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Introduction and motivation

In 1798 Legendre proved that if N is a positive integer and
N=x2+4y? 422

for some x,y,z € Z, then N is not of the form 4¥(8s 4 7) for k,s € N. In
particular, the natural density of the set of integers which can not be
represented by sum of three squares is equal to 1/6.
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Introduction and motivation

In 1798 Legendre proved that if N is a positive integer and
N=x2+4y? 422

for some x,y,z € Z, then N is not of the form 4¥(8s 4 7) for k,s € N. In
particular, the natural density of the set of integers which can not be
represented by sum of three squares is equal to 1/6.

This rises an interesting question whether, for a given sequence of integers
(un)nen, there are infinitely many solutions of the Diophantine equation

u, = x>+ y* + 2. (1)

It is clear to characterize the solutions of (1) it is necessary to have a good
understanding of the 2-adic behavior, or to be more precise the 2-adic
valuation, of the terms of the sequence (up)nen.
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Especially interesting is the case, when u, has a combinatorial meaning.
The equation (1) with u, = (2:) was investigated by Granville and Zhu.
They characterized those n € N such that (1) has a solution in x,y, z.
The obtained characterization is equivalent with the existence of certain
patterns in (unique) binary expansion of n.
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Especially interesting is the case, when u, has a combinatorial meaning.
The equation (1) with u, = (2:) was investigated by Granville and Zhu.
They characterized those n € N such that (1) has a solution in x,y, z.
The obtained characterization is equivalent with the existence of certain
patterns in (unique) binary expansion of n.

In particular, the set of integers n, for which (2:) can be represented as a
sum of three squares, has asymptotic density 7/8 in the set of all natural
number. The cited authors obtained also characterization of those n such
that (1) with u, = n! has no solutions. A different approach, via
automatic sequences, to this problem was presented by Deshouillers and
Luca. They showed that if

S={n: n!;ﬁx2+y2+22}

then ,
S()=#{n<x: neSh=gx+ 0.
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Especially interesting is the case, when u, has a combinatorial meaning.
The equation (1) with u, = (2:) was investigated by Granville and Zhu.
They characterized those n € N such that (1) has a solution in x,y, z.
The obtained characterization is equivalent with the existence of certain
patterns in (unique) binary expansion of n.

In particular, the set of integers n, for which (2:) can be represented as a
sum of three squares, has asymptotic density 7/8 in the set of all natural
number. The cited authors obtained also characterization of those n such
that (1) with u, = n! has no solutions. A different approach, via
automatic sequences, to this problem was presented by Deshouillers and
Luca. They showed that if

S={n: n!;ﬁxz—i—yz—i—zQ}
then

_ ) _7 2/3
S(x)=#{n<x: n€5}—§X+O(X )-

This result was improved by Hajdu and Papp to

S(x) = 7/8x + O(x"/? log? x)

and recently by Burns to S(x) = 7/8x 4+ O(x'/?).
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We follow the same line of research and consider first the equation (1)
with u, = b(n) being binary partition function. More precisely, let b(n)
counts the number of partitions of n with parts being powers of two. For
example, b(4) = 4 because

4=22=242=14142=141+41+1

are all possible representations of 4 as a sum of powers of two. The
sequence (b(n))nen was already introduced by Euler.
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We follow the same line of research and consider first the equation (1)
with u, = b(n) being binary partition function. More precisely, let b(n)
counts the number of partitions of n with parts being powers of two. For
example, b(4) = 4 because

4=22=242=14142=141+41+1

are all possible representations of 4 as a sum of powers of two. The
sequence (b(n))nen was already introduced by Euler.

