frac{L-1}{2}\sum_{j=1}^N r_j, \qquad M_2 = \frac{L-1}{2}\sum_{j=1}^N s_j, \qquad M_3 = \frac{L-1}{2}\sum_{j=1}^N t_j,$$
$$= \left(b'_3\left(\frac{R-1}{2} + \beta_1\frac{T-1}{2}\right)\right) \left(b''_3\left(\frac{S-1}{2} + \beta_2\frac{T-1}{2}\right)\right) \left(\prod_{k=1}^{K-1} (k!)^{K-k}\right)^{-\frac{12}{K(K-1)(K+1)}}.$$

Proposition

b

If $\Delta \neq 0$, then

$$\log |\Delta| \ge -\frac{\mathcal{D}-1}{3}(\mathcal{K}-1)N\log(b) + \sum_{i=1}^{3}(\mathcal{M}_{i}+\mathcal{G}_{i})\log |\alpha_{i}|$$
$$-2\mathcal{D}\sum_{i=1}^{3}\mathcal{G}_{i}h(\alpha_{i}) - \frac{\mathcal{D}-1}{2}N\log(N).$$

• We can write

$$\Delta = \alpha_1{}^{M_1}\alpha_2{}^{M_2}\alpha_3{}^{M_3}\sum_{\mathcal{I}\subseteq \mathcal{N}} (\Lambda')^{N-|\mathcal{I}|}\Delta_{\mathcal{I}},$$

where \mathcal{I} runs over all subsets of $\mathcal{N} = \{1, \ldots, N\}$, Λ' is "almost" Λ and $\Delta_{\mathcal{I}} = \Psi_{\mathcal{I}}(1)$ where $\Psi_{\mathcal{I}}(x)$ is a determinant (and an analytic function).

• Schwarz' Lemma: for ho>1,

$$|\Psi_{\mathcal{I}}(1)| \leq
ho^{-J_{\mathcal{I}}} \cdot \max_{|x|=
ho} |\Psi_{\mathcal{I}}(x)|,$$

where $J_{\mathcal{I}} = \operatorname{ord}_{x=0} (\Psi_{\mathcal{I}}(x)).$

• Assume that $\Lambda' < \rho^{-KL}$ and obtain upper bound for $|\Delta|$.

Proposition

Suppose K and L are two integers satisfying $K \ge 3$ and $L \ge 5$. If

$$\Lambda' < \rho^{-KL}$$

holds for some real number $\rho \ge 2$, then

$$\begin{split} \log |\Delta| &< \sum_{i=1}^{3} M_{i} \log |\alpha_{i}| + \rho \sum_{i=1}^{3} G_{i} \left| \log \alpha_{i} \right| + \frac{N}{3} (K-1) \log b \\ &- \frac{N^{2}}{2K} \left(1 - \frac{2}{3L} - \frac{2}{3KL} - \frac{1}{3L^{3}} - \frac{16}{3K^{2}L} \right) \log \rho \\ &+ \log(N!) + N \log 2 + 0.001. \end{split}$$

Synthesis

Proposition

With the previous notation, if K \geq 3, L \geq 5, $\rho \geq$ 2, and if $\Delta \neq$ 0 then

$$\Lambda' \ge \rho^{-KL}$$

provided that

$$\left(\frac{KL}{2} + \frac{L}{2} - 0.37K - 2\right)\log\rho$$

$$\geq \frac{2\mathcal{D}(K-1)\log b}{3} + gL(a_1R + a_2S + a_3T) + (\mathcal{D}+1)\log N,$$

where the ai are positive real numbers which satisfy

$$a_i \ge \rho \left| \log \alpha_i \right| - \log |\alpha_i| + 2\mathcal{D} h(\alpha_i)$$
 for $i = 1, 2, 3$.

