

*Number of solutions to a special type
of unit equations in two unknowns III*

Takafumi Miyazaki (Gunma University)

Joint work with István Pink (University of Debrecen)

Number Theory Seminar@Debrecen, online

14 June 2024

Plan of Talk

- 1 Main equation
- 2 Motivation - review of Part II
- 3 Results
- 4 Idea for proofs
- 5 Open problems

1

purely exponential Diophantine equation

$$a^x + b^y = c^z$$

a, b, c given positive integers > 1
coprime

x, y, z positive integer unknowns

- $3^x + 10^y = 13^z$
- $\boxed{\text{unknown} = 1}$ allowed

Basic facts

- $\#\{(x, y, z)\} \leq$ absolute constant $\leq 2^{32}.$

←-- Schmidt Subspace Theorem

- $x, y, z < \mathcal{C}_{\text{eff}}(a, b, c).$

←-- Baker's theory OR its p -adic form

In recent years, there has been important progress
on estimating number of solutions.

Conjecture [Bennett, '01]

For any $a, b, c \in \mathbb{N}$; $a, b > 1$, $\gcd(a, b) = 1$,

a, b not perfect powers,

there is at most 1 sol to

$$a^x - b^y = c \quad x, y \geq 1,$$

except for $(a, b, c) = (2, 3, 5), (2, 3, 13), (2, 5, 3)$,

$(3, 2, 1), (13, 3, 10)$ or $(91, 2, 89)$.

Exceptional cases

$$2^3 - 3 = 2^5 - 3^3 = 5$$

$$2^4 - 3 = 2^8 - 3^5 = 13$$

$$2^3 - 5 = 2^7 - 5^3 = 3$$

$$3 - 2 = 3^2 - 2^3 = 1$$

$$13 - 3 = 13^3 - 3^7 = 10$$

$$91 - 2 = 91^2 - 2^{13} = 89$$

[Bennett, '01] confirmed his conj for

- $c \geq b^{2a^2 \log a}$;
- $c \leq b^y/6000$ or $c \leq 100$;
- $b \equiv \pm 1 \pmod{a}$ with a prime.

※ a : base of the *greatest term* in $a^x - b^y = c$

($\rightsquigarrow a$: Fermat primes \Rightarrow Conj)

Motivation of Part II

3-variable version of the 3rd result above

3-variable version of Bennett's conj

Conjecture [Scott & Styer, '16] *atmost1*

For any $a, b, c \in \mathbb{N}_{>1}$; $\gcd(a, b, c) = 1$,

$a < b$, a, b, c not perfect powers,

there is at most 1 sol to

$$a^x + b^y = c^z \quad x, y, z \geq 1,$$

except for $(a, b, c) = (3, 5, 2), (3, 13, 2), (2, 5, 3)$,

$(2, 7, 3), (2, 3, 11), (3, 10, 13), (2, 3, 35), (2, 89, 91)$,

$(2, 5, 133), (2, 3, 259), (3, 13, 2200), (2, 91, 8283)$ or

$(2, 2^r - 1, 2^r + 1)$; $r = 2, 4, 5, \dots$

Exceptional cases

$$3 + 5 = 2^3 \quad 3^3 + 5 = 2^5 \quad 3 + 5^3 = 2^7$$

$$3 + 13 = 2^4 \quad 3^5 + 13 = 2^8$$

$$2^2 + 5 = 3^2 \quad 2 + 5^2 = 3^3$$

$$2 + 7 = 3^2 \quad 2^5 + 7^2 = 3^4$$

$$2^3 + 3 = 11 \quad 2 + 3^2 = 11$$

$$3 + 10 = 13 \quad 3^7 + 10 = 13^3$$

$$2^5 + 3 = 35 \quad 2^3 + 3^3 = 35$$

$$3 + 5 = 2^3 \quad 3^3 + 5 = 2^5$$

$$2 + 89 = 91 \quad 2^{13} + 89 = 91^2$$

$$2^7 + 5 = 133 \quad 2^3 + 5^3 = 133$$

$$2^8 + 3 = 259 \quad 2^4 + 3^5 = 259$$

$$3^7 + 13 = 2200 \quad 3 + 13^3 = 2200$$

$$2^{13} + 91 = 8283 \quad 2 + 91^2 = 8283$$

$$2 + (2^r - 1) = 2^r + 1 \quad 2^{r+2} + (2^r - 1)^2 = (2^r + 1)^2$$

From Part II (2024)