Recall that the ordinary generating function of the sequence (b(n))nen has

the form
B(x) = H . Z b(n

As a consequence we see that B(x) satisfies the functional equation
(1 — x)B(x) = B(x?). Comparing coefficients on both sides we get that
the sequence (b(n))nen satisfies the recurrence: b(0) = b(1) =1 and

b(2n) = b(2n — 1) + b(n), b(2n+ 1) = b(2n).
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The corresponding series

T(x) = ﬁ :ﬁ)(l—x2n) zitnx"

is the ordinary generating function for the famous Prouhet-Thue-Morse
sequence (tn)nen (the PTM segence for short). Recall that t, = (—1)%2(",
where s;(n) is the number of 1's in the unique expansion of n in base 2.
Equivalently, we have to =1 and

ton = tn, topy1 = —t,, n>0.
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The corresponding series

T(x) = ﬁ :ﬁ)(l—x2n) zitnx"

is the ordinary generating function for the famous Prouhet-Thue-Morse
sequence (tn)nen (the PTM segence for short). Recall that t, = (—1)%2(",
where s;(n) is the number of 1's in the unique expansion of n in base 2.
Equivalently, we have to =1 and

ton = tn, topy1 = —t,, n>0.
Moreover, for n > 2, the 2-adic valuation of b(n) is equal to
1
va(b(n)) = §|t,, — 2tp—1 + tp—2|.
In particular, if n > 2, then v2(b(n)) € {1,2} or to be more precise,

b(n) =0 (mod 4) <= w2(n) = 0(mod 2) or v2(n—1) =0 (mod 2). (2)
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For m € N we define b,(n) as a convolution of m copies of b(n). More
precisely,
bm(n) =Y b(ir)- - b(im).
h+...+im=n
Note that by(n) = b(n). The number bn(n) has also a combinatorial
interpretation. Indeed, by(n) is the number of binary partitions of n,
where each part has one of m possible colors.
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For m € N we define b,(n) as a convolution of m copies of b(n). More
precisely,

bm(n) =Y b(ir)- - b(im).

h+...+im=n

Note that by(n) = b(n). The number bn(n) has also a combinatorial
interpretation. Indeed, by(n) is the number of binary partitions of n,
where each part has one of m possible colors.

It is proved that for m = 2% — 1 the 2-adic valuation of bm(n) € {1,2} for
n > 2% More precisely, we have the following.

Theorem 1

Let k € Ny. For n,i € N such that i < 2*2 we have

v2(b(8n)) if0 < i< 2K
if2k < j < 2k
iF2K < i< 3.2k
1 if3- 2K < < 242,

valby_1(2%n 4 1)) =

In particular, v2(by_,(n)) € {0,1,2} and va(byk_1(n)) = 0 if and only if
n <2k
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Let
Sm:={neN: bn(n) # x2 +y2 + 22}-
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Sm:={neN: bn(n) # x2 +y2 + 22}-

We start with the characterization of the set S;.
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Let
Sm:={neN: bn(n) # x2 +y2 + 22}-
We start with the characterization of the set S;.

From Gauss-Legendre's theorem and 2-adic properties of b(n) we need to
understand the behaviour of the sequence b(n) (mod 32). From the
equality b(2n + 1) = b(2n) it is enough to consider b(2n) (mod 32). We
thus put u(n) := b(2n) and observe that

u(2n) = u(2n —1) + u(n), u(n+1)=u(2n—1)+2u(n). (3)
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Proposition 2

For all n > 0 we have

1 ifurr(n)=0 (mod 2),

va(u(n)) = {2 ifva(n) =1 (mod 2).
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Proposition 2

For all n > 0 we have

1 ifurr(n)=0 (mod 2),

va(u(n)) = {2 ifva(n) =1 (mod 2).

For each k,n € N we have

u(2**1(2n + 1)) = u(2(2n + 1)) (mod 32).

Maciej Ulas (joint work with Bartosz Sobolewski)



Proposition 2

For all n > 0 we have

1 ifw(n)=0 (mod2),
va(u(n)) = {2 ifva(n) =1 (mod 2).

For each k,n € N we have

u(2**1(2n + 1)) = u(2(2n + 1)) (mod 32).

