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Introduction

Polynomials in Z[x ] with only rational roots:

I Evertse and Győry (2015, 2017)

I Hajdu and Tijdeman (submitted)
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Inroduction

If the coefficients belong to the set

I {−1, 1}: Littlewood polynomials

I Borwein, Choi, Ferguson, Jankauskas (2015)
I Berend and Golan (2006)

I {0, 1}: Newman polynomials (assuming that the constant
term is not zero)

I Odlyzko and Poonen (1993)
I Mercer (2012)

I {−1, 0, 1}:
I Borwein and Pinner (1997)
I Borwein and Erdélyi (1997)
I Drungilas and Dubickas (2009)
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Introduction
The set of polynomials f (x) ∈ Z[x ] with

I all coefficients in {−1, 0, 1},
I constant term is non-zero

I and only rational roots

is very restricted.

- The only possible roots are 1 and −1.
- Hence f (x) = ±(x − 1)a(x + 1)b for some a, b ∈ Z≥0.
- The coefficient of x is ±(b − a). Therefore |b − a| ≤ 1.
- It follows that f (x) = ±(x2 − 1)k maybe multiplied with either
x − 1 or x + 1 where k = min(a, b).
- Since the coefficients of f are in {−1, 0, 1}, we obtain k ∈ {0, 1}
and the degree of f is at most 3.
- An example of such a polynomial of degree 3 is

f (x) = x3 − x2 − x + 1 = (x − 1)2(x + 1). (1)

- We generalize this result in two ways.
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Theorem 1
In the first generalization we require that the coefficient of f are
bounded.

Theorem (Hajdu, Tijdeman, V, 202?)

Let f (x) ∈ Z[x ] be a polynomial of degree n with only non-zero
rational roots and height bounded by H ≥ 2. Then we have both

n ≤
(

2

log 2
+ o(1)

)
logH (H →∞) (2)

and

n ≤ 5

log 2
logH. (3)

Further, the constants 2/ log 2 and 5/ log 2 in (2) and (3),
respectively, are best possible.

(By the height of a polynomial with integer coefficients we mean
the maximum of the absolute values of its coefficients.)
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Theorem 2

The second generalization concerns the case that none of the
coefficients of f (x) is divisible by 2 or 3.

Theorem (Hajdu, Tijdeman, V, 202?)

Every polynomial f (x) ∈ Z[x ] with only rational roots of which no
coefficient is divisible by 2 or 3 has degree at most 3.
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Theorem 3

A further restriction is that the coefficients of f are integral
S-units, that is integers composed of primes from a finite set S .
Such polynomials are called S-polynomials.

The next theorem shows that for any n there are only finitely many
families of S-polynomials of degree n having only rational roots.
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Theorem 3

Theorem (Hajdu, Tijdeman, V, 202?)

Let S be a finite set of primes with |S | = s and n a positive
integer. There exists an explicitly computable constant
C = C (n, s) depending only on n and s and sets T1, T2 with
max(|T1|, |T2|) ≤ C of n-tuples of S-units and (n − 1)/2-tuples of
S-units for n odd, respectively, such that

if f (x) is an
S-polynomial of degree n having only rational roots q1, . . . qn,
then q1, . . . , qn satisfy one of the conditions (i) or (ii):

(i) (q1, . . . , qn) = u(r1, . . . , rn) with some (r1, . . . , rn) ∈ T1 and
S-unit u,

(ii) n = 2t + 1 is odd, and re-indexing q1, . . . , qn if necessary, we
have q1 = u and (q2, . . . , qn) = v(r1,−r1, . . . , rt ,−rt) with
some (r1, . . . , rt) ∈ T2 and S-units u, v .

Further, the possibilities (i) and (ii) cannot be excluded.

10 / 32



Theorem 3

Theorem (Hajdu, Tijdeman, V, 202?)

Let S be a finite set of primes with |S | = s and n a positive
integer. There exists an explicitly computable constant
C = C (n, s) depending only on n and s and sets T1, T2 with
max(|T1|, |T2|) ≤ C of n-tuples of S-units and (n − 1)/2-tuples of
S-units for n odd, respectively, such that if f (x) is an
S-polynomial of degree n having only rational roots q1, . . . qn,
then q1, . . . , qn satisfy one of the conditions (i) or (ii):

(i) (q1, . . . , qn) = u(r1, . . . , rn) with some (r1, . . . , rn) ∈ T1 and
S-unit u,

(ii) n = 2t + 1 is odd, and re-indexing q1, . . . , qn if necessary, we
have q1 = u and (q2, . . . , qn) = v(r1,−r1, . . . , rt ,−rt) with
some (r1, . . . , rt) ∈ T2 and S-units u, v .

