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Introduction

Polynomials with restricted coefficients:
If the coefficients belong to the set

◮ {−1, 1}: Littlewood polynomials

◮ {0, 1}: Newman polynomials (assuming that the constant
term is not zero)
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The zeroes (in particular, the number of real zeroes) of polynomials
with coefficients belonging to {−1, 0, 1} have been studied by

◮ Bloch and Pólya (1932)

◮ Schur (1933)

◮ Szegő (1934)

◮ Erdős and Turán (1950)

◮ Drungilas and Dubickas (2009)

◮ Borwein and Erdélyi (1995, 1997)
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Introduction

Further,

◮ Borwein and Mossinghoff (2000)

◮ Peled, Sen and Zeitouni (2016)

◮ Dubickas and Jankauskas (2009)

◮ Mossinghoff (2003)

◮ Hare, Jankauskas (2021)
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Notations

◮ Let S = {p1 < p2 < . . . < pk} be a finite set of primes, and
write ZS for the set of integers having no prime divisors
outside S .

◮ Note that we have ±1 ∈ ZS but 0 /∈ ZS for any S .

◮ In particular, we have ZS = {−1, 1} for S = ∅.

◮ Write PS for the set of polynomials in Z[x ] with coefficients
belonging to ZS .
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Theorem 1

Theorem (Hajdu,V, 2022)

Let f (x) ∈ PS of degree d and b be a non-zero rational number.
Then there exist effectively computable constants C1 = C1(pk) and
C2 = C2(b, d , pk) depending only on pk and on b, d , pk ,
respectively, such that if d > C1 then the equality

f (x) = byn (1)

with x , y , n ∈ Z and |y | > 1 implies n < C2.
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Theorem 2

Theorem (Hajdu, V, 2022)

Let f (x) ∈ PS with S = ∅ (i.e. f (x) is a Littlewood polynomial,
with all coefficients being ±1). Assume further that deg f ≥ 3, and
let b be a non-zero rational number. Then all solutions x , y , n ∈ Z

of the equation
f (x) = byn (2)

with n ≥ 2, satisfy

max(|x |, |y |, n) ≤ C3,

except when n = 2 and f is one of the forms

f (x) = ±(x2k+1 + . . .+ xk+1 − xk − . . . − 1),

± (x2k+1 − x2k + . . .+ (−1)k+2xk+1 + (−1)kxk + · · · + 1)

with some k ≥ 1. Here C3 = C3(b, d) is an effectively computable
constant depending only on b and the degree d of f . 9 / 32



Theorem 3

Theorem (Hajdu, Tijdeman, V, 2023)

Let f (x) be a Littlewood polynomial of degree n with n ≥ 4 and
a, b ∈ Q with a 6= 0. Then all solutions x , y ,m ∈ Z of the equation

f (x) = aym + b (3)

with m ≥ 2, satisfy

max(|x |, |y |,m) ≤ C4,

except when
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Theorem 3

Theorem

except when m = 2 and

f (x) ∈ {f ∗(x), f ∗(x)− 2f ∗(0), xf ∗(x)± 1} (4)

with b = 0,−2f ∗(0),±1, respectively, where

f ∗(x) = ±(x2ℓ+1 + x2ℓ + . . .+ xℓ+1 − xℓ − . . .− 1), or

f ∗(x) = ±((−x)2ℓ+1+(−x)2ℓ+ . . .+(−x)ℓ+1− (−x)ℓ+ · · ·− 1)

with ℓ = ⌊(n− 1)/2⌋ and the solutions are given by y = Q(x) with
Q(±x) = ±(xk + . . . + x + 1). Here C4 depends only on n, a, b
and we use the convention that m ≤ 3 if |y | ≤ 1.
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Theorem 4

Theorem (Hajdu, Tijdeman, V, 2023)

Let f (x) be a Littlewood polynomial of degree n with n ≥ 4 and
g(x) ∈ Z[x ]. Then the equation

f (x) = g(y) (5)

has only finitely many solutions in integers x , y , except when
g(y) = f (T (y)) with some polynomial T (y) of degree ≥ 1 having
rational coefficients, or if f (x) is of the shape (4) and
g(y) = a(cy + d)2 + b for a, b as in Theorem 3 and
c , d ∈ Q, c 6= 0.
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Lemma-Gy

Lemma (Győry, 1972)

Let S be as above, and A,B be non-zero rational numbers. Then
the solutions x , y ∈ ZS of the equation

Ax − By = 1

satisfy
max(|x |, |y |) < C5,

where C5 = C5(A,B , pk) is an effectively computable constant
depending only on A, B and pk .

