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History

Hilbert’s 7th problem (1900):
is αβ transcendental for algebraic α 6= 0, 1 and algebraic β 6∈ Q?
Yes: Gelfond and Schneider, independently (1934).

Equivalent to
β log(α) + log(γ) 6= 0,

for all algebraic numbers, γ.
This is a linear form in the logarithms of (two) algebraic numbers.

if β log(α) + log(γ) 6= 0, can we find lower bound for

|β log(α) + log(γ)|?

Yes: Gelfond (1949).

Question (Gelfond): how about a lower bound for

|b1 log (α1) + · · ·+ bn log (αn) + log(γ)|?

Yes: Baker (1966).



Applications

find all imaginary quadratic fields with class number 1,

effective irrationality measures for arbitrary real algebraic numbers,

bounds for size of integer solutions of Thue equations,

same for elliptic, hyper- and super-elliptic equations,
. . .

Key for last two: can be turned into unit equations in two variables:
au1 + bu2 = c where u1, u2 are variables, units in a number field.

See Y. Bugeaud, “Linear Forms in Logarithms and Applications”.



linear forms in two logs

one can also use Schneider’s approach too.

Applied initially to linear forms in two logs: b1 logα1 + b2 logα2

Mignotte and Waldschmidt (1978–1989)

Laurent introduced his interpolation determinants.
Improved estimates (1995 with Mignotte and Nesterenko; 2008).

Lots of applications.
1995 paper has 139 citations. 2008 paper has 70.



linear forms in three logs

Gelfond-Linnik (1948): effectively computable bounds for
imaginary quadratic fields with class number 1.

Tijdeman (1976): effectively computable bounds for Catalan’s
conjecture: xp − yq = 1.

Pethö and Shorey & Stewart (1982/3): effective proof that only
finitely many perfect powers in any binary recurrence sequence.

Bugeaud, Mignotte and Siksek (2006): 0, 1, 8 and 144 are the
only perfect powers in the Fibonacci sequence.



Proof Outline

interpolation determinant, ∆
produces a multi-variable polynomial

zero estimate gives conditions for polynomial to be non-zero

Liouville gives lower bound for |∆|.

assume linear form is small, analysis gives upper bound for |∆|.

Upper and lower bounds for |∆| contradict each other:
lower bound for linear form.



Kit Outline

Context: have a problem that reduces to a linear form in 3 logs.

(1) obtain an upper bound for linear form in three logs.

(2) combine upper bound in (1) with lower bound of Matveev,
obtain upper bound, B1, for quantity associated with linear form.

(3) suppose linear form in three logs is non-degenerate,
use interpolation determinants approach and upper bound B1 to
obtain second upper bound, B2.

If B2 < B1, we proceed to step (4).

(4) suppose linear form in three logs is degenerate,
consider it as a linear form in two logs, apply Laurent (2008) to it,
and use upper bound B1, to get a third upper bound B3.

New upper bound: B4 = min {B1,max {B2,B3}}.

(5) repeat steps (3) and (4) with B4 in place of B1:
make upper bound as small as possible.



Our linear forms

Three distinct non-zero algebraic numbers α1, α2 and α3, positive
rational integers b1, b2, b3 with gcd (b1, b2, b3) = 1, and the linear
form

Λ = b1 logα1 + b2 logα2 − b3 logα3.

the real case: α1, α2 and α3 are real numbers greater than 1, and
the logarithms of the αi ’s are all real and positive.

the imaginary case: α1, α2 and α3 are complex numbers 6= 1 of
modulus one.
Note the logarithms will be purely imaginary.

Not a restriction since

|Λ| ≥ max {|Re(Λ)| , |Im(Λ)|} .



Our matrices

Let
Λ = b1 log (α1) + b2 log (α2)− b3 log (α3) .

K , L, R, S , T are positive rational integers with K , L ≥ 2.
N = K (K + 1)L/2 and we assume that RST ≥ N.

d1 = gcd (b1, b3) and d2 = gcd (b2, b3), put
b1 = d1b

′
1, b2 = d2b

′′
2 , b3 = d1b

′
3 = d2b

′′
3 .

∆ = det

((
rjb
′
3 + tjb

′
1

ki

)(
sjb
′′
3 + tjb

′′
2

mi

)
α
`i rj
1 α

`i sj
2 α

`i tj
3

)
,

where (ki ,mi , `i ) runs through all triples of integers with
0 ≤ ki ,mi , 0 ≤ ki + mi ≤ K − 1 and 0 ≤ `i ≤ L− 1.
rj , sj and tj are non-negative integers less than R, S and T ,
respectively, such that (rj , sj , tj) runs over N distinct triples.