Proof: This is a simple consequence of the Gupta-Rddseth result
concerning the behaviour of v2(b(4n) — b(n)). The cited result implies that

b(2°2n) = b(2°n) (mod 2")),

where i(s) = |3 ]. Replacing s by 2k and b(2°"*n) by u(2°*"'n), and
noting that p(2k) > 5 for k € N we get the statement of our lemma. [
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Let
j(n) = w mod 8,
k(n) = @ mod 8.

Then the sequences (j(n))nen and (k(n))nen are 2-automatic. More precisely,
for all n € N we have

j(2n) = 4 — 3t,, (4)
j2n+1) =4+t (5)

and
k(2n) = 4 — 3t,, k(2n+1) =4 — t,,

where t, is the n term in the PTM sequence.

.
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Let
j(n) = w mod 8,
k(n) = w mod 8.

Then the sequences (j(n))nen and (k(n))nen are 2-automatic. More precisely,
for all n € N we have

j(2n) = 4 — 3t,, (4)
j2n+1) =4+t (5)

and
k(2n) = 4 — 3t,, k(2n+1) =4 — t,,

where t, is the n term in the PTM sequence.

.

Proof: The proof uses a careful examination of the bahaviour of
u(n) (mod 32).
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Let us put T, = (1 —t,)/2 € {0,1} and recall that

A={neN: T, =1} ={2m+ T, : me N},
E={neN: T,=0}={2m+1—-Tn: meN}
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Let us put T, = (1 —t,)/2 € {0,1} and recall that

A={neN: T, =1} ={2m+ T, : me N},
E={neN: T,=0}={2m+1—-Tn: meN}

Theorem 5

For each a € {1,3,5,7} let c. = (ca(m))men be the increasing sequence such
that

{neN: j(n)=a}={c(m): meN}

Then the sequence c, is 2-regular. More precisely, we have

ca(m)=4m — tym + 1,
a(m) =4m+ tym + 2,
cs(m) =4m — ty, + 2,
c(m)=4m+t, + 1.
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It is easy to see that each of the above sequences from the statement of
the theorem is increasing. In order to prove that j(n) = a if and only if
n = c,(m) for some m € N, we restate Theorem 4 in the following way:

if2|nand T, =0,
if 2¢nand T, =0,
if 2tnand T, =1,
if2|nand T, = 1.

i(n) =

~N O w o
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It is easy to see that each of the above sequences from the statement of
the theorem is increasing. In order to prove that j(n) = a if and only if
n = c,(m) for some m € N, we restate Theorem 4 in the following way:

if2|nand T, =0,
if 2¢nand T, =0,
if 2tnand T, =1,
if2|nand T, = 1.

i(n) =

~N O w o

If j(n) =1, then 2| n and n = 2k + Ty for some k € N. This implies
Ty« =0, and thus k =2m + T,, for some n € N. As a result, we get
n=4m+ 2T, = 4m — t,, + 1. Conversely, if n is of this form, then
j(n) =1 so we get the claim for a = 1.
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It is easy to see that each of the above sequences from the statement of
the theorem is increasing. In order to prove that j(n) = a if and only if
n = c,(m) for some m € N, we restate Theorem 4 in the following way:

if2|nand T, =0,
if 2¢nand T, =0,
if 2tnand T, =1,
if2|nand T, = 1.

i(n) =

~N O w o

If j(n) =1, then 2| n and n = 2k + Ty for some k € N. This implies
Ty« =0, and thus k =2m + T,, for some n € N. As a result, we get
n=4m+ 2T, = 4m — t,, + 1. Conversely, if n is of this form, then
j(n) =1 so we get the claim for a = 1.

The proof for a = 3,5,7 is similar.
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Corollary 6

The number b(2n) is not a sum of three squares if and only if

2kl
(

n= 8s + 2t; + 3)

for some k,s € N,.
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Corollary 6

The number b(2n) is not a sum of three squares if and only if

2kl
(

n= 8s + 2t; + 3)

for some k,s € N,.