Further, the possibilities (i) and (ii) cannot be excluded.

10 / 32



Theorem 3

Theorem (Hajdu, Tijdeman, V, 202?)

Let S be a finite set of primes with |S | = s and n a positive
integer. There exists an explicitly computable constant
C = C (n, s) depending only on n and s and sets T1, T2 with
max(|T1|, |T2|) ≤ C of n-tuples of S-units and (n − 1)/2-tuples of
S-units for n odd, respectively, such that if f (x) is an
S-polynomial of degree n having only rational roots q1, . . . qn,
then q1, . . . , qn satisfy one of the conditions (i) or (ii):

(i) (q1, . . . , qn) = u(r1, . . . , rn) with some (r1, . . . , rn) ∈ T1 and
S-unit u,

(ii) n = 2t + 1 is odd, and re-indexing q1, . . . , qn if necessary, we
have q1 = u and (q2, . . . , qn) = v(r1,−r1, . . . , rt ,−rt) with
some (r1, . . . , rt) ∈ T2 and S-units u, v .

Further, the possibilities (i) and (ii) cannot be excluded.

10 / 32



I Introduction

I New theorems

I Proofs and lemmas

11 / 32



Remark. Observe that the rational roots of an S-polynomial f (x)
are S-units, i.e. rational numbers whose numerators and
denominators are composed exclusively of primes in S .
This follows from the well-known fact that the denominator of a
root of f (x) divides the leading coefficient of f (x), while its
numerator divides the constant term of f (x).
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Proof of Theorem 1
To get (2):

On the one hand, let f (x) =
∑n

j=0 ajx
j . Then

|f (i)| ≤

∣∣∣∣∣∣
∑

j is even

|aj |+ i
∑

j is odd

|aj |

∣∣∣∣∣∣≤
√

1

2
n2 + n + 1 H. (4)

On the other hand, we may write f (x) =
∏n

j=1(qjx − pj) with
pj , qj ∈ Z6=0 for all j . Then

|f (i)| =

∣∣∣∣∣∣
n∏

j=1

(qj i− pj)

∣∣∣∣∣∣ =
n∏

j=1

√
q2j + p2j ≥ (

√
2)n. (5)

Therefore,

n log 2 ≤ log

(
1

2
n2 + n + 1

)
+ 2 logH. (6)
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Proof of Theorem 1
The constant 2/ log 2 in (2) is best possible:

For the height H of the polynomial f (x) = (x2 − 1)n/2 with even
n ≥ 2 by Stirling’s formula we have logH = (1 + o(1))n log 2/2.

To prove (3): observe that assuming (5/ log 2) logH < n from (6)
we obtain

n log 2 < log

(
1

2
n2 + n + 1

)
+

2n log 2

5
.

Hence we easily get
n ≤ 9.

Further, observe that if we assume that f has a root different from
±1, then (5) can be sharpened to

|f (i)| ≥
√

5(
√

2)n−1. (7)

Thus, in this case combining (5/ log 2) logH < n with (4) and (7),
we get a contradiction for n ≥ 1.
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Proof of Theorem 1

So to prove (3), we only need to check the polynomials of the
shape f (x) = ±(x + 1)a(x − 1)n−a with 0 ≤ a ≤ n for 1 ≤ n ≤ 9.
A simple calculation gives that for all these polynomials (3) holds.

In particular, for n = 5 and a = 2, 3 we have equality. Thus e.g.
the polynomial

(x − 1)3(x + 1)2 = x5 − x4 − 2x3 + 2x2 + x − 1

shows that the constant 5/ log 2 in (3) is best possible. So the
theorem is proved.
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Proof of Theorem 2 - Lemma 1

The first lemma is a direct consequence of result of Fine (1947).

Lemma (Fine, 1947)

Let n be a positive integer such that all the coefficients of (x + 1)n

are odd. Then n is of the shape 2α − 1 with some α ∈ Z≥0.

e.g.
(x + 1)3 = x3 + 3x2 + 3x + 1

(x + 1)7 = x7 + 7x6 + 21x5 + 35x4 + 35x3 + 21x2 + 7x + 1
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Proof of Theorem 2 - Lemma 2

The next lemma is new, and provides a similar result for prime 3.

