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purely exponential Diophantine equationpurely exponential Diophantine equationpurely exponential Diophantine equation

ax + by = cz

a, b, c given positive integers > 1
coprime

x, y, z positive integer unknowns

· 3x +10y = 13z

· unknown= 1 allowed



Basic facts

· #{ (x, y, z) } ≤ absolute constant ≤ 232.

L99 Schmidt Subspace Theorem

· x, y, z < Ce�(a, b, c).

L99 Baker's theory OR its p-adic form

In recent years, there has been important progress

on estimating number of solutions.
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Conjecture [Bennett, '01]

For any a, b, c ∈ N；a, b > 1, gcd(a, b) = 1,

a, b not perfect powers,

there is at most 1 sol to

ax − by = c x, y ≥ 1,

except for (a, b, c) = (2,3,5), (2,3,13), (2,5,3),

(3,2,1), (13,3,10) or (91,2,89).



Exceptional cases

23 − 3 = 25 − 33 = 5

24 − 3 = 28 − 35 = 13

23 − 5 = 27 − 53 = 3

3− 2 = 32 − 23 = 1

13− 3 = 133 − 37 = 10

91− 2 = 912 − 213 = 89



[Bennett, '01] con�rmed his conj for

· c ≥ b2a
2 log a；

· c ≤ by/6000 or c ≤ 100；

· b ≡ ±1 (mod a) with a prime.

※ a： base of the greatest term in ax − by = c

(⇝ a：Fermat primes ⇒ Conj )

Motivation of Part II

3-variable version of the 3rd result above



3-variable version of Bennett's conj3-variable version of Bennett's conj3-variable version of Bennett's conj

Conjecture [Scott&Styer, '16] atmost1� �

For any a, b, c ∈ N>1；gcd(a, b, c) = 1,

a < b, a, b, c not perfect powers,

there is at most 1 sol to

ax + by = cz x, y, z ≥ 1,

except for (a, b, c) = (3,5,2), (3,13,2), (2,5,3),

(2,7,3), (2,3,11), (3,10,13), (2,3,35), (2,89,91),

(2,5,133), (2,3,259), (3,13,2200), (2,91,8283) or

(2,2r−1,2r+1)；r = 2,4,5,….� �



Exceptional cases

3 + 5 = 23 33 +5 = 25 3 + 53 = 27

3 + 13 = 24 35 +13 = 28

22 +5 = 32 2 + 52 = 33

2 + 7 = 32 25 +72 = 34

23 +3 = 11 2 + 32 = 11

3 + 10 = 13 37 +10 = 133

25 +3 = 35 23 +33 = 35



3+ 5 = 23 33 +5 = 25

2 + 89 = 91 213 +89 = 912

27 +5 = 133 23 +53 = 133

28 +3 = 259 24 +35 = 259

37 +13 = 2200 3 + 133 = 2200

213 +91 = 8283 2 + 912 = 8283

2+(2r−1)=2r+1 2r+2+(2r−1)2=(2r+1)2



From Part II (2024)

Proposition� �

a ≡ ±1 mod c or b ≡ ±1 mod c

⇒ atmost1� �

Corollary� �

c ∈ {2,3,6} ⇒ atmost1
� �

·『 p ∤ A ⇒ A ≡ ±1 mod p』 for p ∈ {2,3}

· another proof of [Scott, '93] for c = 2



Corollaries of Part II

� �
For any �xed c with

2ν2(c) >
√
c or 3ν3(c) >

√
c,

atmost1 is true,

except for only �nitely many (a, b).� �
� �

c = pn · k ⇒ atmost1

where p∈{2,3}, k ̸≡ 0 (mod p), n≥ne�(k).� �

⇝ atmost1 is true for ∞ many values of c.



For other values of c

can we prove atmost1 conj

except for only �nitely many (a, b) ?



Main Problem

Fix the value of c, and work out the following:

[1] Proving N ≤ 1, except for only �nitely many (a, b).

N(a, b, c)：number of sols to ax + by = cz

[2] Finding a way to enumerate all possible (a, b)

described as exceptional in [1] in a concrete �nite

time.

[3] Sieving all (a, b) found in [2] completely.

