Nóra Varga

Diophantine equations with restricted coefficients

Joint work with Lajos Hajdu and Rob Tijdeman

Number Theory and Algebra Seminar
Debrecen, 17 March 2023

- Introduction
- New theorems
- Auxiliary results from others
- New lemmas
- Sketch of proofs

Introduction

Polynomials with restricted coefficients:
If the coefficients belong to the set

- $\{-1,1\}$: Littlewood polynomials
- $\{0,1\}$: Newman polynomials (assuming that the constant term is not zero)

The zeroes (in particular, the number of real zeroes) of polynomials with coefficients belonging to $\{-1,0,1\}$ have been studied by

- Bloch and Pólya (1932)
- Schur (1933)
- Szegő (1934)
- Erdős and Turán (1950)
- Drungilas and Dubickas (2009)
- Borwein and Erdélyi $(1995,1997)$

Introduction

Further,

- Borwein and Mossinghoff (2000)
- Peled, Sen and Zeitouni (2016)
- Dubickas and Jankauskas (2009)
- Mossinghoff (2003)
- Hare, Jankauskas (2021)
- Introduction
- New theorems
- Auxiliary results from others
- New lemmas
- Sketch of proofs

Notations

- Let $S=\left\{p_{1}<p_{2}<\ldots<p_{k}\right\}$ be a finite set of primes, and write \mathbb{Z}_{S} for the set of integers having no prime divisors outside S.
- Note that we have $\pm 1 \in \mathbb{Z}_{S}$ but $0 \notin \mathbb{Z}_{S}$ for any S.
- In particular, we have $\mathbb{Z}_{S}=\{-1,1\}$ for $S=\emptyset$.
- Write P_{S} for the set of polynomials in $\mathbb{Z}[x]$ with coefficients belonging to \mathbb{Z}_{S}.

Theorem 1

Theorem (Hajdu,V, 2022)

Let $f(x) \in P_{S}$ of degree d and b be a non-zero rational number. Then there exist effectively computable constants $C_{1}=C_{1}\left(p_{k}\right)$ and $C_{2}=C_{2}\left(b, d, p_{k}\right)$ depending only on p_{k} and on b, d, p_{k}, respectively, such that if $d>C_{1}$ then the equality

$$
\begin{equation*}
f(x)=b y^{n} \tag{1}
\end{equation*}
$$

with $x, y, n \in \mathbb{Z}$ and $|y|>1$ implies $n<C_{2}$.

Theorem 2

Theorem (Hajdu, V, 2022)

Let $f(x) \in P_{S}$ with $S=\emptyset$ (i.e. $f(x)$ is a Littlewood polynomial, with all coefficients being ± 1). Assume further that $\operatorname{deg} f \geq 3$, and let b be a non-zero rational number. Then all solutions $x, y, n \in \mathbb{Z}$ of the equation

$$
\begin{equation*}
f(x)=b y^{n} \tag{2}
\end{equation*}
$$

with $n \geq 2$, satisfy

$$
\max (|x|,|y|, n) \leq C_{3},
$$

except when $n=2$ and f is one of the forms

$$
\begin{aligned}
& f(x)= \pm\left(x^{2 k+1}+\ldots+x^{k+1}-x^{k}-\ldots-1\right), \\
& \quad \pm\left(x^{2 k+1}-x^{2 k}+\ldots+(-1)^{k+2} x^{k+1}+(-1)^{k} x^{k}+\cdots+1\right)
\end{aligned}
$$

with some $k \geq 1$. Here $C_{3}=C_{3}(b, d)$ is an effectively computable constant depending only on b and the degree d of f.

Theorem 3

Theorem (Hajdu, Tijdeman, V, 2023)

Let $f(x)$ be a Littlewood polynomial of degree n with $n \geq 4$ and $a, b \in \mathbb{Q}$ with $a \neq 0$. Then all solutions $x, y, m \in \mathbb{Z}$ of the equation

$$
\begin{equation*}
f(x)=a y^{m}+b \tag{3}
\end{equation*}
$$

with $m \geq 2$, satisfy

$$
\max (|x|,|y|, m) \leq C_{4}
$$

except when

Theorem 3

Theorem

except when $m=2$ and

$$
\begin{equation*}
f(x) \in\left\{f^{*}(x), f^{*}(x)-2 f^{*}(0), x f^{*}(x) \pm 1\right\} \tag{4}
\end{equation*}
$$

with $b=0,-2 f^{*}(0), \pm 1$, respectively, where

$$
\begin{aligned}
& f^{*}(x)= \pm\left(x^{2 \ell+1}+x^{2 \ell}+\ldots+x^{\ell+1}-x^{\ell}-\ldots-1\right), \quad \text { or } \\
& f^{*}(x)= \pm\left((-x)^{2 \ell+1}+(-x)^{2 \ell}+\ldots+(-x)^{\ell+1}-(-x)^{\ell}+\cdots-1\right)
\end{aligned}
$$

with $\ell=\lfloor(n-1) / 2\rfloor$ and the solutions are given by $y=Q(x)$ with $Q(\pm x)= \pm\left(x^{k}+\ldots+x+1\right)$. Here C_{4} depends only on n, a, b and we use the convention that $m \leq 3$ if $|y| \leq 1$.

