
Values of certain binary partition function represented by sum
of three squares

Maciej Ulas (joint work with Bartosz Sobolewski)

Institute of Mathematics, Jagiellonian University, Kraków, Poland

Online Number Theory Seminar, September 14th, 2022

Maciej Ulas (joint work with Bartosz Sobolewski)



Short plan of the presentation

Introduction and motivation

The equation b(n) = x2 + y 2 + z2

The equation b3(n) = x2 + y 2 + z2

The equation b2k−1(n) = x2 + y 2 + z2 for k ≥ 3

Computational results, questions, problems and conjectures

Maciej Ulas (joint work with Bartosz Sobolewski)



Short plan of the presentation

Introduction and motivation

The equation b(n) = x2 + y 2 + z2

The equation b3(n) = x2 + y 2 + z2

The equation b2k−1(n) = x2 + y 2 + z2 for k ≥ 3

Computational results, questions, problems and conjectures

Maciej Ulas (joint work with Bartosz Sobolewski)



Short plan of the presentation

Introduction and motivation

The equation b(n) = x2 + y 2 + z2

The equation b3(n) = x2 + y 2 + z2

The equation b2k−1(n) = x2 + y 2 + z2 for k ≥ 3

Computational results, questions, problems and conjectures

Maciej Ulas (joint work with Bartosz Sobolewski)



Short plan of the presentation

Introduction and motivation

The equation b(n) = x2 + y 2 + z2

The equation b3(n) = x2 + y 2 + z2

The equation b2k−1(n) = x2 + y 2 + z2 for k ≥ 3

Computational results, questions, problems and conjectures

Maciej Ulas (joint work with Bartosz Sobolewski)



Short plan of the presentation

Introduction and motivation

The equation b(n) = x2 + y 2 + z2

The equation b3(n) = x2 + y 2 + z2

The equation b2k−1(n) = x2 + y 2 + z2 for k ≥ 3

Computational results, questions, problems and conjectures

Maciej Ulas (joint work with Bartosz Sobolewski)



Introduction and motivation

In 1798 Legendre proved that if N is a positive integer and

N = x2 + y 2 + z2

for some x , y , z ∈ Z, then N is not of the form 4k(8s + 7) for k, s ∈ N. In
particular, the natural density of the set of integers which can not be
represented by sum of three squares is equal to 1/6.

This rises an interesting question whether, for a given sequence of integers
(un)n∈N, there are infinitely many solutions of the Diophantine equation

un = x2 + y 2 + z2. (1)

It is clear to characterize the solutions of (1) it is necessary to have a good
understanding of the 2-adic behavior, or to be more precise the 2-adic
valuation, of the terms of the sequence (un)n∈N.
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Especially interesting is the case, when un has a combinatorial meaning.
The equation (1) with un =

(
2n
n

)
was investigated by Granville and Zhu.

They characterized those n ∈ N such that (1) has a solution in x , y , z .
The obtained characterization is equivalent with the existence of certain
patterns in (unique) binary expansion of n.

In particular, the set of integers n, for which
(
2n
n

)
can be represented as a

sum of three squares, has asymptotic density 7/8 in the set of all natural
number. The cited authors obtained also characterization of those n such
that (1) with un = n! has no solutions. A different approach, via
automatic sequences, to this problem was presented by Deshouillers and
Luca. They showed that if

S = {n : n! 6= x2 + y 2 + z2}

then

S(x) = #{n ≤ x : n ∈ S} =
7

8
x + O(x2/3).

This result was improved by Hajdu and Papp to

S(x) = 7/8x + O(x1/2 log2 x)

and recently by Burns to S(x) = 7/8x + O(x1/2).
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We follow the same line of research and consider first the equation (1)
with un = b(n) being binary partition function. More precisely, let b(n)
counts the number of partitions of n with parts being powers of two. For
example, b(4) = 4 because

4 = 22 = 2 + 2 = 1 + 1 + 2 = 1 + 1 + 1 + 1

are all possible representations of 4 as a sum of powers of two. The
sequence (b(n))n∈N was already introduced by Euler.

