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Introduction

Polynomials with restricted coefficients:
If the coefficients belong to the set

» {—1,1}: Littlewood polynomials
» {0,1}: Newman polynomials (assuming that the constant
term is not zero)



The zeroes (in particular, the number of real zeroes) of polynomials
with coefficients belonging to {—1,0,1} have been studied by

Bloch and Pdlya (1932)

Schur (1933)

Szegd (1934)

Erdés and Turdn (1950)
Drungilas and Dubickas (2009)
Borwein and Erdélyi (1995, 1997)
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Introduction

Further,

» Borwein and Mossinghoff (2000)
Peled, Sen and Zeitouni (2016)
Dubickas and Jankauskas (2009)
Mossinghoff (2003)

Hare, Jankauskas (2021)
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Notations

» Let S={p1 < p2 <...< px} be a finite set of primes, and
write Zg for the set of integers having no prime divisors
outside S.

» Note that we have £1 € Zgs but 0 ¢ Zg for any S.
» In particular, we have Zg = {—1,1} for S = 0.

» Write Ps for the set of polynomials in Z[x] with coefficients
belonging to Zs.



Theorem 1

Theorem (Hajdu,V, 2022)

Let f(x) € Ps of degree d and b be a non-zero rational number.
Then there exist effectively computable constants C; = Cy(px) and
C, = Go(b, d, px) depending only on py and on b, d, py,
respectively, such that if d > C; then the equality

f(x) = by" (1)

with x,y,n € Z and |y| > 1 implies n < C.



Theorem 2
Theorem (Hajdu, V, 2022)

Let f(x) € Ps with S = 0 (i.e. f(x) is a Littlewood polynomial,
with all coefficients being +1). Assume further that deg f > 3, and
let b be a non-zero rational number. Then all solutions x,y,n € Z
of the equation

f(x) = by" (2)
with n > 2, satisfy

max(|x|, |y|7 n) < G,

except when n = 2 and f is one of the forms

F(x) = £ 4 xR k- 1),
+ (X2k+1 2k 4 (_1)k+2xk+1 + (_1)kxk +- 1)

with some k > 1. Here C3 = C3(b, d) is an effectively computable
constant depending only on b and the degree d of f. 0/3



Theorem 3

Theorem (Hajdu, Tijdeman, V, 2023)

Let f(x) be a Littlewood polynomial of degree n with n > 4 and
a,b € Q with a# 0. Then all solutions x,y, m € Z of the equation

f(x)=ay™+b (3)
with m > 2, satisfy
max(\x|, ‘}/|, m) S C47

except when
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Theorem 3

Theorem

except when m = 2 and
f(x) € {£7(x), F7(x) —2f7(0), xf*(x) £ 1} (4)
with b = 0,—2f*(0), +1, respectively, where

*(x) = :|:(X2€+1+X2€+...—|—X£+1 —Xe—...—].), or
Fr(x) = (=) + (=) 4+ (=) = (=) 4= 1)

with ¢ = |(n—1)/2| and the solutions are given by y = Q(x) with
Q(£x) = £(x* + ...+ x + 1). Here C4 depends only on n,a, b
and we use the convention that m < 3 if |y| < 1.
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Theorem 4

Theorem (Hajdu, Tijdeman, V, 2023)

Let f(x) be a Littlewood polynomial of degree n with n > 4 and
g(x) € Z[x]. Then the equation

f(x) =&(y) (5)

has only finitely many solutions in integers x, y, except when

g(y) = f(T(y)) with some polynomial T(y) of degree > 1 having
rational coefficients, or if f(x) is of the shape (4) and

g(y) = a(cy +d)? + b for a, b as in Theorem 3 and
c,deQ,c#0.
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Lemma-Gy

Lemma (Gyéry, 1972)

Let S be as above, and A, B be non-zero rational numbers. Then
the solutions x,y € Zs of the equation

Ax — By =1

satisfy
max(|x], y[) < Gs,

where Cs = C5(A, B, pk) is an effectively computable constant
depending only on A, B and py.

The statement is an immediate consequence of a classical result of
Gybry (1972).
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Lemma-ST

Lemma (Schinzel, Tijdeman, 1976)

Let F(x) € Z[x] having two distinct (complex) roots of degree D
and height H, and B be a non-zero rational number. Then the
equality

F(x) = By"

with x,y € Z, |y| > 1 implies that n < Cg, where
Cs = Co(B, D, H) is an effectively computable constant depending
only on B, D and H.