If ∆ = 0, then P (rb′3 + tb′1, sb
′′
3 + tb′′2 , α

r
1α

s
2α

t
3) = 0 for all (r , s, t).



Zero estimate

Proposition (Gouillon (2003))

Let K be an algebraically closed field with char(K) = 0. Suppose
that K and L are positive integers and that Σ1, Σ2 and Σ3 are
non-empty finite subsets of K2 ×K× such that{

Card {λx1 + µx2 : (x1, x2, y) ∈ Σ1} > K ,

Card {y : (x1, x2, y) ∈ Σ1} > L,{
Card {(λx1 + µx2, y) : (x1, x2, y) ∈ Σ2} > 2KL,

Card {(x1, x2) : (x1, x2, y) ∈ Σ2} > K 2,

for all (λ, µ) ∈ K2 \ {(0, 0)}, and also that

Card Σ3 > 3K 2L.

If 0 6= P ∈ K [X1,X2,Y ] with degX1
(P) + degX2

(P) ≤ K and
degY (P) ≤ L, then P does not vanish on all of Σ1 + Σ2 + Σ3.



Zero estimate application

Define our Σj ’s:

Σj =
{(

r + tβ1, s + tβ2, α
r
1α

s
2α

t
3

)
: 0 ≤ r ≤ Rj , 0 ≤ s ≤ Sj , 0 ≤ t ≤ Tj

}
,

where Rj ,Sj ,Tj ∈ Z>0, β1 = b1/b3 and β2 = b2/b3.

Use Gouillon’s zero estimate to get conditions on our parameters.

If, for some positive real number χ,

(i) (R1 + 1) (S1 + 1) (T1 + 1) >
K ·max {R1 + S1 + 1,S1 + T1 + 1,R1 + T1 + 1, χV},

(ii) Card {αr
1α

s
2α

t
3 : 0 ≤ r ≤ R1, 0 ≤ s ≤ S1, 0 ≤ t ≤ T1} > L,

(iii) (R2 + 1) (S2 + 1) (T2 + 1) > K 2,

(iv) Card {αr
1α

s
2α

t
3 : 0 ≤ r ≤ R2, 0 ≤ s ≤ S2, 0 ≤ t ≤ T2} > 2KL and

(v) (R3 + 1) (S3 + 1) (T3 + 1) > 3K 2L,

all hold, then either ∆ 6= 0 or a degeneracy occurs.

R = R1 + R2 + R3 + 1, S = S1 + S2 + S3 + 1 and
T = T1 + T2 + T3 + 1.



Liouville estimate

Let f (X ) ∈ Z[X ] with deg(f ) = d and suppose f (p/q) 6= 0 for
p/q ∈ Q. Then |f (p/q)| ≥ 1/|q|d = exp(−d log |q|).

Lemma

If α1, α2 and α3 be non-zero algebraic numbers and
f ∈ Z [X1,X2,X3] such that f (α1, α2, α3) 6= 0, then

|f (α1, α2, α3)| ≥|f |−D+1 (α∗1)d1 (α∗2)d2 (α∗3)d3

× exp {−D (d1 h (α1) + d2 h (α2) + d3 h (α3))} ,

where D = [Q (α1, α2, α3) : Q]
/

[R (α1, α2, α3) : R],
di = degXi

f , i = 1, 2, 3,

|f | = max {|f (z1, z2, z3)| : |zi | ≤ 1, i = 1, 2, 3} ,

h(α) is the absolute logarithmic height of α and α∗ = max{1, |α|}.



Lower Bound for |∆|

g =
1

4
− N

12RST
, G1 =

NLR

2
g , G2 =

NLS

2
g , G3 =

NLT

2
g ,

M1 =
L− 1

2

N∑
j=1

rj , M2 =
L− 1

2

N∑
j=1

sj , M3 =
L− 1

2

N∑
j=1

tj ,

b =

(
b′3

(
R − 1

2
+ β1

T − 1

2

))(
b′′3

(
S − 1

2
+ β2

T − 1

2

))(K−1∏
k=1

(k!)K−k

)− 12
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.

Proposition

If ∆ 6= 0, then

log |∆| ≥ − D − 1

3
(K − 1)N log(b) +

3∑
i=1

(Mi + Gi ) log |αi |

− 2D
3∑

i=1

Gi h (αi )−
D − 1

2
N log(N).



Upper Bound for |∆|: Overview

We can write

∆ = α1
M1α2

M2α3
M3
∑
I⊆N

(Λ′)N−|I|∆I ,

where I runs over all subsets of N = {1, . . . ,N}, Λ′ is “almost” Λ
and ∆I = ΨI(1) where ΨI(x) is a determinant (and an analytic
function).