�

[1] ine�ective [2] e�ective [3] complete



Best of our knowledge

• c = 2 complete by [Scott, '93]

• c = 2,3,6 complete by Part II

• 2ν2(c)>
√
c or 3ν3(c)>

√
c e�ective by Part II

• c = 2 large · k, 3 large · k complete by Part II

• c = 5,17,257,65537︸ ︷︷ ︸
Fermat primes

complete by Part II



Status of atmost1 conj for small c

c 2 3 5 6 7 10 11 12

status ✓ ✓ ✓ ✓ ? ? ? ✓∗

13 14 15 17 18 19 20 21 22

? ? ? ✓ ✓∗ ? ? ? ?

23 24 26 28 29 30 31 33 34

? ✓∗ ? ? ? ? ? ? ?

35 37 38 39 40 41 42 43 44

? ? ? ? ✓∗ ? ? ? ?

✓ complete ✓∗ e�ective
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Theorem 1� �

For any prime c of the form 3 · 2r +1

with some r ∈ N,

N(a, b, c) ≤ 1,

except for only �nitely many (a, b).� �

· c = 7,13,97,193,769,12289,786433, · · ·

· ine�ective for each c

· ∃ condition on c to make Th1 e�ective



Theorem 2� �

N(a, b,13) ≤ 1,

except for (a, b) = (3,10) or (10,3).� �

· N(3,10,13) = 2

· complete for c = 13



Status of atmost1 conj for small c

c 2 3 5 6 7 10 11 12

status ✓ ✓ ✓ ✓ ✓ ? ? ✓∗

13 14 15 17 18 19 20 21 22

✓ ? ? ✓ ✓∗ ? ? ? ?

23 24 26 28 29 30 31 33 34

? ✓∗ ? ? ? ? ? ? ?

35 37 38 39 40 41 42 43 44

? ? ? ? ✓∗ ? ? ? ?

✓ complete ✓∗ e�ective ✓ ine�ective
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Notation

· For M > 1 & h with gcd(h,M) = 1,

eM(h)： least e ≥ 1 s.t. he ≡ ±1 mod M

· For M > 1 & h ̸= 0,

νM(h)： greatest ν ≥ 0 s.t. Mν | h



Remarks

We may assume

ec′(a) = ec′(b) := E,

where c′ > 2 is any �xed divisor of c.

Part II contributed to E = 1 with c′ = c

(or, E : even with c prime).



a, b, c ∈ N>1

c′ | c； c′ > 2, gcd( c′ , φ(c′) ) = 1

ec′(a) = ec′(b) := E

Ci = Ci(c) e�ectively computable



Lemma 1� �

If max{a, b} > C1, then

gcd(x, y, c) = 1

for any sol (x, y, z) to ax + by = cz.� �

[Proof]

・elementary for prime c

・For composite c, using lower bound for

P ( integerm + integerm).

(⇝ C1 huge)



Lemma 2� �

If max{a, b} > C1, then

z ≪c log a log b

for any sol (x, y, z) to ax + by = cz.� �

[Proof]

With Lem 1 & gcd( c′ , φ(c′) ) = 1,

using upper bound for

νc′(a
x + by) = νc′(c

z) ≥ z

by c′-adic Baker of [Bugeaud, '02].



N(a, b, c) > 1

ax + by = cz aX + bY = cZ z ≤ Z

⇝ c′z | gcd( aE ± 1, bE ± 1 ) ·∆

∆ := |xY −Xy | > 0

⇝ a, b：close∗ to 1 c′-adically

∵ ∆, E small L99∆≪c z by Lem 2 & E | φ(c′)

D :=
c′z

gcd( c′z,∆)
| gcd(aE ±1, bE ±1)　・・・☆



Lemma 3� �

If max{a, b} > C2, then

z · Z ≪c log a log b.
� �

[Proof]

Based on ☆ , with gcd( c′ , φ(c′) ) = 1,

using upper bound for

νD(aX + bY ) = νD(cZ) ≥ Z/z

by D-adic Baker of [Bugeaud, '02].



Lemma 4� �

If max{a, b} > C2, then

x, y, X, Y ≪c 1.
� �

Remark
Ax +By = (�x)z

AX +BY = (�x)Z

(x, y, z) ̸= (X,Y, Z)

⇒ x, y,X, Y : �nite



Lemma 5� �

If max{a, b} > C3, then

min{x, y} = 1, min{X,Y } = 1.
� �
[Proof]

・lower bound for P ( intm + intn ) (⇝ C3 huge)

・π-adic Baker in Q(i) of [Bugeaud&Laurent, '96]

Remark x = X or y = Y ⇒ a, b < C
ine�

(c).