Theorem 4

Theorem (Hajdu, Tijdeman, V, 2023)

Let $f(x)$ be a Littlewood polynomial of degree n with $n \geq 4$ and $g(x) \in \mathbb{Z}[x]$. Then the equation

$$
\begin{equation*}
f(x)=g(y) \tag{5}
\end{equation*}
$$

has only finitely many solutions in integers x, y, except when $g(y)=f(T(y))$ with some polynomial $T(y)$ of degree ≥ 1 having rational coefficients, or if $f(x)$ is of the shape (4) and $g(y)=a(c y+d)^{2}+b$ for a, b as in Theorem 3 and $c, d \in \mathbb{Q}, c \neq 0$.

- Introduction
- New theorems
- Auxiliary results from others
- New lemmas
- Sketch of proofs

Lemma-Gy

Lemma (Györy, 1972)

Let S be as above, and A, B be non-zero rational numbers. Then the solutions $x, y \in \mathbb{Z}_{S}$ of the equation

$$
A x-B y=1
$$

satisfy

$$
\max (|x|,|y|)<C_{5}
$$

where $C_{5}=C_{5}\left(A, B, p_{k}\right)$ is an effectively computable constant depending only on A, B and p_{k}.

The statement is an immediate consequence of a classical result of Győry (1972).

Lemma-ST

Lemma (Schinzel, Tijdeman, 1976)

Let $F(x) \in \mathbb{Z}[x]$ having two distinct (complex) roots of degree D and height H, and B be a non-zero rational number. Then the equality

$$
F(x)=B y^{n}
$$

with $x, y \in \mathbb{Z},|y|>1$ implies that $n<C_{6}$, where $C_{6}=C_{6}(B, D, H)$ is an effectively computable constant depending only on B, D and H.

The statement immediately follows from the Schinzel-Tijdeman (1976) theorem.

Lemma-B

- For any finite set S of primes, write \mathbb{Q}_{S} for those rationals whose denominators (in their primitive forms) are composed exclusively from the primes in S.
- By the height $h(s)$ of a rational number s we mean the maximum of the absolute values of the numerator and the denominator of s (written again in primitive form).
- The following Lemma is a theorem of Brindza (1984).

Lemma-B

Lemma (Brindza, 1984)

Let $F(x) \in \mathbb{Z}[x]$ of degree D and height H, and write $F(x)=A \prod_{i=1}^{\ell}\left(x-\gamma_{i}\right)^{r_{i}}$, where A is the leading coefficient of F, and $\gamma_{1}, \ldots, \gamma_{\ell}$ are the distinct complex roots of $F(x)$, with multiplicities r_{1}, \ldots, r_{ℓ}, respectively. Further, let n be an integer with $n \geq 2$, and put $q_{i}=\frac{n}{\left(n, r_{i}\right)} \quad(i=1, \ldots, \ell)$.
Suppose that $\left(q_{1}, \ldots, q_{\ell}\right)$ is not a permutation of any of the ℓ-tuples $(q, 1, \ldots, 1)(q \geq 1), \quad(2,2,1, \ldots, 1)$.
Then for any finite set S of primes and non-zero rational B, the solutions $x, y \in \mathbb{Q}_{S}$ of the equation

$$
F(x)=B y^{n}
$$

satisfy

$$
\max (h(x), h(y))<C_{7}(B, n, D, H, S),
$$

where $C_{7}(B, n, D, H, S)$ is an effectively computable constant depending only on B, n, D, H, S.

Lemma-BT

Lemma (Bilu, Tichy, 2000)

Let $f(x), g(x) \in \mathbb{Q}[x]$ be non-constant polynomials. Then the following two statements are equivalent.
(I) The equation $f(x)=g(y)$ has infinitely many rational solutions x, y with a bounded denominator.
(II) We have $f=\varphi(F(\kappa))$ and $g=\varphi(G(\lambda))$, where $\kappa(x), \lambda(x) \in \mathbb{Q}[x]$ are linear polynomials, $\varphi(x) \in \mathbb{Q}[x]$, and $F(x), G(x)$ form a standard pair over \mathbb{Q} such that the equation $F(x)=G(y)$ has infinitely many rational solutions with a bounded denominator.