Recall that the ordinary generating function of the sequence (b(n))n∈N has
the form

B(x) =
∞∏
n=0

1

1− x2n
=
∞∑
n=0

b(n)xn.

As a consequence we see that B(x) satisfies the functional equation
(1− x)B(x) = B(x2). Comparing coefficients on both sides we get that
the sequence (b(n))n∈N satisfies the recurrence: b(0) = b(1) = 1 and

b(2n) = b(2n − 1) + b(n), b(2n + 1) = b(2n).
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The corresponding series

T (x) =
1

B(x)
=
∞∏
n=0

(
1− x2n

)
=
∞∑
n=0

tnx
n

is the ordinary generating function for the famous Prouhet-Thue-Morse
sequence (tn)n∈N (the PTM seqence for short). Recall that tn = (−1)s2(n),
where s2(n) is the number of 1’s in the unique expansion of n in base 2.
Equivalently, we have t0 = 1 and

t2n = tn, t2n+1 = −tn, n ≥ 0.

Moreover, for n ≥ 2, the 2-adic valuation of b(n) is equal to

ν2(b(n)) =
1

2
|tn − 2tn−1 + tn−2|.

In particular, if n ≥ 2, then ν2(b(n)) ∈ {1, 2} or to be more precise,

b(n) ≡ 0 (mod 4) ⇐⇒ ν2(n) ≡ 0 (mod 2) or ν2(n−1) ≡ 0 (mod 2). (2)
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For m ∈ N+ we define bm(n) as a convolution of m copies of b(n). More
precisely,

bm(n) =
∑

i1+...+im=n

b(i1) · · · b(im).

Note that b1(n) = b(n). The number bm(n) has also a combinatorial
interpretation. Indeed, bm(n) is the number of binary partitions of n,
where each part has one of m possible colors.

It is proved that for m = 2k − 1 the 2-adic valuation of bm(n) ∈ {1, 2} for
n ≥ 2k . More precisely, we have the following.

Theorem 1

Let k ∈ N+. For n, i ∈ N such that i < 2k+2 we have

ν2(b2k−1(2k+2n + i)) =


ν2(b(8n)) if 0 ≤ i < 2k ,

1 if 2k ≤ i < 2k+1,

2 if 2k+1 ≤ i < 3 · 2k ,

1 if 3 · 2k+1 ≤ i < 2k+2.

In particular, ν2(b2k−1(n)) ∈ {0, 1, 2} and ν2(b2k−1(n)) = 0 if and only if
n < 2k .
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The case m = 1

Let
Sm := {n ∈ N : bm(n) 6= x2 + y 2 + z2}.

We start with the characterization of the set S1.

From Gauss-Legendre’s theorem and 2-adic properties of b(n) we need to
understand the behaviour of the sequence b(n) (mod 32). From the
equality b(2n + 1) = b(2n) it is enough to consider b(2n) (mod 32). We
thus put u(n) := b(2n) and observe that

u(2n) = u(2n − 1) + u(n), u(2n + 1) = u(2n − 1) + 2u(n). (3)
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Proposition 2

For all n > 0 we have

ν2(u(n)) =

{
1 if ν2(n) ≡ 0 (mod 2),

2 if ν2(n) ≡ 1 (mod 2).

Lemma 3

For each k, n ∈ N we have

u(22k+1(2n + 1)) ≡ u(2(2n + 1)) (mod 32).

Proof: This is a simple consequence of the Gupta-Rödseth result
concerning the behaviour of ν2(b(4n)−b(n)). The cited result implies that

b(2s+2n) ≡ b(2sn) (mod 2µ(s)),

where µ(s) = b 3s+4
2
c. Replacing s by 2k and b(2s+2n) by u(2s+1n), and

noting that µ(2k) ≥ 5 for k ∈ N+ we get the statement of our lemma.
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Theorem 4

Let

j(n) =
u(4n + 2)

4
mod 8,

k(n) =
u(2n + 1)

2
mod 8.

