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Motivation - Unlikely Intersections

General principle: If a curve X : P(t, x) = 0 contains infinitely many
special points, then the curve is special.

Let X be the (smooth projective) curve defined by P(t, x) = 0 and
π : X → P1

Q the projection to the t-coordinate.

Example

Let f ∈ Q(x) of deg f ≥ 2. Suppose P(t, x) ∈ Q(t)[x ] is irreducible and
P(β, x) ∈ Q[x ] has a root for infinitely many β ∈ f (Q). Then π ◦ u = f ◦ v
for some u : Y → X , v : Y → P1

Q where gY ≤ 1 (by Faltings).

Theorem (Dèbes 1992)

Let α ∈ Q \ {±1}. Suppose P(t, x) ∈ Q(t)[x ] is geometrically irreducible
but P(αn, x) has a rational root for infinitely many n’s. Then
P(t, x) |A(t, x)e − α−ut for some e, u ∈ Z with e > 1.

The divisibility condition is equivalent to π = (αuxe) ◦ π′ for some π′.
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Fibonacci sequences as values

F a,b
0 = a,F a,b

1 = b, and F a,b
n+1 = F a,b

n + F a,b
n−1, n ∈ N. Fn := F 0,1

n .

Theorem (Cohn 1964)

The only perfect squares in the Fibonacci sequence Fn are 0, 1 and 144.

Theorem (Bugeaud-Mignotte-Siksek 2006)

The only perfect powers in the Fibonacci sequence Fn are 0, 1, 8 and 144.

Question

For which rational maps f does f (Q) contain infinitely many F a,b
n , n ∈ N?

E.g. F3n = 5F 3
n + 3(−1)nFn, so #f (Q) ∩ (Fn)n∈N = ∞, f (x) = 5x3 ± 3x .

Theorem (Corvaja–Zannier 02)

Supopse Fn =
∑r

i=1 ciα
n
i , ci ∈ Q and αi ∈ Q admit a dominant root. If

Fn ∈ f (Q) for infinitely many n, then Fmn+k = f (Gmn+k) for some G ,m, k.
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Reducible Fibonacci values

Definition

A sequence an, n ∈ N is a universal Hilbert set if for every irreducible
polynomial P(t, x) ∈ Q(t)[x ], the specialization P(an, x) ∈ Q[x ] is
irreducible for all but finitely many n.

Ex: 2n + 5n (Dèbes–Zannier 98), density 1 (Zannier 96, Bilu 96,...),∑r
i=1 cia

n
i for mult. independent ai ∈ Z and ci ∈ Q (Corvaja–Zannier 98).

Theorem (Dèbes 92)

Let P(t, x) ∈ Q(t)[x ] be irreducible and α ∈ Q \ {±1}. Suppose that
P(αn, x) ∈ Q[x ] is reducible for infinitely many n’s. Then P(t, x) divides
A(t, x)p − α−ut or 4A(t, x)4 + α−ut, for some prime p and u ∈ Z.

Remark: Equivalently, π : X → P1
Q factors as π = (αuxp) ◦ π′, p prime, or

π = (−4αux4) ◦ π′ for some map π′ : X → P1
Q.

Question

For which irreducible P is P(Fn, x) ∈ Q[x ] reducible for infinitely many n?
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Fibonacci Numbers as Polynomial Values

Let Fn = F 0,1
n stand for the Fibonacci sequence. The Dickson polynomial

Dα,d is the unique polynomial satisfying Dα,d(x + α/x) = xd + αd/xd .

Theorem (Theorem A)

Let ϕ(z) ∈ Q(z) be a rational function of degree d ≥ 2, and suppose that
ϕ(Q) contains infinitely many elements from the sequence Fn. Then either

d is odd and ϕ(z) = 1
(±5)(d+1)/2Dd ,±5(µ(z)), where µ(z) ∈ Q(z) is of

degree 1, or

d is even and ϕ(z) = q(w(z)), for some quadratic q ∈ Q(w) with
poles at ±

√
5, and a cyclic w ∈ Q(z) fully ramified over ±

√
5.

Further, if the image contains infinitely many even indexed (odd indexed)

elements, we may take q(w) = 4w
5−w2 (q(w) = w2+2w+5

5−w2 ).
Notice that w(z) is of the form η′ ◦R5,d/2 ◦ η for the Rédei function R5,d/2

composed with two degree-1 rational functions η, η′ ∈ Q(x).
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Fibonacci Numbers as Polynomial Values

Theorem (O., N., Berman, Elrazik 2019)

Let Fn = F a,b
n . Suppose that g(x) ∈ Q[x ] is of degree d = deg g ≥ 2 and

g(Z) contains infinitely many elements from Fn. Then
g(x) = ±αa,b,dD±5,d(ℓ(x)), where χa,b = a2 + ab − b2, and

αa,b,d =
√

±χa,b

5d+1 must be rational, and ℓ(x) ∈ Q[x ] is linear.

Example (Examples)

Since Fn = 1√
5
(φn + (−φ)−n), if n is even, for any odd d ∈ N,

Fnd = 1
5(d+1)/2D5,d(5Fn).