Proof: If b(2n) € S then necessarily v2(b(2n)) = v2(u(n)) = 2. Thus
v2(n) is odd, say n = 2%*71(2m + 1) for some k € N, and m € N. To get
the result, we need to calculate w (mod 8). From Lemma 3 it
is enough to consider the case k =1, i.e., investigate the sequence
(j(m))men. More precisely, u(2(2m + 1))/4 is not a sum of three squares
if and only if j(m) =7.
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Corollary 6

The number b(2n) is not a sum of three squares if and only if

2kl
(

n= 8s + 2t; + 3)

for some k,s € N,.

Proof: If b(2n) € S then necessarily v2(b(2n)) = v2(u(n)) = 2. Thus
v2(n) is odd, say n = 2%*71(2m + 1) for some k € N, and m € N. To get
the result, we need to calculate w (mod 8). From Lemma 3 it
is enough to consider the case k =1, i.e., investigate the sequence
(j(m))men. More precisely, u(2(2m + 1))/4 is not a sum of three squares
if and only if j(m) =7.

From Theorem 5 we know that j(m) =7 if and only if m = 4s+ t, + 1 for
some s € N. We thus get that for each k € N we have

u(2*71(8s + 2ts + 3)) = u(2(8s + 2ts + 3)) = 7 (mod 8)

for each k € N4 and s € N, and hence the result.
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To get required characterization of S3, we need to understand of the
behaviour of b3(16n+ i) mod 32 for i =0,1,2,3,8,9,10,11.
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The case m =3

To get required characterization of S3, we need to understand of the
behaviour of b3(16n+ i) mod 32 for i =0,1,2,3,8,9,10,11.

The following congruences holds:

bs(8n+i+4)=2(2i +1+4(—1)")t, (mod 32),
b3(32n+ i) = b3(8n+ i) (mod 64), i =0,1,2,3,4

bs(8(2n + 1) + i) = 4(3 4 3i — i* — 2(—1)""")t, (mod 32)
4(3 = 2(—1)")t, (mod 32) ifi =0,
4(5+2(—1)")t, (mod 32) ifi=1,
4(5 — 2(—1)")t, (mod 32) ifi =2,
4(3+2(—1)")t, (mod 32) ifi=3.
In particular, for each k € N; and i € {0,1,2,3}, we have

bs(2%(2n + 1) + i) = 2 (mod 4),
bs(2271(2n + 1) + i) = b3(8(2n + 1) + i) (mod 32),
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Theorem 8

We have that n € Ss if and only if

n = 2%+ <8p +2 EJ +3+ 2(—1)"t,,> +i

for some i € {0,1,2,3} and k € N}, p € N.
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Theorem 8

We have that n € Ss if and only if

n = 2%+ <8p +2 EJ +3+ 2(—1)"t,,> +i

for some i € {0,1,2,3} and k € N}, p € N.

Proof: From the characterization of the 2-adic valuation of bs(n) and
Lemma 7 we know that if n € S3, then necessary we have n

(mod 16) € {0,1,2,3,8,9,10,11}. Then we use case by case analysis and
get the result. O
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Thecasem:2k—1,k23

To analyze the general case we express (by_1(n))nen as the convolution
of (byk(n))nen and the PTM sequence, and use the following lemma.

For all k,n € N we have

K k_
by« (n) = <2n) 4 2K+t <2n _ 22> (mod 2%+2).
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Thecasem:2k—1,k23

To analyze the general case we express (by_1(n))nen as the convolution
of (byk(n))nen and the PTM sequence, and use the following lemma.

For all k,n € N we have

K k_
by« (n) = <2n) + 2kHt <2n _ 22> (mod 2%+2).

We split our reasoning into two parts: n < 25 and n > 2. Starting with
the simpler case n < 2%, we have v»(byx_;(n)) = 0. It is thus sufficient for
our purposes to describe b,x_;(n) modulo 8.