The statement immediately follows from the Schinzel-Tijdeman
(1976) theorem.
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Lemma-B

» For any finite set S of primes, write Qs for those rationals
whose denominators (in their primitive forms) are composed
exclusively from the primes in S.

» By the height h(s) of a rational number s we mean the
maximum of the absolute values of the numerator and the
denominator of s (written again in primitive form).

» The following Lemma is a theorem of Brindza (1984).
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Lemma-B

Lemma (Brindza, 1984)

Let F(x) € Z[x] of degree D and height H, and write

F(x)=A Hle(x — i), where A is the leading coefficient of F,
and 1, ...,y are the distinct complex roots of F(x), with
multiplicities ri, ..., ry, respectively. Further, let n be an integer
with n > 2, and put q; = " (i=1,...,0).

Suppose that (qi,...,qe) is not a permutation of any of the
(-tuples (g,1,...,1) (¢ > 1), (2,2,1,...,1).

Then for any finite set S of primes and non-zero rational B, the
solutions x,y € Qg of the equation

F(x) = By"

satisfy
max (h(X)7 h(y)) < C7(B7 n, D7 Ha 5)7

where C7(B, n, D, H,S) is an effectively computable constant
depending only on B,n, D, H,S.



Lemma-BT

Lemma (Bilu, Tichy, 2000)

Let f(x), g(x) € Q[x] be non-constant polynomials. Then the
following two statements are equivalent.

(I) The equation f(x) = g(y) has infinitely many rational
solutions x,y with a bounded denominator.

(I) We have f = o(F(r)) and g = ©(G(X)), where
k(x), A(x) € Q[x] are linear polynomials, ¢(x) € Q[x], and
F(x), G(x) form a standard pair over Q such that the
equation F(x) = G(y) has infinitely many rational solutions
with a bounded denominator.
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Lemma-DG

In the proof of Theorem 4, the decomposability of polynomials will
play an important role. We call F(x) € Q[x] decomposable over Q
if there exist G(x), H(x) € Q[x] with deg(G) > 1, deg(H) > 1
such that F = G(H), and otherwise indecomposable.

Lemma (Dujella, Gusi¢, 2006)
Let F(x) € Z[x], of the form

F(x) = x"4+ ux™ 1+ up_1x + up.

If gcd(u, n) = 1 then F(x) is indecomposable over Q.
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Lemma 1

Lemma (Hajdu, V, 2022)
Let m be a non-negative integer and let

G(x) = box' 4+ bix™™ 1 + ... 4 by_1x + by (6)
with by, b1, ..., b: € Z, such that all the coefficients of the

polynomial (x — 1)™G(x) belong to {—1,1}. Then by = 0 implies
m=1.
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Lemma 2

Lemma (Hajdu, V, 2022)

Let G(x) € Z[x] and m be a non-negative integer. If all the
coefficients of (x — 1)™G(x) belong to {—1,1} then, writing

G(x) = box" + bixt Y 4+ ...+ be_1x + by,
forall i =0,1,...,t we have

Here we use the convention (8) =1.

22/32



Lemma 3 and 4

Lemma (Hajdu, V, 2022)

Let n > 2 and g(x) € Z[x] be non-zero polynomial. If all the
coefficients of (x — 1)"~1g"(x) belong to {—1,1} then we have
n=2.
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Lemma 3 and 4

Lemma (Hajdu, V, 2022)

Let n > 2 and g(x) € Z[x] be non-zero polynomial. If all the
coefficients of (x —1)"~1g"(x) belong to {—1,1} then we have
n=2.

Lemma (Hajdu, V, 2022)

Let g(x) € Z[x] be a non-constant polynomial and m, n be
integers with 0 < m < n. If all the coefficients of the polynomial
(x —1)™(g(x))" belong to {—1,1} then n=2, m=1 and g(x) is
of the form

g(x)=+(x*+...+x+1)

with some ¢ > 1.
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Lemma 5 and 6
A multiple root is a root of multiplicity > 1.
Lemma (Hajdu, Tijdeman, V, 2023)

Let f(x) be a Littlewood polynomial and b € Q. If f(x) — b has a
root of multiplicity > 3, or has at least two roots of multiplicities
> 2, then b € Z. Further, in both cases the multiple roots of
f(x) — b are units.