Then the sequences (j(n))n∈N and (k(n))n∈N are 2-automatic. More precisely,
for all n ∈ N we have

j(2n) = 4− 3tn, (4)

j(2n + 1) = 4 + tn, (5)

and
k(2n) = 4− 3tn, k(2n + 1) = 4− tn,

where tn is the n term in the PTM sequence.

Proof: The proof uses a careful examination of the bahaviour of
u(n) (mod 32).
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Let us put Tn = (1− tn)/2 ∈ {0, 1} and recall that

A = {n ∈ N : Tn = 1} = {2m + Tm : m ∈ N},
E = {n ∈ N : Tn = 0} = {2m + 1− Tm : m ∈ N}.

Theorem 5

For each a ∈ {1, 3, 5, 7} let ca = (ca(m))m∈N be the increasing sequence such
that

{n ∈ N : j(n) = a} = {ca(m) : m ∈ N}.

Then the sequence ca is 2-regular. More precisely, we have

c1(m) = 4m − tm + 1,

c3(m) = 4m + tm + 2,

c5(m) = 4m − tm + 2,

c7(m) = 4m + tm + 1.
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It is easy to see that each of the above sequences from the statement of
the theorem is increasing. In order to prove that j(n) = a if and only if
n = ca(m) for some m ∈ N, we restate Theorem 4 in the following way:

j(n) =


1 if 2 | n and Tn = 0,

3 if 2 - n and Tn = 0,

5 if 2 - n and Tn = 1,

7 if 2 | n and Tn = 1.

If j(n) = 1, then 2 | n and n = 2k + Tk for some k ∈ N. This implies
Tk = 0, and thus k = 2m + Tm for some n ∈ N. As a result, we get
n = 4m + 2Tm = 4m − tm + 1. Conversely, if n is of this form, then
j(n) = 1 so we get the claim for a = 1.

The proof for a = 3, 5, 7 is similar.
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Corollary 6

The number b(2n) is not a sum of three squares if and only if

n = 22k−1(8s + 2ts + 3)

for some k, s ∈ N+.

Proof: If b(2n) 6∈ S then necessarily ν2(b(2n)) = ν2(u(n)) = 2. Thus
ν2(n) is odd, say n = 22k−1(2m + 1) for some k ∈ N+ and m ∈ N. To get

the result, we need to calculate u(22k−1(2m+1))
4

(mod 8). From Lemma 3 it
is enough to consider the case k = 1, i.e., investigate the sequence
(j(m))m∈N. More precisely, u(2(2m + 1))/4 is not a sum of three squares
if and only if j(m) = 7.

From Theorem 5 we know that j(m) = 7 if and only if m = 4s + ts + 1 for
some s ∈ N. We thus get that for each k ∈ N we have

u(22k−1(8s + 2ts + 3)) ≡ u(2(8s + 2ts + 3)) ≡ 7 (mod 8)

for each k ∈ N+ and s ∈ N, and hence the result.
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if and only if j(m) = 7.

From Theorem 5 we know that j(m) = 7 if and only if m = 4s + ts + 1 for
some s ∈ N. We thus get that for each k ∈ N we have

u(22k−1(8s + 2ts + 3)) ≡ u(2(8s + 2ts + 3)) ≡ 7 (mod 8)

for each k ∈ N+ and s ∈ N, and hence the result.
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The case m = 3

To get required characterization of S3, we need to understand of the
behaviour of b3(16n + i) mod 32 for i = 0, 1, 2, 3, 8, 9, 10, 11.