Proposition 10

Let k >3 and n < 2. Then

(mod 8) if0 < n< 22

(mod 8) if2572 < n< 2871

(mod 8) if2xt < n<3.282
3 (mod8) if3-22< n< 2k :

~N O

byk_1(n) = t, -




As an immediate corollary, we can describe n < 2% such that by_,(n) is
(not) a sum of three squares.

Let k >3 and n < 2%. Then by_;(n) is not a sum of three squares of integers
if and only if one of the following cases holds:

e 0< n<2k=2 and t, = —1;
0 2k-1 < n<3.2k72 gpd t, = 1.
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As an immediate corollary, we can describe n < 2% such that by_,(n) is
(not) a sum of three squares.

Let k >3 and n < 2%. Then by_;(n) is not a sum of three squares of integers
if and only if one of the following cases holds:

e 0< n<2k=2 and t, = —1;
0 2k-1 < n<3.2k72 gpd t, = 1.

We move on to the case n > 2¥. This time we have v2(by_;(n)) € {1,2}
by Theorem 1, which means that we need to consider byx_;(n) modulo 32.

Lemma 12

@ For all k,n € N such that n < 2K we have

v ((2:)) ) (6)

@ For all m;n € N we have

(22’:) = (") (mod 22(m+1), )
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We are now ready to describe byx_;(n) modulo 32 for n > 2%, This time,
the characterization involves two terms of the PTM sequence.

Theorem 13

Fix k,i,j € N such that k >3, i < 8, and j < 2“=3. Then for all m > 1 we
have

by 1(2°m+ 23 + j) = ti(citm + ditm_1) (mod 32),
where the coefficients c;, di do not depend on k and are given in Table 1.

iJo 1 2 3 4 5 6 7
|1 7 35 9 -1 3 5
d|-5 -3 1 -9 -5 -3 -7 -1

Table: The coefficients c;, d;.
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Proof: Consider first the case k > 4. By Lemma 9 we have

byk_y(n) = Z by (1) tn—s = Z (2;) to—; (mod 32).
1=0

/=0

Maciej Ulas (joint work with Bartosz Sobolewski)



Proof: Consider first the case k > 4. By Lemma 9 we have
n n 2k
by _1(n) = /Z; b (N tn—s = ,Z; / to—; (mod 32).

Now, by (6), the binomial coefficients with v2(/) < k — 4 vanish modulo
32. Hence, assuming that n > 2“, the above sum simplifies to

16 ok 5 /16
byk_q(n) = Z <2’<—4l> t,_ok—ay = Z < | )tn_zk—4/ (mod 32),

1=0 1=0

where the second congruence follows from (7).
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Proof: Consider first the case k > 4. By Lemma 9 we have

byk_y(n) = Z by (1) tn—s = Z (2;) to—; (mod 32).
1=0

/=0

Now, by (6), the binomial coefficients with v2(/) < k — 4 vanish modulo
32. Hence, assuming that n > 2“, the above sum simplifies to

16 ok 5 /16
byk_q(n) = Z <2’<—4l> t,_ok—ay = Z < | )tn_zk—4/ (mod 32),

1=0 1=0

where the second congruence follows from (7).

Furthermore, we can get rid of the terms with j odd, since there is an even
number of them and they are all congruent to 16 modulo 32. Therefore,
we get the congruence

8
by_y(n) = <12?> t, o3 (mod 32).

1=0

In order to simplify the right-hand side, consider by« _; at indices of the
form given in the statement, namely n = 2km + 2k=3; + Jj, where m > 1,
0<i<8 and0< <23
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By the recurrences defining the Thue—Morse sequence, we get

thti—y If/S I'7

t2k +2k73.+._2k—3l:t.t8 +i—=1=t()-
(2m i+ ) (NtBm+i—1) ) —tp_ati—; if >
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By the recurrences defining the Thue—Morse sequence, we get