24 /32



Lemma 5 and 6
A multiple root is a root of multiplicity > 1.
Lemma (Hajdu, Tijdeman, V, 2023)

Let f(x) be a Littlewood polynomial and b € Q. If f(x) — b has a
root of multiplicity > 3, or has at least two roots of multiplicities
> 2, then b € Z. Further, in both cases the multiple roots of
f(x) — b are units.

Lemma (Hajdu, Tijdeman, V, 2023)
Let f(x) be a Littlewood polynomial of degree n and let b € Z.
Then for any root «v of f(x) — b with |a| > 2 we have
o] =2
la] =1

" < [b].
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Proof of Theorem 1 — steps

» The statement immediately follows by Lemma-ST, as soon as
f(x) has two distinct roots.

» Thus we can assume that f(x) is of the form
f(x) = u(x + v)?, with some u € Z and v € Q.

> Investigating the value of u, v, d and the coefficients of f we
have two cases:
In the first case d,d — 1 € Zg satisfy the equation
wy; — wp = 1, while in the second case d,(d — 1)/2 € Zs are
solution to the wy — 2wy, =1 in wy, wy € Zg.

» Using Lemma-Gy we get that for the solutions of the above
equations max(|wi|, [wz|) < Cg holds, where Cg = Cg(px)-

» So if d > (g, then d cannot come from a solution of the
above equations, which implies that f(x) is not of the form
u(x + v).
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Proof of Theorem 2 — steps

» We show that n can be bounded in the required way.
Following the lines of the proof of Theorem 1, we see that it is
sufficient to exclude the case when f(x) is of the form
(x £ 1)?. However, this is clearly impossible.

» We may suppose that n > 2 is fixed. Thus our statement
immediately follows from Lemma-B, except in the following
two cases:

i) n=2and f(x) = h(x)(g(x))? where deg h = 2 and
h(x), g(x) € Z[x];

ii) nis arbitrary and f(x) = (h(x))™(g(x))", where deg h < 1,
0 < m < nand h(x),g(x) € Z[x].
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Proof of Theorem 2 — steps

> In the case i) write h(x) = x? + vix + v» and
g(x) =x" +ux 14+
Case i) cannot hold.
» Consider the case ii). We can be suppose that the

polynomials £, g, h are monic and h(x) = x — 1.
The statement follows from Lemma 4.
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Proof of Theorem 3 — sketch

» bound for m follows from Lemma-ST unless f(x) — b is of the
shape f(x) = (x —s)" with s € Q

» by Lemma-ST, we may assume that m is fixed

» our claim follows from Lemma-B, except for the following two
cases:
i) m > 2 is arbitrary and f(x) — b = (P(x))"(Q(x))* with
0<r<t t>2and P,Q € Q[x], deg(P) < 1;
i) m=2and f(x) — b= P(x)(Q(x))? with P, @ € Q[x],
deg(P) = 2.
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» n=deg(f) =14
»n>5

» case (i): possible values of r and then s
investigation of coefficients
(Lemma 4', 5, 6)

» case (ii): P(x) =x®>+ux+w
parity and possible values of u, w then
P(x) = x243x+4, x°+£x+4, x°+£x—2, x>+3x+2, x>E£x+2.

we get these cases cannot occur

» (Lemma 4', 5 and 6)
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Proof of Theorem 4

» by Lemma-DG: f(x) is indecomposable over Q

» thus, if equation f(x) = g(y) has infinitely many solutions in
integers x, y, then by Lemma-BT we have only two options:
i) g(x) is of the form g(x) = f(T(x)) with some T(x) € Z[x]
ii) f(x) is of the shape f(x) = AF(ux + w) + B with some
A B, u,w € Q, Au # 0, where F belongs to a standard pair.
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» L. Hajdu - N. Varga: Diophantine equations for polynomials
with restricted coefficients, | (Power values). Bulletin of the
Australian Math. Soc. 106/2 (2022), 254-263.

» L. Hajdu - R. Tijdeman - N. Varga: Diophantine equations for
Littlewood polynomials. Acta Arithmetica, accepted
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