The statement is an immediate consequence of a classical result of
Győry (1972).
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Lemma-ST

Lemma (Schinzel, Tijdeman, 1976)

Let F (x) ∈ Z[x ] having two distinct (complex) roots of degree D
and height H, and B be a non-zero rational number. Then the
equality

F (x) = Byn

with x , y ∈ Z, |y | > 1 implies that n < C6, where
C6 = C6(B ,D,H) is an effectively computable constant depending
only on B, D and H.

The statement immediately follows from the Schinzel-Tijdeman
(1976) theorem.
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Lemma-B

◮ For any finite set S of primes, write QS for those rationals
whose denominators (in their primitive forms) are composed
exclusively from the primes in S .

◮ By the height h(s) of a rational number s we mean the
maximum of the absolute values of the numerator and the
denominator of s (written again in primitive form).

◮ The following Lemma is a theorem of Brindza (1984).

16 / 32



Lemma-B

Lemma (Brindza, 1984)

Let F (x) ∈ Z[x ] of degree D and height H, and write
F (x) = A

∏ℓ
i=1(x − γi )

ri , where A is the leading coefficient of F ,
and γ1, . . . , γℓ are the distinct complex roots of F (x), with
multiplicities r1, . . . , rℓ, respectively. Further, let n be an integer
with n ≥ 2, and put qi =

n

(n,ri )
(i = 1, . . . , ℓ).

Suppose that (q1, . . . , qℓ) is not a permutation of any of the
ℓ-tuples (q, 1, . . . , 1) (q ≥ 1), (2, 2, 1, . . . , 1).
Then for any finite set S of primes and non-zero rational B, the
solutions x , y ∈ QS of the equation

F (x) = Byn

satisfy
max (h(x), h(y)) < C7(B , n,D,H,S),

where C7(B , n,D,H,S) is an effectively computable constant
depending only on B , n,D,H,S. 17 / 32



Lemma-BT

Lemma (Bilu, Tichy, 2000)

Let f (x), g(x) ∈ Q[x ] be non-constant polynomials. Then the
following two statements are equivalent.

(I) The equation f (x) = g(y) has infinitely many rational
solutions x , y with a bounded denominator.

(II) We have f = ϕ(F (κ)) and g = ϕ(G (λ)), where
κ(x), λ(x) ∈ Q[x ] are linear polynomials, ϕ(x) ∈ Q[x ], and
F (x),G (x) form a standard pair over Q such that the
equation F (x) = G (y) has infinitely many rational solutions
with a bounded denominator.
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Lemma-DG

In the proof of Theorem 4, the decomposability of polynomials will
play an important role. We call F (x) ∈ Q[x ] decomposable over Q
if there exist G (x),H(x) ∈ Q[x ] with deg(G ) > 1, deg(H) > 1
such that F = G (H), and otherwise indecomposable.

Lemma (Dujella, Gusić, 2006)

Let F (x) ∈ Z[x ], of the form

F (x) = xn + u1x
n−1 + · · ·+ un−1x + un.

If gcd(u1, n) = 1 then F (x) is indecomposable over Q.
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Lemma 1

Lemma (Hajdu, V, 2022)

Let m be a non-negative integer and let

G (x) = b0x
t + b1x

t−1 + . . .+ bt−1x + bt (6)

with b0, b1, . . . , bt ∈ Z, such that all the coefficients of the
polynomial (x − 1)mG (x) belong to {−1, 1}. Then b1 = 0 implies
m = 1.
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Lemma 2

Lemma (Hajdu, V, 2022)

Let G (x) ∈ Z[x ] and m be a non-negative integer. If all the
coefficients of (x − 1)mG (x) belong to {−1, 1} then, writing

G (x) = b0x
t + b1x

t−1 + . . .+ bt−1x + bt ,

for all i = 0, 1, . . . , t we have

−min
(

(

m+i

m

)

,
(

m+t−i

m

)

)

≤ bi ≤ min
(

(

m+i

m

)

,
(

m+t−i

m

)

)

.

Here we use the convention
(

0
0

)

= 1.
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Lemma 3 and 4

Lemma (Hajdu, V, 2022)

Let n ≥ 2 and g(x) ∈ Z[x ] be non-zero polynomial. If all the
coefficients of (x − 1)n−1gn(x) belong to {−1, 1} then we have
n = 2.
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Lemma 3 and 4

Lemma (Hajdu, V, 2022)

Let n ≥ 2 and g(x) ∈ Z[x ] be non-zero polynomial. If all the
coefficients of (x − 1)n−1gn(x) belong to {−1, 1} then we have
n = 2.

Lemma (Hajdu, V, 2022)

Let g(x) ∈ Z[x ] be a non-constant polynomial and m, n be
integers with 0 ≤ m < n. If all the coefficients of the polynomial
(x − 1)m(g(x))n belong to {−1, 1} then n = 2, m = 1 and g(x) is
of the form

g(x) = ±(xℓ + . . .+ x + 1)

with some ℓ ≥ 1.
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Lemma 5 and 6

A multiple root is a root of multiplicity > 1.