thti—y If/S I'7

t2k +2k73.+._2k—3l:t.t8 +i—=1=t()-
(2m i+ ) (NtBm+i—1) ) —tp_ati—; if >

Hence, the claimed formula holds with the coefficients

ci = Z (12?> ti—1,

=0
8
16
di=— —i
5 <2/> -
I=i+1

and a direct computation (modulo 32) gives their values as in Table 1.
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Using this result, we can determine the indices n > 2¥ such that by_;(n)
is not a sum of three squares. The description turns out to be surprisingly
simple in the sense that it does not require distinguishing cases for n
modulo 2% (unlike Theorem 13).
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Using this result, we can determine the indices n > 2¥ such that by_;(n)
is not a sum of three squares. The description turns out to be surprisingly
simple in the sense that it does not require distinguishing cases for n
modulo 2% (unlike Theorem 13).

Corollary 14

For each k >3 and n > 2 the term by._,(n) is not a sum of three squares of
integers if and only if t, = t,_,« = 1. Equivalently, n is of the form

n:2km+/,

where |, j € N are such that t, = t;, v2(m) =1 (mod 2) and 0 < I < 2,
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Using this result, we can determine the indices n > 2¥ such that by_;(n)
is not a sum of three squares. The description turns out to be surprisingly
simple in the sense that it does not require distinguishing cases for n
modulo 2% (unlike Theorem 13).

Corollary 14

For each k >3 and n > 2 the term by._,(n) is not a sum of three squares of
integers if and only if t, = t,_,« = 1. Equivalently, n is of the form

n:2km+/,

where |, j € N are such that t, = t;, v2(m) =1 (mod 2) and 0 < I < 2,

Let n = 2¥m + 2¥73/ 4 j as in Theorem 13. Observe that ¢; + di = —4t;,
while ¢; — d; is not divisible by 4. Hence, the term by _;(2m + 273i + )
is not a sum of three squares if and only if

tm = tm—1 = titj,

which after multiplying both sides by t;t; gives precisely the first part of
the statement. The second part follows immediately by writing
| = 273 + j and observing that t, = (—1)"2(M+1¢, ;.
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Counting the solutions

For real x > 0 and m € N, let

Sm(x) = SmN[0,x] = #{n < x : bm(n) is not a sum of three squares}.
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Counting the solutions

For real x > 0 and m € N, let
Sm(x) = Sm N [0,x] = #{n < x : by(n) is not a sum of three squares}.

Using the descriptions of the sets S,«_; obtained in the previous sections
for various k it is easy to check that

Sok_1(x) = dkx + O(log x),

where dh = db = 1/12 and dx = 1/6 for k > 3.
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Counting the solutions

For real x > 0 and m € N, let
Sm(x) = Sm N [0,x] = #{n < x : by(n) is not a sum of three squares}.

Using the descriptions of the sets S,«_; obtained in the previous sections
for various k it is easy to check that

Sok_1(x) = dkx + O(log x),

where di = d» = 1/12 and dx = 1/6 for k > 3.

In the following three results we provide more precise bounds for
Sok_1(x) — dkx in the case k = 1,k =2 and k > 3, respectively. In
particular, each lower and upper bound is of the form C; log, x + G,
where the constant C; is optimal.
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Theorem 15

For every X > 1 we have
-2 < S](X)——X < *lOgQX

In particular, the natural density of the set S1 in N exists and is equal to

. Si(x) 1
XllToo X a 12.

Moreover, there exists an increasing sequence (my)ken C N such that

m, 1
Si(my) — 1—2/ ~ 3 log, m;.
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Proof: For x € R define
P(x) = #{s € N:8s+2t, +3 < x}, Q(x):ZP(i).
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Proof: For x € R define
P(x) = #{s € N:8s+ 2t; + 3 < x}, Q(X):Zp(%)‘
k=0

We have that that Q () = #{n < x : b(2n) € S}, hence by the relation
b(2n+ 1) = b(2n), we get

S(X):Q<%)+Q(X;1).