Laurent et al:

$$\mathcal{K}(L-1)\log \rho \geq \mathcal{D}(\mathcal{K}-1)\log b + gL(a_1R + a_2S) + (\mathcal{D}+1)\log N,$$

Degeneracies

• At least one of the following conditions (C1) or (C2) holds. (C1) $|b_1| \le \max\{R_1, R_2\}, |b_2| \le \max\{S_1, S_2\} \text{ and } |b_3| \le \max\{T_1, T_2\}.$ (C2) There exist $u_1, u_2, u_3 \in \mathbb{Z}$, not all zero, such that $u_1b_1 + u_2b_2 + u_3b_3 = 0.$ with gcd $(u_1, u_2, u_3) = 1$, $|u_1| \leq \frac{(S_1+1)(T_1+1)}{\mathcal{M}-\max\{S_1,T_1\}},$ $|u_2| \leq \frac{(R_1+1)(I_1+1)}{M-\max\{R_1,T_1\}}$ and $|u_3| \leq \frac{(R_1+1)(S_1+1)}{M-\max\{R_1,S_1\}}.$

Here

$$\mathcal{M} = \max \left\{ R_1 + S_1 + 1, S_1 + T_1 + 1, R_1 + T_1 + 1, \chi \mathcal{V} \right\},\$$

where

$$\mathcal{V} = \left((R_1 + 1) \left(S_1 + 1
ight) (T_1 + 1)
ight)^{1/2}$$
 .

• Use to reduce to linear form in two logs. Apply Laurent (2008).

Parameter Choice

- Four key parameters: L, m, ρ and χ .
- $K = \lfloor mLa_1a_2a_3 \rfloor$.
- $R_j = \lfloor c_j a_2 a_3 \rfloor$, $S_j = \lfloor c_j a_1 a_3 \rfloor$, $T_j = \lfloor c_j a_1 a_2 \rfloor$.

$$c_{1} = \max\left\{2^{1/3}, (\chi mL)^{2/3}, \left(\frac{2mL}{a}\right)^{1/2}\right\},\$$

$$c_{2} = \max\left\{(mL)^{2/3}, \sqrt{m/a}L\right\},\$$

$$c_{3} = (3m^{2})^{1/3}L,\$$

$$a = \min\left\{a_{1}, a_{2}, a_{3}\right\}.$$

- Question: how to choose L, m, ρ and χ ?
- Brute force search.
- Good news: We have Pari code for this. Pari code to share!

Example

• Bennett, Györy, Mignotte, Pintér (2006): found all solutions of $AX^n - BY^n = \pm 1$ where $n \ge 3$ and A, B are S-units for $S = \{p, q\}$ with $2 \le p < q \le 13$. linear forms in logs for: $2^{\alpha}X^n - 5^{\beta}Y^n = 1$ where $2 \le \alpha \le 3$, $1 \le \beta \le n - 1$. Old kit: $n < 59 \cdot 10^6$. New kit: $n < 17.5 \cdot 10^6$.

iteration	bound for <i>n</i>	L	т	ρ	χ	new bound for <i>n</i>
1	$5.4 \cdot 10^{11}$	87	12.5	7.5	0.8	$41 \cdot 10^6$
2	$41 \cdot 10^{6}$	56	12.0	8.0	1.075	$19.1\cdot 10^6$
3	$19.1 \cdot 10^{6}$	55	16.0	7.0	1.1	17.8 · 10 ⁶
4	$17.8 \cdot 10^{6}$	55	16.0	7.0	1.125	$17.5 \cdot 10^6$

Non-degenerate case alone: $n < 11.5 \cdot 10^6$.

- The Pari code: https://github.com/PV-314/lfl3-kit
- The preprint: https://arxiv.org/abs/2205.08899
- Please contact us with any questions, issues or suggestions.
 We are very happy to help.

Thank You

Dekitifying Issues

Whack-a-mole!

- an alternative degenerate case approach due to Waldschmidt.
- good for the non-degenerate case: not good for degenerate case. And vice versa.
- Consequence: weaker results. But in progress.