Cassini’s identity 5(F 0,1
n )2 + 4(−1)n = (F 2,1

n )2 shows that the curves
5t2 ± 4 = x2 have infinitely many Fibonacci values as the
t-coordinate of a rational point. Indeed, since both the quadratic
functions provide parameterizations of the curves, clearly their images
contain all even/odd index Fibonacci numbers.
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Fibonacci Numbers as Reducible Values of Polynomials

Conjecture B(N. O. Almost proved)

Fn = F a,b
n . Let P(t, x) ∈ Q[t, x ] be an irreducible polynomial, X the

corresponding curve and π : X → P1
Q the projection to the t-coordinate.

Suppose that P(Fn, x) ∈ Q[x ] is reducible for infinitely many even n’s.
Then X is of genus zero, and either

1 π = µ ◦ D±5,d ◦ π′ , or
2 π = µ ◦ πc ◦ π′ where πc : {5t2 + 4χa,b = x2} → P1

Q is the projection
to the t-coordinate,

for some µ(x) ∈ Q(x) of degree 1 and appropriate rational map π′.

Further, in the first case, when d is odd, there exists some
A(t, x) ∈ Q[t, x ], and a prime p | n such that
P(t, x) | 1

(±5)(p+1)/2Dp,±5(A(t, x))− t. The second case is equivalent to

saying that P(t, x) | tA2(t, x)− 4χa,bA(t, x)− 5t, for some
A(t, x) ∈ Q[t, x ].
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Tools Used in the Proof

Theorem (Hilbert 1892)

For Pt(x) = P(t, x) ∈ Q(t)[x ], the set of reducible values

RedP(Q) = {t0 ∈ Q : P(t0, x) is undefined or reducible}

is a thin set, i.e. it is the union
⋃
ϕi (Vi (Q)) of finitely many value sets of

rational maps ϕi : Vi → P1
Q (deg ϕi ≥ 2), plus a finite set.

Theorem (Siegel 1929)

Suppose ϕ : V → P1
Q is a finite morphism such that

#(ϕ(V (Q)) ∩ Z) = ∞. Then V is birationally equivalent to P1
Q (thus we

can view ϕ ∈ Q(x) as a rational function), and ∞ ∈ P1
Q has at most two

preimages, #ϕ−1(∞) ≤ 2. Such ϕ are called Siegel functions.

Thus, when infinitely many of the reducible values are integral, at least
one ϕi is a Siegel function.
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Proof Outline: Theorem A

Let ϕ(z) ∈ Q(z), deg ϕ = d ≥ 2, such that ϕ(Q) contains infinitely
Fibonacci numbers. Then either

ϕ(z) = 1
(±5)(d+1)/2Dd ,±5(µ(z)), for µ(z) ∈ Q(z) of degree 1, or

ϕ(z) = q(w(z)), for some quadratic function q ∈ Q(w), and a cyclic
function w ∈ Q(z).

Sketch of Proof.

1 ϕ is Siegel, #ϕ−1(∞) ≤ 2.

2 One of the curves 5ϕ(z)2 ± 4 = y2 has infinitely many rational points,
and the projection on z is Siegel.

3 When #ϕ−1(∞) = 1, analysis of the monodromy group and
ramification show that ϕ is Dihedral, hence ψ = µ′ ◦ Dα,n ◦ µ.

4 When #ϕ−1(∞) = 2, analysis of the monodromy group and
ramification show that ϕ = q ◦ w , where w is fully ramified at ±

√
5.
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Proof Outline: Conjecture B

Suppose X is defined by P(t, x) ∈ Q[t, x ] is irreducible, and has infinitely
many even Fibonacci numbers as reducible values. Then the projection
π : X → P1

Q to the t-coordinate factors through Dp or through q ◦ w , for
some quadratic q ∈ Q(x), and cyclic w ∈ Q(x).

Sketch of Proof.
1 By HIT and Siegel, there exists ϕ ∈ Q(x) Siegel such that

P(ϕ(z), x) ∈ Q(z)[x ] is reducible, and #ϕ(Q) ∩ (F2n)n∈N = ∞.

2 By Theorem A, ϕ = ν ◦ D5,n ◦ µ or ϕ = q ◦ w .

3 If ϕ = ν ◦ D±5,n ◦ µ, then π factors through D±5,p, for some prime p.

4 If ϕ = q ◦ w , and P(q(z), x) is reducible: π factors through the
t-coordinate projection πC : C → P1

Q from C : 5t2 + 4χa,b = x2.

5 If ϕ = q(w(z)) but P(q(z), x) is irreducible, π factors through
D±5,n(x ± 5/x) over C and hence through ν ◦ D±5,k ◦ µ for some
k ∈ N and linear η, µ.
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Future Goals

Definition

A set U is called an almost universal Hilbert set if there exists a set of
exceptional polynomials E ⊂ Q[A, t], which contains finitely many
elements in each degree satisfying:
If P(t, x) ∈ Q[t, x ] is irreducible but P(u, x) ∈ Q[x ] is reducible for
infinitely many u ∈ U, then P(t, x) | e(A(t, x)) for some
e ∈ E ,A(t, x) ∈ Q[t, x ].

1 Finish the proof of the conjecture.
2 Show that each binary recurrence sequence is an almost universal

Hilbert sets and effectively describe the exceptional polynomials.
3 Show that higher rank recurrence sequences give almost universal

Hilbert sets.
4 Make Theorem A effective.

Thank you for listening!

The slides are available upon request.
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