Lemma 7

The following congruences holds:

b3(8n + i + 4) ≡ 2(2i + 1 + 4(−1)n)tn (mod 32),

b3(32n + i) ≡ b3(8n + i) (mod 64), i = 0, 1, 2, 3, 4

b3(8(2n + 1) + i) ≡ 4(3 + 3i − i2 − 2(−1)n+i )tn (mod 32)

≡


4(3− 2(−1)n)tn (mod 32) if i = 0,

4(5 + 2(−1)n)tn (mod 32) if i = 1,

4(5− 2(−1)n)tn (mod 32) if i = 2,

4(3 + 2(−1)n)tn (mod 32) if i = 3.

In particular, for each k ∈ N+ and i ∈ {0, 1, 2, 3}, we have

b3(22k(2n + 1) + i) ≡ 2 (mod 4),

b3(22k+1(2n + 1) + i) ≡ b3(8(2n + 1) + i) (mod 32),
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Theorem 8

We have that n ∈ S3 if and only if

n = 22k+1

(
8p + 2

⌊
i

2

⌋
+ 3 + 2(−1)i tp

)
+ i

for some i ∈ {0, 1, 2, 3} and k ∈ N+, p ∈ N.

Proof: From the characterization of the 2-adic valuation of b3(n) and
Lemma 7 we know that if n ∈ S3, then necessary we have n
(mod 16) ∈ {0, 1, 2, 3, 8, 9, 10, 11}. Then we use case by case analysis and
get the result.
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The case m = 2k − 1, k ≥ 3

To analyze the general case we express (b2k−1(n))n∈N as the convolution
of (b2k (n))n∈N and the PTM sequence, and use the following lemma.

Lemma 9

For all k, n ∈ N we have

b2k (n) ≡

(
2k

n

)
+ 2k+1

(
2k − 2

n − 2

)
(mod 2k+2).

We split our reasoning into two parts: n < 2k and n ≥ 2k . Starting with
the simpler case n < 2k , we have ν2(b2k−1(n)) = 0. It is thus sufficient for
our purposes to describe b2k−1(n) modulo 8.

Proposition 10

Let k ≥ 3 and n < 2k . Then

b2k−1(n) ≡ tn ·


1 (mod 8) if 0 ≤ n < 2k−2,

5 (mod 8) if 2k−2 ≤ n < 2k−1,

7 (mod 8) if 2k−1 ≤ n < 3 · 2k−2,

3 (mod 8) if 3 · 2k−2 ≤ n < 2k .
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As an immediate corollary, we can describe n < 2k such that b2k−1(n) is
(not) a sum of three squares.

Corollary 11

Let k ≥ 3 and n < 2k . Then b2k−1(n) is not a sum of three squares of integers
if and only if one of the following cases holds:

0 ≤ n < 2k−2 and tn = −1;

2k−1 ≤ n < 3 · 2k−2 and tn = 1.

We move on to the case n ≥ 2k . This time we have ν2(b2k−1(n)) ∈ {1, 2}
by Theorem 1, which means that we need to consider b2k−1(n) modulo 32.

Lemma 12

1 For all k, n ∈ N such that n ≤ 2k we have

ν2

((2k
n

))
= k − ν2(n). (6)

2 For all m, n ∈ N we have(2m
2n

)
≡

(m
n

)
(mod 2ν2(m)+1). (7)
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We are now ready to describe b2k−1(n) modulo 32 for n ≥ 2k . This time,
the characterization involves two terms of the PTM sequence.

Theorem 13

Fix k, i , j ∈ N such that k ≥ 3, i < 8, and j < 2k−3. Then for all m ≥ 1 we
have

b2k−1(2km + 2k−3i + j) ≡ tj(ci tm + di tm−1) (mod 32),

where the coefficients ci , di do not depend on k and are given in Table 1.

i 0 1 2 3 4 5 6 7
ci 1 7 3 5 9 −1 3 5
di −5 −3 1 −9 −5 −3 −7 −1

Table: The coefficients ci , di .
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Proof: Consider first the case k ≥ 4. By Lemma 9 we have

b2k−1(n) =
n∑

l=0

b2k (l)tn−l ≡
n∑

l=0

(
2k

l

)
tn−l (mod 32).