Proposition

$$a \equiv \pm 1 \pmod{c} \text{ or } b \equiv \pm 1 \pmod{c}$$

\Rightarrow *atmost1*

Corollary

$$c \in \{2, 3, 6\} \Rightarrow \text{atmost1}$$

- $\lceil p \nmid \mathcal{A} \Rightarrow \mathcal{A} \equiv \pm 1 \pmod{p} \rceil$ for $p \in \{2, 3\}$

- **another proof of [Scott, '93] for $c = 2$**

Corollaries of Part II

For any fixed c with

$$2^{\nu_2(c)} > \sqrt{c} \quad \text{or} \quad 3^{\nu_3(c)} > \sqrt{c},$$

atmost1 is true,

except for only finitely many (a, b) .

$$c = p^n \cdot k \Rightarrow \text{atmost1}$$

where $p \in \{2, 3\}$, $k \not\equiv 0 \pmod{p}$, $n \geq n_{\text{eff}}(k)$.

\rightsquigarrow atmost1 is true for ∞ **many** values of c .

**For other values of c
can we prove atmost1 conj
except for only finitely many (a, b) ?**

Main Problem

Fix the value of c , and work out the following:

[1] Proving $N \leq 1$, except for only finitely many (a, b) .

$N(a, b, c)$: number of sols to $a^x + b^y = c^z$

[2] Finding a way to enumerate all possible (a, b)
described as exceptional in [1] in a *concrete* finite
time.

[3] Sieving all (a, b) found in [2] completely.

[1] *ineffective* [2] *effective* [3] *complete*

Best of our knowledge

- $c = 2$ *complete* by [Scott, '93]
- $c = 2, 3, 6$ *complete* by Part II
- $2^{\nu_2(c)} > \sqrt{c}$ or $3^{\nu_3(c)} > \sqrt{c}$ *effective* by Part II
- $c = 2^{\text{large}} \cdot k, 3^{\text{large}} \cdot k$ *complete* by Part II
- $c = \underbrace{5, 17, 257, 65537}_{\text{Fermat primes}}$ *complete* by Part II

Status of atmost1 conj for small c

c	2	3	5	6	7	10	11	12
status	✓	✓	✓	✓	?	?	?	✓*
13	14	15	17	18	19	20	21	22
?	?	?	✓	✓*	?	?	?	?
23	24	26	28	29	30	31	33	34
?	✓*	?	?	?	?	?	?	?
35	37	38	39	40	41	42	43	44
?	?	?	?	✓*	?	?	?	?

✓ complete ✓* effective

Theorem 1

For any prime c of the form $3 \cdot 2^r + 1$ with some $r \in \mathbb{N}$,

$$N(a, b, c) \leq 1,$$

except for only finitely many (a, b) .

- $c = 7, 13, 97, 193, 769, 12289, 786433, \dots$
- *ineffective* for each c
- \exists condition on c to make Th1 **effective**

Theorem 2

$$N(a, b, 13) \leq 1,$$

except for $(a, b) = (3, 10)$ or $(10, 3)$.

- $N(3, 10, 13) = 2$
- *complete for $c = 13$*

Status of atmost1 conj for small c

c	2	3	5	6	7	10	11	12
status	✓	✓	✓	✓	✓	?	?	✓*
13	14	15	17	18	19	20	21	22
✓	?	?	✓	✓*	?	?	?	?
23	24	26	28	29	30	31	33	34
?	✓*	?	?	?	?	?	?	?
35	37	38	39	40	41	42	43	44
?	?	?	?	✓*	?	?	?	?

✓ complete ✓* effective ✓ ineffective

4

Notation

- For $M > 1$ & h with $\gcd(h, M) = 1$,

$e_M(h)$: least $e \geq 1$ s.t. $h^e \equiv \pm 1 \pmod{M}$

- For $M > 1$ & $h \neq 0$,

$\nu_M(h)$: greatest $\nu \geq 0$ s.t. $M^\nu \mid h$

Remarks

We may assume

$$e_{c'}(a) = e_{c'}(b) := E,$$

where $c' > 2$ is any fixed divisor of c .