Lemma-DG

In the proof of Theorem 4, the decomposability of polynomials will play an important role. We call $F(x) \in \mathbb{Q}[x]$ decomposable over \mathbb{Q} if there exist $G(x), H(x) \in \mathbb{Q}[x]$ with $\operatorname{deg}(G)>1, \operatorname{deg}(H)>1$ such that $F=G(H)$, and otherwise indecomposable.

Lemma (Dujella, Gusić, 2006)

Let $F(x) \in \mathbb{Z}[x]$, of the form

$$
F(x)=x^{n}+u_{1} x^{n-1}+\cdots+u_{n-1} x+u_{n} .
$$

If $\operatorname{gcd}\left(u_{1}, n\right)=1$ then $F(x)$ is indecomposable over \mathbb{Q}.

- Introduction
- New theorems
- Auxiliary results from others
- New lemmas
- Sketch of proofs

Lemma 1

Lemma (Hajdu, V, 2022)

Let m be a non-negative integer and let

$$
\begin{equation*}
G(x)=b_{0} x^{t}+b_{1} x^{t-1}+\ldots+b_{t-1} x+b_{t} \tag{6}
\end{equation*}
$$

with $b_{0}, b_{1}, \ldots, b_{t} \in \mathbb{Z}$, such that all the coefficients of the polynomial $(x-1)^{m} G(x)$ belong to $\{-1,1\}$. Then $b_{1}=0$ implies $m=1$.

Lemma 2

Lemma (Hajdu, V, 2022)

Let $G(x) \in \mathbb{Z}[x]$ and m be a non-negative integer. If all the coefficients of $(x-1)^{m} G(x)$ belong to $\{-1,1\}$ then, writing

$$
G(x)=b_{0} x^{t}+b_{1} x^{t-1}+\ldots+b_{t-1} x+b_{t}
$$

for all $i=0,1, \ldots, t$ we have

$$
-\min \left(\binom{m+i}{m},\binom{m+t-i}{m}\right) \leq b_{i} \leq \min \left(\binom{m+i}{m},\binom{m+t-i}{m}\right) .
$$

Here we use the convention $\binom{0}{0}=1$.

Lemma 3 and 4

Lemma (Hajdu, V, 2022)
Let $n \geq 2$ and $g(x) \in \mathbb{Z}[x]$ be non-zero polynomial. If all the coefficients of $(x-1)^{n-1} g^{n}(x)$ belong to $\{-1,1\}$ then we have $n=2$.

Lemma 3 and 4

Lemma (Hajdu, V, 2022)

Let $n \geq 2$ and $g(x) \in \mathbb{Z}[x]$ be non-zero polynomial. If all the coefficients of $(x-1)^{n-1} g^{n}(x)$ belong to $\{-1,1\}$ then we have $n=2$.

Lemma (Hajdu, V, 2022)

Let $g(x) \in \mathbb{Z}[x]$ be a non-constant polynomial and m, n be integers with $0 \leq m<n$. If all the coefficients of the polynomial $(x-1)^{m}(g(x))^{n}$ belong to $\{-1,1\}$ then $n=2, m=1$ and $g(x)$ is of the form

$$
g(x)= \pm\left(x^{\ell}+\ldots+x+1\right)
$$

with some $\ell \geq 1$.

Lemma 5 and 6

A multiple root is a root of multiplicity >1.

Lemma (Hajdu, Tijdeman, V, 2023)

Let $f(x)$ be a Littlewood polynomial and $b \in \mathbb{Q}$. If $f(x)-b$ has a root of multiplicity ≥ 3, or has at least two roots of multiplicities ≥ 2, then $b \in \mathbb{Z}$. Further, in both cases the multiple roots of $f(x)-b$ are units.

Lemma 5 and 6

A multiple root is a root of multiplicity >1.

Lemma (Hajdu, Tijdeman, V, 2023)

Let $f(x)$ be a Littlewood polynomial and $b \in \mathbb{Q}$. If $f(x)-b$ has a root of multiplicity ≥ 3, or has at least two roots of multiplicities ≥ 2, then $b \in \mathbb{Z}$. Further, in both cases the multiple roots of $f(x)-b$ are units.