For me N and i = 0,1,2,3 we have the recurrence relations

Q(4m+ i) = Q(m)+ P(4m—+1i).
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I
Proof: For x € R define

P(x) = #{s € N:8s+ 2t; + 3 < x}, Q(X):Zp(%)‘
k=0

We have that that Q () = #{n < x : b(2n) € S}, hence by the relation
b(2n+ 1) = b(2n), we get

X x—1
S(x)-Q(Z)JrQ( 7 )
For me N and i = 0,1,2,3 we have the recurrence relations
Q(4m+1i)=Q(m)+ P(4m +i).

Also, for i < 8 we have

0 ifi=0,
PBm+i)=m+{ Tm ifi=123,4,
1 ifi=5,6,7.

Put X
R(:) = Q) — %
We will prove by induction on length L(m) of binary expansion of m € N,
that 5 1 1
~3 < R(m) < ZLIog2 m| — 5 (8)
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Direct computation shows that our claim holds for L(m) < 5. Now let
L(m) > 6. It is sufficient to prove that there exists n € N with
L(n) = L(m) — 2 such that

0< R(m) - R(n) <

N =

This is indeed the case, as shown by the following set of identities (ordered
according to the residue class modulo 8):
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R(8n) = R(2n),
R(16n + 1) = R(4n + 1),

1
R(16n + 9) = R(4n) + —,
2
R(16n + 2) = R(4n + 2),
1
R(16n + 10) = R(4n) + —,
3
R(16n + 3) = R(4n + 3),

R(16n + 11) = R(4n) +

1
g
1
R(Bn+4)=R@2n+1)+ Tp — —,
2

R(64n + 4) = R(16n + 4),
R(64n + 20) = R(16n +2) + 1 — Tp,
R(64n + 36) = R(16n) + 1 — Tp,
R(64n + 52) = R(16n + 4),
R(16n + 12) = R(4n),

1
R(Bn+5) = R(2n+1) + —,
3

1
R(8n+6) = R2n+1) + -,
6

R(8n + 7) = R(2n + 1).

Plugging m = | x| into (8), after some manipulation we get the main part
of the result.
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Now, define my = 0 and m;+1 = 16m; + 36 for | € N. Using the recurrence
relations above and the fact that 4 | m;, we get

R(m/+1) = R(16m, =+ 36) = R(4m/) +1- Tm, = R(m/) +1- Tm,.
By induction one can quickly prove that T,,, =0 for all / € N, and thus we
get R(m;) = I and consequently Si(m;) — m;/12 = 2(/ — 1). The last part
of the statement follows.
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Now, define my = 0 and m;+1 = 16m; + 36 for | € N. Using the recurrence
relations above and the fact that 4 | m;, we get

R(m/+1) = R(16m, =+ 36) = R(4m/) +1- Tm, = R(m/) +1- Tm,.

By induction one can quickly prove that T,,, =0 for all / € N, and thus we
get R(m;) = I and consequently Si(m;) — m;/12 = 2(/ — 1). The last part
of the statement follows.

Theorem 16

For all x > 1 we have

1 3
’53()() = 1X—2) < glog2x+ =.

2
In particular, the natural density of the set S3 in N exists and is equal to
. Ss3(x) 1
| = =
e e D

Moreover, there exist increasing sequences (m;)en, (n1)ien C N such that

my 1
N =

Ss(m) =15~

log, my,

1
Ss(m) — % ~ =3 log, n.

Maciej Ulas (joint work with Bartosz Sobolewski)



Theorem 17
If k > 3, then for all x > 2% we have

X ‘s k=2
‘szk,l(x)— S+2 ‘g o (logy x — k+17).
In particular, the natural density of the set S,x_; in N exists and is equal to
lim S1(x) = 1
X——+00 X 6

Moreover, there exist increasing sequences (m;)en, (n1)ien C N such that

2k72

m
Sor_q(my) — fl ~ 3 log, my,
n k=2
Sok_q1(n1) — gl ~—=3 log, n.
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Computational results, questions, problems and conjectures

It is natural to ask whether it is possible to obtain results concerning the
representation of by, (n) as a sum of three squares for any m € N,.