Now, by (6), the binomial coefficients with v2(l) < k − 4 vanish modulo
32. Hence, assuming that n ≥ 2k , the above sum simplifies to

b2k−1(n) ≡
16∑
l=0

(
2k

2k−4l

)
tn−2k−4 l ≡

16∑
l=0

(
16

l

)
tn−2k−4 l (mod 32),

where the second congruence follows from (7).

Furthermore, we can get rid of the terms with j odd, since there is an even
number of them and they are all congruent to 16 modulo 32. Therefore,
we get the congruence

b2k−1(n) ≡
8∑

l=0

(
16

2l

)
tn−2k−3 l (mod 32).

In order to simplify the right-hand side, consider b2k−1 at indices of the
form given in the statement, namely n = 2km + 2k−3i + j , where m ≥ 1,
0 ≤ i < 8, and 0 ≤ j < 2k−3.
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By the recurrences defining the Thue–Morse sequence, we get

t(2km+2k−3i + j−2k−3l) = t(j)t(8m+ i− l) = t(j) ·

{
tnti−l if l ≤ i ,

−tn−1tl−i if l > i .

Hence, the claimed formula holds with the coefficients

ci =
i∑

l=0

(
16

2l

)
ti−l ,

di = −
8∑

l=i+1

(
16

2l

)
tl−i ,

and a direct computation (modulo 32) gives their values as in Table 1.
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Using this result, we can determine the indices n ≥ 2k such that b2k−1(n)
is not a sum of three squares. The description turns out to be surprisingly
simple in the sense that it does not require distinguishing cases for n
modulo 2k (unlike Theorem 13).

Corollary 14

For each k ≥ 3 and n ≥ 2k the term b2k−1(n) is not a sum of three squares of
integers if and only if tn = tn−2k = 1. Equivalently, n is of the form

n = 2km + l ,

where l , j ∈ N are such that tm = tl , ν2(m) ≡ 1 (mod 2) and 0 ≤ l < 2k .

Let n = 2km + 2k−3i + j as in Theorem 13. Observe that ci + di = −4ti ,
while ci − di is not divisible by 4. Hence, the term b2k−1(2km + 2k−3i + j)
is not a sum of three squares if and only if

tm = tm−1 = ti tj ,

which after multiplying both sides by ti tj gives precisely the first part of
the statement. The second part follows immediately by writing
l = 2k−3i + j and observing that tm = (−1)ν2(m)+1tm−1.
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Counting the solutions

For real x ≥ 0 and m ∈ N+ let

Sm(x) = Sm ∩ [0, x ] = #{n ≤ x : bm(n) is not a sum of three squares}.

Using the descriptions of the sets S2k−1 obtained in the previous sections
for various k it is easy to check that

S2k−1(x) = dkx + O(log x),

where d1 = d2 = 1/12 and dk = 1/6 for k ≥ 3.

In the following three results we provide more precise bounds for
S2k−1(x)− dkx in the case k = 1, k = 2 and k ≥ 3, respectively. In
particular, each lower and upper bound is of the form C1 log2 x + C2,
where the constant C1 is optimal.
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Theorem 15

For every x ≥ 1 we have

−2 < S1(x)− x

12
<

1

2
log2 x .

In particular, the natural density of the set S1 in N exists and is equal to

lim
x→+∞

S1(x)

x
=

1

12
.

Moreover, there exists an increasing sequence (mk)k∈N ⊂ N such that

S1(ml)−
ml

12
∼ 1

2
log2 ml .
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Proof: For x ∈ R define

P(x) = #{s ∈ N : 8s + 2ts + 3 ≤ x}, Q(x) =
∑
k=0

P
( x

4k

)
.

We have that that Q
(
x
2

)
= #{n ≤ x : b(2n) ∈ S}, hence by the relation

b(2n + 1) = b(2n), we get

S(x) = Q
(x

4

)
+ Q

(
x − 1

4

)
.