Lemma (Hajdu, Tijdeman, V, 2023)

Let f (x) be a Littlewood polynomial and b ∈ Q. If f (x)− b has a
root of multiplicity ≥ 3, or has at least two roots of multiplicities
≥ 2, then b ∈ Z. Further, in both cases the multiple roots of
f (x)− b are units.
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Lemma 5 and 6

A multiple root is a root of multiplicity > 1.

Lemma (Hajdu, Tijdeman, V, 2023)

Let f (x) be a Littlewood polynomial and b ∈ Q. If f (x)− b has a
root of multiplicity ≥ 3, or has at least two roots of multiplicities
≥ 2, then b ∈ Z. Further, in both cases the multiple roots of
f (x)− b are units.

Lemma (Hajdu, Tijdeman, V, 2023)

Let f (x) be a Littlewood polynomial of degree n and let b ∈ Z.
Then for any root α of f (x)− b with |α| > 2 we have

|α| − 2

|α| − 1
|α|n < |b|.
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Proof of Theorem 1 — steps

◮ The statement immediately follows by Lemma-ST, as soon as
f (x) has two distinct roots.

◮ Thus we can assume that f (x) is of the form
f (x) = u(x + v)d , with some u ∈ Z and v ∈ Q.

◮ Investigating the value of u, v , d and the coefficients of f we
have two cases:
In the first case d , d − 1 ∈ ZS satisfy the equation
w1 − w2 = 1, while in the second case d , (d − 1)/2 ∈ ZS are
solution to the w1 − 2w2 = 1 in w1,w2 ∈ ZS .

◮ Using Lemma-Gy we get that for the solutions of the above
equations max(|w1|, |w2|) < C8 holds, where C8 = C8(pk).

◮ So if d > C8, then d cannot come from a solution of the
above equations, which implies that f (x) is not of the form
u(x + v)d .
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Proof of Theorem 2 — steps

◮ We show that n can be bounded in the required way.
Following the lines of the proof of Theorem 1, we see that it is
sufficient to exclude the case when f (x) is of the form
(x ± 1)d . However, this is clearly impossible.

◮ We may suppose that n ≥ 2 is fixed. Thus our statement
immediately follows from Lemma-B, except in the following
two cases:

i) n = 2 and f (x) = h(x)(g(x))2 where deg h = 2 and
h(x), g(x) ∈ Z[x ];

ii) n is arbitrary and f (x) = (h(x))m(g(x))n, where deg h ≤ 1,
0 ≤ m < n and h(x), g(x) ∈ Z[x ].
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Proof of Theorem 2 — steps

◮ In the case i) write h(x) = x2 + v1x + v2 and

g(x) = xℓ + u1x
ℓ−1 + . . .+ uℓ.

Case i) cannot hold.

◮ Consider the case ii). We can be suppose that the
polynomials f , g , h are monic and h(x) = x − 1.
The statement follows from Lemma 4.

28 / 32



Proof of Theorem 3 — sketch

◮ bound for m follows from Lemma-ST unless f (x)− b is of the
shape f (x) = (x − s)n with s ∈ Q

◮ by Lemma-ST, we may assume that m is fixed

◮ our claim follows from Lemma-B, except for the following two
cases:

i) m ≥ 2 is arbitrary and f (x)− b = (P(x))r (Q(x))t with
0 ≤ r < t, t ≥ 2 and P ,Q ∈ Q[x ], deg(P) ≤ 1;

ii) m = 2 and f (x) − b = P(x)(Q(x))2 with P ,Q ∈ Q[x ],
deg(P) = 2.
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◮ n = deg(f ) = 4

◮ n ≥ 5
◮ case (i): possible values of r and then s

investigation of coefficients
(Lemma 4’, 5, 6)

◮ case (ii): P(x) = x2 + ux + w
parity and possible values of u,w then
P(x) = x2±3x+4, x2±x+4, x2±x−2, x2±3x+2, x2±x+2.

we get these cases cannot occur

◮ (Lemma 4’, 5 and 6)
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Proof of Theorem 4

◮ by Lemma-DG: f (x) is indecomposable over Q

◮ thus, if equation f (x) = g(y) has infinitely many solutions in
integers x , y , then by Lemma-BT we have only two options:

i) g(x) is of the form g(x) = f (T (x)) with some T (x) ∈ Z[x ]
ii) f (x) is of the shape f (x) = AF (ux + w) + B with some

A,B, u,w ∈ Q, Au 6= 0, where F belongs to a standard pair.
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