Problem 1

Describe the set Sp, for m € N
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Computational results, questions, problems and conjectures

It is natural to ask whether it is possible to obtain results concerning the
representation of by, (n) as a sum of three squares for any m € N,.

Problem 1

Describe the set Sp, for m € N

The direct approach we, namely reduction modulo a power of 2, is most
likely not applicable in the general case, as it seems that for all m # 2% — 1
the valuations v»(bm(n)) are unbounded. In such a case one would need to
compute bp,(n) mod 2v2(bm(M)+3 3nd we do not see how this can be done
without prior knowledge of v2(bm(n)). Therefore, we expect that obtaining
an exact description of S,, for even a single value m # 2¥ — 1 is hard.
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We obtained precise characterization of those n € N such that b(n) is a
sum of three squares. In particular the set of such numbers has asymptotic
density equal to 11/12. A more difficult question is whether the set

Ti={neN: b(2n)=0+0}

is infinite or not.
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We obtained precise characterization of those n € N such that b(n) is a
sum of three squares. In particular the set of such numbers has asymptotic
density equal to 11/12. A more difficult question is whether the set

Ti={neN: b(2n)=0+0}

is infinite or not.

To get a clue what can be expected, we computed the values of b(2n) for
n < 2% and check whether b(2n) is a sum of two squares. We put

Ti(x) = #(Ti N[0, x]).
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In the table below we present the values of 7(2") for n < 20.

n i 2 3 Z 5 6 7 8 9 10

T | 2 3 6 8 4 21 37 64 106 174
n | 11 12 13 14 15 16 17 18 19 20

7(2") | 325 617 1080 2018 3699 6804 12551 23624 44606 84176
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In the table below we present the values of 7(2") for n < 20.

n i 2 3 Z 5 6 7 8 9 10

T | 2 3 6 8 4 21 37 64 106 174
n | 11 12 13 14 15 16 17 18 19 20

7(2") | 325 617 1080 2018 3699 6804 12551 23624 44606 84176

Our numerical computations suggest the following

The set T is infinite. I
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In the table below we present the values of 7(2") for n < 20.

n i 2 3 Z 5 6 7 8 9 10

T | 2 3 6 8 4 21 37 64 106 174
n | 11 12 13 14 15 16 17 18 19 20

7(2") | 325 617 1080 2018 3699 6804 12551 23624 44606 84176

Our numerical computations suggest the following

The set T is infinite. I

What is the asymptotic behaviour of T(x) as x — +00? Is the equality
T(x) = O(x/ log x) true?
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We obtained precise characterization of those n € N such that b(2n) is a
sum of three squares. In particular the set of such numbers has natural
density equal to 5/6. Analyzing, for a given n not of the form

2%*1(8s + 2t; + 3), the solution set (x, y, z) of the equation

b(2n) = x*> + y? + Z%, we found that in many cases one of the values

X, Y,z is a square, i.e., the Diophantine equation

b2n) =X*+Y*+Z*

has a solution in non-negative integers.
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We obtained precise characterization of those n € N such that b(2n) is a
sum of three squares. In particular the set of such numbers has natural
density equal to 5/6. Analyzing, for a given n not of the form

2%*1(8s + 2t; + 3), the solution set (x, y, z) of the equation

b(2n) = x*> + y? + Z%, we found that in many cases one of the values

X, Y,z is a square, i.e., the Diophantine equation

b2n) =X*+Y*+Z*

has a solution in non-negative integers.

More precisely, for n < 10% we know that there are exactly 916 values of n
such that b(2n) is a sum of three squares. Among them, there are exactly
831 values of n such that b(2n) is a sum of two squares and a fourth
power. This large number of solutions suggest the following

Let @ :={neN: b(2n) = x* + y* + z* for some x,y,z € N}. The set Q; is
infinite. Moreover, the set Q1 has positive natural density in N.
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Thank you for your attention;-)
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