Lemma (Hajdu, Tijdeman, V, 202?)

Let a, b be non-negative integers. Put n := a + b. If none of the
coefficients of (x − 1)a(x + 1)b is divisible by 3, then n is of the
shape 3β − 1, 2 · 3β − 1, 3γ + 3δ − 1 or 2 · 3γ + 3δ − 1 with
β ≥ 0, γ > δ ≥ 0.
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Proof of Theorem 2 - Lemma 2

In the proof of Lemma 2 we call a pair of non-negative integers
(a, b) good if none of the coefficients of

f(a,b)(x) := (x − 1)a(x + 1)b

is divisible by 3; otherwise we say that (a, b) is bad. Observe that
this property is symmetric in a and b in view of the substitution
x → −x .

We distinguish between the residue classes of a and b modulo 3.
We have 7 cases.
e.g. CASE a ≡ 2 (mod 3), b ≡ 0 (mod 3). Writing a = 3u + 2,
b = 3v we see that

f(a,b)(x) ≡ (x3 − 1)u(x3 + 1)v (x2 + x + 1) (mod 3).

This shows that (a, b) is good if and only if (u, v) is good.
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Proof of Theorem 2 - steps

Let S be as in the statement, and let f (x) be an S-polynomial
with rational roots, of degree n.

Since we argue modulo 2 and 3, and 2, 3 do not divide the leading
coefficient of f , we may assume that f is monic.

Since the roots of f are odd, Lemma 1 shows that n + 1 is a power
of 2.

Further, since the roots of f are not divisible by 3, by Lemma 2 we
get that n + 1 is of the shape 3β, 2 · 3β, 3γ + 3δ or 2 · 3γ + 3δ.

The combination is possible only for n = 0, 1, 3, as a simple check
reveals.
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Proof of Theorem 3 - Lemma 3

For the proof of Theorem 3 we use the theory of S-unit equations.
Let S be a finite set of primes, b1, . . . , bm non-zero rationals, and
consider the equation

b1x1 + · · ·+ bmxm = 0 in S-units x1, . . . , xm. (8)

A solution (y1, . . . , ym) of (8) is called non-degenerate if∑
i∈I

biyi 6= 0 for each non-empty subset I of {1, . . . ,m}.

Further, two solutions (y1, . . . , ym) and (z1, . . . , zm) are called
proportional, if there is an S-unit u such that
(z1, . . . , zm) = u(y1, . . . , ym).
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Proof of Theorem 3 - Lemma 3

Lemma (Amoroso, Viada, 2009)

Equation (8) has at most (8m − 8)4(m−1)
4(m+s) non-degenerate,

non-proportional solutions, where s = |S |.

Remark. The original result of Amoroso and Viada concerns the
inhomogeneous case, i.e. where the right hand side of (8) is 1.
However, it is easy to transform their result into the shape of (8).
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Proof of Theorem 3

Suppose that f (x) =
∑n

j=0 ajx
j is an S-polynomial of degree n

having only rational roots q1, . . . , qn. By our assumption,
a0, a1, . . . , an are integral S-units. We have

Aj = σj(q1, . . . , qn) (1 ≤ j ≤ n) (9)

where Aj = (−1)jan−j/a0 and σj is the j-th elementary symmetric
polynomial (of degree j) of q1, . . . , qn. Using (9) for j = 1, 2 we get

q21 + · · ·+ q2n = A2
1 − 2A2. (10)

This shows that (q21 , . . . , q
2
n,A

2
1,A2) yields a solution to the S-unit

equation
x1 + · · ·+ xn − xn+1 + 2xn+2 = 0. (11)
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Proof of Theorem 3

If (q21 , . . . , q
2
n,A

2
1,A2) is a solution with no vanishing subsums,

then by Lemma 3 we can write

q2i = u0`i

(i = 1, . . . , n), where (`1, . . . , `n) comes from a finite set of
cardinality bounded in terms of n and s, and u0 is an S-unit.