For m ∈ N and i = 0, 1, 2, 3 we have the recurrence relations

Q(4m + i) = Q(m) + P(4m + i).

Also, for i < 8 we have

P(8m + i) = m +


0 if i = 0,

Tm if i = 1, 2, 3, 4,

1 if i = 5, 6, 7.

Put
R(x) = Q(x)− x

6
.

We will prove by induction on length L(m) of binary expansion of m ∈ N+

that

− 2

3
≤ R(m) ≤ 1

4
blog2 mc −

1

6
. (8)
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Direct computation shows that our claim holds for L(m) ≤ 5. Now let
L(m) ≥ 6. It is sufficient to prove that there exists n ∈ N+ with
L(n) = L(m)− 2 such that

0 ≤ R(m)− R(n) ≤ 1

2
.

This is indeed the case, as shown by the following set of identities (ordered
according to the residue class modulo 8):
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R(8n) = R(2n),

R(16n + 1) = R(4n + 1),

R(16n + 9) = R(4n) +
1

2
,

R(16n + 2) = R(4n + 2),

R(16n + 10) = R(4n) +
1

3
,

R(16n + 3) = R(4n + 3),

R(16n + 11) = R(4n) +
1

6
,

R(8n + 4) = R(2n + 1) + Tn −
1

2
,

R(64n + 4) = R(16n + 4),

R(64n + 20) = R(16n + 2) + 1 − Tn,

R(64n + 36) = R(16n) + 1 − Tn,

R(64n + 52) = R(16n + 4),

R(16n + 12) = R(4n),

R(8n + 5) = R(2n + 1) +
1

3
,

R(8n + 6) = R(2n + 1) +
1

6
,

R(8n + 7) = R(2n + 1).

Plugging m = bxc into (8), after some manipulation we get the main part
of the result.
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Now, define m0 = 0 and ml+1 = 16ml + 36 for l ∈ N. Using the recurrence
relations above and the fact that 4 | ml , we get

R(ml+1) = R(16ml + 36) = R(4ml) + 1− Tml = R(ml) + 1− Tml .

By induction one can quickly prove that Tml = 0 for all l ∈ N, and thus we
get R(ml) = l and consequently S1(ml)−ml/12 = 2(l − 1). The last part
of the statement follows.

Theorem 16

For all x ≥ 1 we have ∣∣∣S3(x)− x

12

∣∣∣ ≤ 1

6
log2 x +

3

2
.

In particular, the natural density of the set S3 in N exists and is equal to

lim
x→+∞

S3(x)

x
=

1

12
.

Moreover, there exist increasing sequences (ml)l∈N, (nl)l∈N ⊂ N such that

S3(ml)−
ml

12
∼ 1

6
log2 ml ,

S3(nl)−
nl
12
∼ −1

6
log2 nl .
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Theorem 17

If k ≥ 3, then for all x ≥ 2k we have∣∣∣S2k−1(x)− x

6
+ 2k−2

∣∣∣ ≤ 2k−2

3
(log2 x − k + 17).

In particular, the natural density of the set S2k−1 in N exists and is equal to

lim
x→+∞

S2k−1(x)

x
=

1

6
.

Moreover, there exist increasing sequences (ml)l∈N, (nl)l∈N ⊂ N such that

S2k−1(ml)−
ml

6
∼ 2k−2

3
log2 ml ,

S2k−1(nl)−
nl
6
∼ −2k−2

3
log2 nl .
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Computational results, questions, problems and conjectures

It is natural to ask whether it is possible to obtain results concerning the
representation of bm(n) as a sum of three squares for any m ∈ N+.

Problem 1

Describe the set Sm for m ∈ N+.

The direct approach we, namely reduction modulo a power of 2, is most
likely not applicable in the general case, as it seems that for all m 6= 2k − 1
the valuations ν2(bm(n)) are unbounded. In such a case one would need to
compute bm(n) mod 2ν2(bm(n))+3 and we do not see how this can be done
without prior knowledge of ν2(bm(n)). Therefore, we expect that obtaining
an exact description of Sm for even a single value m 6= 2k − 1 is hard.