Lemma (Hajdu, Tijdeman, V, 2023)

Let $f(x)$ be a Littlewood polynomial of degree n and let $b \in \mathbb{Z}$. Then for any root α of $f(x)-b$ with $|\alpha|>2$ we have

$$
\frac{|\alpha|-2}{|\alpha|-1}|\alpha|^{n}<|b| .
$$

- Introduction
- New theorems
- Auxiliary result from others
- New lemmas
- Sketch of proofs

Proof of Theorem 1 - steps

- The statement immediately follows by Lemma-ST, as soon as $f(x)$ has two distinct roots.
- Thus we can assume that $f(x)$ is of the form $f(x)=u(x+v)^{d}$, with some $u \in \mathbb{Z}$ and $v \in \mathbb{Q}$.
- Investigating the value of u, v, d and the coefficients of f we have two cases:
In the first case $d, d-1 \in \mathbb{Z}_{S}$ satisfy the equation $w_{1}-w_{2}=1$, while in the second case $d,(d-1) / 2 \in \mathbb{Z}_{S}$ are solution to the $w_{1}-2 w_{2}=1$ in $w_{1}, w_{2} \in \mathbb{Z}_{S}$.
- Using Lemma-Gy we get that for the solutions of the above equations $\max \left(\left|w_{1}\right|,\left|w_{2}\right|\right)<C_{8}$ holds, where $C_{8}=C_{8}\left(p_{k}\right)$.
- So if $d>C_{8}$, then d cannot come from a solution of the above equations, which implies that $f(x)$ is not of the form $u(x+v)^{d}$.

Proof of Theorem 2 - steps

- We show that n can be bounded in the required way. Following the lines of the proof of Theorem 1, we see that it is sufficient to exclude the case when $f(x)$ is of the form $(x \pm 1)^{d}$. However, this is clearly impossible.
- We may suppose that $n \geq 2$ is fixed. Thus our statement immediately follows from Lemma-B, except in the following two cases:
i) $n=2$ and $f(x)=h(x)(g(x))^{2}$ where deg $h=2$ and $h(x), g(x) \in \mathbb{Z}[x] ;$
ii) n is arbitrary and $f(x)=(h(x))^{m}(g(x))^{n}$, where deg $h \leq 1$, $0 \leq m<n$ and $h(x), g(x) \in \mathbb{Z}[x]$.

Proof of Theorem 2 - steps

- In the case i) write $h(x)=x^{2}+v_{1} x+v_{2}$ and

$$
g(x)=x^{\ell}+u_{1} x^{\ell-1}+\ldots+u_{\ell} .
$$

Case i) cannot hold.

- Consider the case ii). We can be suppose that the polynomials f, g, h are monic and $h(x)=x-1$.
The statement follows from Lemma 4.

Proof of Theorem 3 - sketch

- bound for m follows from Lemma-ST unless $f(x)-b$ is of the shape $f(x)=(x-s)^{n}$ with $s \in \mathbb{Q}$
- by Lemma-ST, we may assume that m is fixed
- our claim follows from Lemma-B, except for the following two cases:
i) $m \geq 2$ is arbitrary and $f(x)-b=(P(x))^{r}(Q(x))^{t}$ with $0 \leq r<t, t \geq 2$ and $P, Q \in \mathbb{Q}[x], \operatorname{deg}(P) \leq 1$;
ii) $m=2$ and $f(x)-b=P(x)(Q(x))^{2}$ with $P, Q \in \mathbb{Q}[x]$, $\operatorname{deg}(P)=2$.
- $n=\operatorname{deg}(f)=4$
- $n \geq 5$
- case (i): possible values of r and then s investigation of coefficients
(Lemma 4', 5, 6)
- case (ii): $P(x)=x^{2}+u x+w$ parity and possible values of u, w then $P(x)=x^{2} \pm 3 x+4, x^{2} \pm x+4, x^{2} \pm x-2, x^{2} \pm 3 x+2, x^{2} \pm x+2$.
we get these cases cannot occur
- (Lemma 4', 5 and 6)

Proof of Theorem 4

- by Lemma-DG: $f(x)$ is indecomposable over \mathbb{Q}
- thus, if equation $f(x)=g(y)$ has infinitely many solutions in integers x, y, then by Lemma-BT we have only two options:
i) $g(x)$ is of the form $g(x)=f(T(x))$ with some $T(x) \in \mathbb{Z}[x]$
ii) $f(x)$ is of the shape $f(x)=A F(u x+w)+B$ with some $A, B, u, w \in \mathbb{Q}, A u \neq 0$, where F belongs to a standard pair.
- L. Hajdu - N. Varga: Diophantine equations for polynomials with restricted coefficients, I (Power values). Bulletin of the Australian Math. Soc. 106/2 (2022), 254-263.
- L. Hajdu - R. Tijdeman - N. Varga: Diophantine equations for Littlewood polynomials. Acta Arithmetica, accepted