Obviously, the squarefree parts of `1, . . . , `n are the same, say `0.
Thus letting r2i = `i/`0 (i = 1, . . . , n) and u2 = u0`0, we have

qi = ±uri

(i = 1, . . . , n) and we are done in this case.
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Proof of Theorem 3

Hence we may assume that (q21 , . . . , q
2
n,A

2
1,A2) contains a

vanishing subsum. Since q2i > 0 (1 ≤ i ≤ n), the only possibility is
that (after re-indexing q1, . . . , qn if necessary) we have

q21 + · · ·+ q2k − A2
1 = 0, (12)

q2k+1 + · · ·+ q2n + 2A2 = 0 (13)

for some k with 1 ≤ k < n. It is easy to see that (12) and (13) do
not have a vanishing subsum.
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Proof of Theorem 3

Thus, similarly as above, Lemma 3 yields that

(q1, . . . , qk) = u(w1, . . . ,wk),

(qk+1, . . . , qn) = v(r1, . . . , r`),

A1 = ut1 6= 0,

A2 = v2t2 6= 0,

where ` = n− k and both (w1, . . . ,wk , t1) and (r1, . . . , r`, t2) come
from finite sets of S-units of cardinalities bounded in terms of n
and s, and u, v are S-units.
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Proof of Theorem 3
Hence (9) for j = 1 yields that

u(w1 + · · ·+ wk) + v(r1 + · · ·+ r`) = ut1. (14)

If r1 + · · ·+ r` 6= 0 then the S-unit v/u comes from a set of
cardinality bounded in terms of n and s, and we are in case (i). So
we may suppose that

w1 + · · ·+ wk = t1,

r1 + · · ·+ r` = 0.

As we have k ≥ 1, ` ≥ 1 and, by (12) and (13),

w2
1 + · · ·+ w2

k − t21 = 0,

r21 + · · ·+ r2` + 2t2 = 0,

we obtain

σ2(w1, . . . ,wk) = 0, σ2(r1, . . . , r`) = t2.
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Proof of Theorem 3

In the next session we proved by contradiction that k = 1. Further,
this yields ` = n − 1.

In the penultimate step we may assume that{
σj(r1, . . . , r`) = Aj/v

j 6= 0 for j even,

σj(r1, . . . , r`) = 0 for j odd.

In particular, since σ`(r1, . . . , r`) = r1 · · · r` cannot be zero, ` is
even whence n = `+ 1 is odd. Observing that (x + r1) · · · (x + r`)
is an even polynomial, writing ` = 2t and re-indexing the S-units ri
(1 ≤ i ≤ `) such that rt+i = −ri (1 ≤ i ≤ t), we see that we are in
case (ii).
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Proof of Theorem 3
Finally, we show that the possibilities (i) and (ii) cannot be
excluded.
Indeed, if r1, . . . , rn is a set of rational roots of an S-polynomial of
degree n, then clearly, the same is true for ur1, . . . , urn for any
S-unit u, showing the necessity of (i).

On the other hand, let r21 , . . . , r
2
t be the rational roots of the

S-polynomial (x − r21 ) · · · (x − r2t ). Then in the polynomial

(x2 − r21 ) · · · (x2 − r2t ),

all the coefficients of the even powers of x are S-units (while the
coefficients of the odd powers of x equal 0). Thus for any S-units
u, v , all the coefficients of the polynomial

(x + u)(x − vr1)(x + vr1) · · · (x − vrt)(x + vrt)

are S-units. This shows that (ii) cannot be excluded either.
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Open Problems - 1

We wonder whether the following statement is correct:

Problem 1. Is it true that for any primes p and q there exists an
n1 = n1(p, q) such that every polynomial f (x) ∈ Z[x ] with only
rational roots of which no coefficient is divisible by p or q has
degree at most n1?

Theorem 1 shows that the answer is ‘yes’ for the pair of primes
(p, q) = (2, 3).
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Open Problems - 2

A weaker statement is a restriction to S-polynomials.

Problem 2. Is it true that for any finite set S of primes there
exists an n2 = n2(S) such that every S-polynomial f (x) ∈ Z[x ]
with only rational roots has degree at most n2?

Theorem 2 yields an affirmative answer for sets S of primes with
2, 3 /∈ S .
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Open Problems - 3

The last problem is raised by Lemmas 1 and 2.

Problem 3. Is it true that for every prime p there exists a
constant c(p) such that if f (x) ∈ Z[x ] has only rational roots and
none of the coefficients of f is divisible by p, then deg(f ) + 1 in its
p-adic expansion has at most c(p) non-zero digits? In particular,
can one take c(p) = p − 1?

Lemmas 1 and 2 show that the answer is ‘yes’ with c(p) = p − 1
for p = 2, 3. Note that an affirmative answer to Problem 3 through
a deep result of Stewart (1980, J. reine angew. Math.) would yield
positive answers to Problems 1 and 2, as well.
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