Maciej Ulas (joint work with Bartosz Sobolewski)



Computational results, questions, problems and conjectures

It is natural to ask whether it is possible to obtain results concerning the
representation of bm(n) as a sum of three squares for any m ∈ N+.

Problem 1

Describe the set Sm for m ∈ N+.

The direct approach we, namely reduction modulo a power of 2, is most
likely not applicable in the general case, as it seems that for all m 6= 2k − 1
the valuations ν2(bm(n)) are unbounded. In such a case one would need to
compute bm(n) mod 2ν2(bm(n))+3 and we do not see how this can be done
without prior knowledge of ν2(bm(n)). Therefore, we expect that obtaining
an exact description of Sm for even a single value m 6= 2k − 1 is hard.

Maciej Ulas (joint work with Bartosz Sobolewski)



We obtained precise characterization of those n ∈ N such that b(n) is a
sum of three squares. In particular the set of such numbers has asymptotic
density equal to 11/12. A more difficult question is whether the set

T1 = {n ∈ N : b(2n) = � + �}

is infinite or not.

To get a clue what can be expected, we computed the values of b(2n) for
n ≤ 220 and check whether b(2n) is a sum of two squares. We put

T1(x) = #(T1 ∩ [0, x ]).
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In the table below we present the values of T (2n) for n ≤ 20.
n 1 2 3 4 5 6 7 8 9 10
T (2n) 2 3 6 8 14 21 37 64 106 174

n 11 12 13 14 15 16 17 18 19 20
T (2n) 325 617 1089 2018 3699 6804 12551 23624 44606 84176

Our numerical computations suggest the following

Conjecture 1

The set T is infinite.

Question 1

What is the asymptotic behaviour of T (x) as x → +∞? Is the equality
T (x) = O(x/ log x) true?
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We obtained precise characterization of those n ∈ N such that b(2n) is a
sum of three squares. In particular the set of such numbers has natural
density equal to 5/6. Analyzing, for a given n not of the form
22k+1(8s + 2ts + 3), the solution set (x , y , z) of the equation
b(2n) = x2 + y 2 + z2, we found that in many cases one of the values
x , y , z is a square, i.e., the Diophantine equation

b(2n) = X 2 + Y 2 + Z 4

has a solution in non-negative integers.

More precisely, for n ≤ 103 we know that there are exactly 916 values of n
such that b(2n) is a sum of three squares. Among them, there are exactly
831 values of n such that b(2n) is a sum of two squares and a fourth
power. This large number of solutions suggest the following

Conjecture 2

Let Q1 := {n ∈ N : b(2n) = x2 + y 2 + z4 for some x , y , z ∈ N}. The set Q1 is
infinite. Moreover, the set Q1 has positive natural density in N.

Maciej Ulas (joint work with Bartosz Sobolewski)



We obtained precise characterization of those n ∈ N such that b(2n) is a
sum of three squares. In particular the set of such numbers has natural
density equal to 5/6. Analyzing, for a given n not of the form
22k+1(8s + 2ts + 3), the solution set (x , y , z) of the equation
b(2n) = x2 + y 2 + z2, we found that in many cases one of the values
x , y , z is a square, i.e., the Diophantine equation

b(2n) = X 2 + Y 2 + Z 4

has a solution in non-negative integers.

More precisely, for n ≤ 103 we know that there are exactly 916 values of n
such that b(2n) is a sum of three squares. Among them, there are exactly
831 values of n such that b(2n) is a sum of two squares and a fourth
power. This large number of solutions suggest the following

Conjecture 2

Let Q1 := {n ∈ N : b(2n) = x2 + y 2 + z4 for some x , y , z ∈ N}. The set Q1 is
infinite. Moreover, the set Q1 has positive natural density in N.

Maciej Ulas (joint work with Bartosz Sobolewski)



Thank you for your attention;-)
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