Schwarz’ Lemma: for ρ > 1,

|ΨI(1)| ≤ ρ−JI · max
|x |=ρ

|ΨI(x)| ,

where JI = ordx=0 (ΨI(x)).

Assume that Λ′ < ρ−KL and obtain upper bound for |∆|.



Upper Bound for |∆|: Result

Proposition

Suppose K and L are two integers satisfying K ≥ 3 and L ≥ 5. If

Λ′ < ρ−KL

holds for some real number ρ ≥ 2, then

log |∆| <
3∑

i=1

Mi log |αi |+ ρ

3∑
i=1

Gi |logαi |+
N

3
(K − 1) log b

− N2

2K

(
1− 2

3L
− 2

3KL
− 1

3L3
− 16

3K 2L

)
log ρ

+ log(N!) + N log 2 + 0.001.



Synthesis

Proposition

With the previous notation, if K ≥ 3, L ≥ 5, ρ ≥ 2, and if ∆ 6= 0
then

Λ′ ≥ ρ−KL

provided that(
KL

2
+

L

2
− 0.37K − 2

)
log ρ

≥2D(K − 1) log b

3
+ gL (a1R + a2S + a3T ) + (D + 1) logN,

where the ai are positive real numbers which satisfy

ai ≥ ρ |logαi | − log |αi |+ 2D h (αi ) for i = 1, 2, 3.

Laurent et al:

K (L− 1) log ρ ≥ D(K − 1) log b + gL (a1R + a2S) + (D+ 1) logN,



Degeneracies

At least one of the following conditions (C1) or (C2) holds.
(C1)
|b1| ≤ max {R1,R2} , |b2| ≤ max {S1,S2} and |b3| ≤ max {T1,T2} .
(C2) There exist u1, u2, u3 ∈ Z, not all zero, such that

u1b1 + u2b2 + u3b3 = 0,

with gcd (u1, u2, u3) = 1,

|u1| ≤
(S1 + 1)(T1 + 1)

M−max{S1,T1}
, |u2| ≤

(R1 + 1)(T1 + 1)

M−max{R1,T1}
and

|u3| ≤
(R1 + 1)(S1 + 1)

M−max{R1, S1}
.

Here

M = max {R1 + S1 + 1, S1 + T1 + 1,R1 + T1 + 1, χV} ,
where

V = ((R1 + 1) (S1 + 1) (T1 + 1))1/2 .

Use to reduce to linear form in two logs. Apply Laurent (2008).



Parameter Choice

Four key parameters: L, m, ρ and χ.

K = bmLa1a2a3c.
Rj = bcja2a3c, Sj = bcja1a3c, Tj = bcja1a2c.

c1 = max

{
21/3, (χmL)2/3,

(
2mL

a

)1/2
}
,

c2 = max
{

(mL)2/3,
√

m/a L
}
,

c3 =
(
3m2

)1/3
L,

a = min {a1, a2, a3} .

Question: how to choose L, m, ρ and χ?

Brute force search.

Good news: We have Pari code for this. Pari code to share!



Example

Bennett, Györy, Mignotte, Pintér (2006): found all solutions of
AX n − BY n = ±1 where n ≥ 3 and A,B are S-units for
S = {p, q} with 2 ≤ p < q ≤ 13.

linear forms in logs for:
2αX n − 5βY n = 1 where 2 ≤ α ≤ 3, 1 ≤ β ≤ n − 1.

Old kit: n < 59 · 106.

New kit: n < 17.5 · 106.

iteration bound for n L m ρ χ new bound for n

1 5.4 · 1011 87 12.5 7.5 0.8 41 · 106

2 41 · 106 56 12.0 8.0 1.075 19.1 · 106

3 19.1 · 106 55 16.0 7.0 1.1 17.8 · 106

4 17.8 · 106 55 16.0 7.0 1.125 17.5 · 106

Non-degenerate case alone: n < 11.5 · 106.



Closing

The Pari code: https://github.com/PV-314/lfl3-kit

The preprint: https://arxiv.org/abs/2205.08899

Please contact us with any questions, issues or suggestions.

We are very happy to help.

Thank You

https://github.com/PV-314/lfl3-kit
https://arxiv.org/abs/2205.08899


Dekitifying Issues

Whack-a-mole!

an alternative degenerate case approach due to Waldschmidt.

good for the non-degenerate case: not good for degenerate case.
And vice versa.

Consequence: weaker results. But in progress.