Part II contributed to $E = 1$ with $c' = c$

(or, E : even with c prime).

$$a, b, c \in \mathbb{N}_{>1}$$

$$c' \mid c \ ; \ c' > 2, \ \gcd(c', \varphi(c')) = 1$$

$$e_{c'}(a) = e_{c'}(b) \ := E$$

$$\mathcal{C}_i = \mathcal{C}_i(c) \text{ \textcolor{violet}{effectively} computable}$$

Lemma 1

If $\max\{a, b\} > C_1$, then

$$\gcd(x, y, c) = 1$$

for any sol (x, y, z) to $a^x + b^y = c^z$.

[Proof]

- elementary for prime c
- For composite c , using lower bound for

$$P(\text{integer}^m + \text{integer}^m).$$

$(\rightsquigarrow C_1 \text{ huge})$

Lemma 2

If $\max\{a, b\} > C_1$, then

$$z \ll_c \log a \log b$$

for any sol (x, y, z) to $a^x + b^y = c^z$.

[Proof]

With Lem 1 & $\gcd(c', \varphi(c')) = 1$,

using upper bound for

$$\nu_{c'}(a^x + b^y) = \nu_{c'}(c^z) \geq z$$

by c' -adic Baker of [Bugeaud, '02].

$$N(a, b, c) > 1$$

$$a^x + b^y = c^z \quad a^X + b^Y = c^Z \quad z \leq Z$$

$$\rightsquigarrow c'^z \mid \gcd(a^E \pm 1, b^E \pm 1) \cdot \Delta$$

$$\Delta := |xY - Xy| > 0$$

$$\rightsquigarrow a, b : \text{close* to 1 } c'\text{-adically}$$

$$\because \Delta, E \text{ small} \dashleftarrow \Delta \ll_c z \text{ by Lem 2 \& } E \mid \varphi(c')$$

$$\mathcal{D} := \frac{c'^z}{\gcd(c'^z, \Delta)} \mid \gcd(a^E \pm 1, b^E \pm 1) \quad \cdots \star$$

Lemma 3

If $\max\{a, b\} > C_2$, then

$$z \cdot Z \ll_c \log a \log b.$$

[Proof]

Based on \star , with $\gcd(c', \varphi(c')) = 1$,

using upper bound for

$$\nu_{\mathcal{D}}(a^X + b^Y) = \nu_{\mathcal{D}}(c^Z) \geq Z/z$$

by \mathcal{D} -adic Baker of [Bugeaud, '02].

Lemma 4

If $\max\{a, b\} > C_2$, then

$$x, y, X, Y \ll_c 1.$$

Remark

$$\begin{cases} A^x + B^y = (\text{fix})^z \\ A^X + B^Y = (\text{fix})^Z \Rightarrow x, y, X, Y : \text{finite} \\ (x, y, z) \neq (X, Y, Z) \end{cases}$$

Lemma 5

If $\max\{a, b\} > \mathcal{C}_3$, then

$$\min\{x, y\} = 1, \min\{X, Y\} = 1.$$

[Proof]

- lower bound for $P(\text{int}^m + \text{int}^n)$ ($\rightsquigarrow \mathcal{C}_3$ **huge**)
- π -adic **Baker** in $\mathbb{Q}(i)$ of [Bugeaud & Laurent, '96]

Remark $x = X$ or $y = Y \Rightarrow a, b < \mathcal{C}_{\text{ineff}}(c)$.

$$\therefore x = X$$

$$\Rightarrow b^Y - b^y = c^Z - c^z; \quad y, Y \ll_c 1$$

$$\Rightarrow b, z, Z(a) < \mathcal{C}(c) \quad \text{by [Bugeaud & Luca, '06].}$$

Lemma 6

If c : prime ($\rightsquigarrow E \geq 3$, by Part II),

and $\max\{a, b\} > \mathcal{C}_4$, then

$$\max\{x, y\} \leq E - 2.$$

$\divideontimes \max\{x, y\} \leq \left\lfloor \frac{E \log c}{\log c'} \right\rfloor$ for composite c .