∵ x = X

⇒ bY − by = cZ − cz； y, Y ≪c 1

⇒ b, z, Z(, a) < C(c) by [Bugeaud&Luca, '06].



Lemma 6� �

If c：prime (⇝ E ≥ 3, by Part II),

and max{a, b} > C4, then

max{x, y} ≤ E − 2.
� �

※max{x, y} ≤
⌊
E log c
log c′

⌋
for composite c.

[Proof]

・cz ≪ min{a, b}E−1 L99☆ & min{a, b} < c z/max{a,b}

・lower bound of P ( f(int) ) for f ∈ Z[t]

(⇝ C4 : huge)



[Proof of Th1]

c = 3 · 2r +1 : prime

E > 1, 2 ∤ E by Part II

E | φ(c) = c− 1 = 3 · 2r

∴ E = 3

N(a, b, c) > 1

If max{a, b} > max{C1, · · ·, C4}, then{
min{X,Y } = 1

max{x, y} ≤ E − 2 = 1

∴ a, b < C(c) ■



Idea for Proof of Th2

Q1 For each c in

c = 7,13,97,193,769,12289,786433, · · ·

how we make Th1 e�ective?

A It is enough to
� �
�nd positive numbers ϵ, C with ϵ < 0.6 s.t.∣∣∣∣√c−

p

q

∣∣∣∣ > C

q1+ ϵ

holds for all p, q ∈ N s.t. q
:::::::::::::::
equals

:::::
a

:::::::::::::::::
power

::::::
of

:::::
c.� �

※ [Bauer-Bennett, '01] solves this only for

c = 13 with ϵ = 0.53.



Q2 For c = 13, how we avoid to rely on C3 ?

A Instead of P ( intm + intn ), we use

•Parity lemma of [Scott, '93];

• result of [Bennett-Siksek, '23] on

S2 − 13k = Tn 13 ∤ S, k ≥ 1, n ≥ 3.

Q3 For c = 13, how we avoid to rely on C4 ?

A Instead of P ( f(int) ), we use

π-adic Baker in Q(ω) of [Bugeaud&Laurent, '96].
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Open problemsOpen problemsOpen problems

Q For any x and Y with

2 ≤ x ≤ 4, 2 ≤ Y ≤ 3.74 · 1011, xY ≡ 1 mod 5,

prove that there are only �nitely many (a, b) s.t.

ax + b = 11z, a+ bY = 11Z

for some z and Z with z ≤ Z.



Q For any x and Y with

x ∈ {2,4,5,7,8}, 2 ≤ Y ≤ 1.3 · 1013, xY ≡ 1 mod 3,

prove that there are only �nitely many (a, b) s.t.

ax + b = 19z, a+ bY = 19Z

for some z and Z with z ≤ Z.



Main referencesMain referencesMain references

R. Scott, On the equations px − by = c and ax + by = cz,

J. Number Theory, 1993.

Y. Bugeaud and M. Laurent, Minoration e�ective de la distance

p-adique entre puissances de nombres algébriques,

J. Number Theory, 1996.

M.A. Bennett, On some exponential equations of S. S. Pillai,

Canad. J. Math., 2001.

Y. Bugeaud, Linear forms in two m-adic logarithms and applica-

tions to Diophantine problems, Compositio Math., 2002.

M. Bauer and M.A. Bennett, Applications of the hypergeometric

method to the generalized Ramanujan-Nagell equation,

Ramanujan J., 2002.



Y. Bugeaud and F. Luca, On Pillai's Diophantine equation,

New York J. Math., 2006.

R. Scott and R. Styer, Number of solutions to ax + by = cz,

Publ. Math. Debrecen, 2016.

M.A. Bennett and S. Siksek, Di�erences between perfect powers:

prime power gaps, Algebra Number Theory, 2023.

T. Miyazaki and I. Pink, Number of solutions to a special type of

unit equations in two unknowns, II, Res. Number Theory, 2024.

��, Number of solutions to a special type of unit equations in

two unknowns, III, arXiv:2403.20037.



Thank you very much

for your attention!