[Proof]

- $c^z \ll \min\{a, b\}^{E-1}$ $\leftarrow \star$ & $\min\{a, b\} < c^{z/\max\{a, b\}}$
- lower bound of $P(f(\text{int}))$ for $f \in \mathbb{Z}[t]$
($\rightsquigarrow \mathcal{C}_4$: **huge**)

[Proof of Th1]

$$c = 3 \cdot 2^r + 1 : \text{prime}$$

$$E > 1, 2 \nmid E \text{ by Part II}$$

$$E \mid \varphi(c) = c - 1 = 3 \cdot 2^r$$

$$\therefore E = 3$$

$$N(a, b, c) > 1$$

If $\max\{a, b\} > \max\{\mathcal{C}_1, \dots, \mathcal{C}_4\}$, then

$$\begin{cases} \min\{X, Y\} = 1 \\ \max\{x, y\} \leq E - 2 = 1 \end{cases}$$

$$\therefore a, b < \mathcal{C}(c) \blacksquare$$

Idea for Proof of Th2

Q1 For each c in

$$c = 7, 13, 97, 193, 769, 12289, 786433, \dots$$

how we make Th1 effective?

A It is enough to

find positive numbers ϵ, C with $\epsilon < 0.6$ s.t.

$$\left| \sqrt{c} - \frac{p}{q} \right| > \frac{C}{q^{1+\epsilon}}$$

holds for all $p, q \in \mathbb{N}$ s.t. q equals a power of c .

※ [Bauer-Bennett, '01] solves this *only* for

$$c = 13 \text{ with } \epsilon = 0.53.$$

Q2

For $c = 13$, how we avoid to rely on \mathcal{C}_3 ?

A

Instead of $P(\text{int}^m + \text{int}^n)$, we use

- Parity lemma of [Scott, '93];
- result of [Bennett-Siksek, '23] on

$$S^2 - 13^k = T^n \quad 13 \nmid S, \quad k \geq 1, \quad n \geq 3.$$

Q3

For $c = 13$, how we avoid to rely on \mathcal{C}_4 ?

A

Instead of $P(f(\text{int}))$, we use

π -adic **Baker** in $\mathbb{Q}(\omega)$ of [Bugeaud & Laurent, '96].

5

Open problems

 For any x and Y with

$$2 \leq x \leq 4, \quad 2 \leq Y \leq 3.74 \cdot 10^{11}, \quad xY \equiv 1 \pmod{5},$$

prove that there are only finitely many (a, b) s.t.

$$a^x + b = 11^z, \quad a + b^Y = 11^Z$$

for some z and Z with $z \leq Z$.

Q For any x and Y with

$$x \in \{2, 4, 5, 7, 8\}, \quad 2 \leq Y \leq 1.3 \cdot 10^{13}, \quad xY \equiv 1 \pmod{3},$$

prove that there are only finitely many (a, b) s.t.

$$a^x + b = 19^z, \quad a + b^Y = 19^Z$$

for some z and Z with $z \leq Z$.

Main references

R. Scott, *On the equations $p^x - b^y = c$ and $a^x + b^y = c^z$* ,
J. Number Theory, 1993.

Y. Bugeaud and M. Laurent, *Minoration effective de la distance p -adique entre puissances de nombres algébriques*,
J. Number Theory, 1996.

M.A. Bennett, *On some exponential equations of S. S. Pillai*,
Canad. J. Math., 2001.

Y. Bugeaud, *Linear forms in two m -adic logarithms and applications to Diophantine problems*, Compositio Math., 2002.

M. Bauer and M.A. Bennett, *Applications of the hypergeometric method to the generalized Ramanujan-Nagell equation*,
Ramanujan J., 2002.

Y. Bugeaud and F. Luca, *On Pillai's Diophantine equation*,
New York J. Math., 2006.

R. Scott and R. Styer, *Number of solutions to $a^x + b^y = c^z$* ,
Publ. Math. Debrecen, 2016.

M.A. Bennett and S. Siksek, *Differences between perfect powers: prime power gaps*, Algebra Number Theory, 2023.

T. Miyazaki and I. Pink, *Number of solutions to a special type of unit equations in two unknowns, II*, Res. Number Theory, 2024.

—, *Number of solutions to a special type of unit equations in two unknowns, III*, arXiv:2403.20037.

*Thank you very much
for your attention!*