New advances in the study of the ternary purely
exponential Diophantine equation a* + b’ = ¢*

Maohua Le, Reese Scott, Robert Styer

Lingnan Normal University, Independent, Villanova University

12 May 2023




Let N(a, b, c) be the number of solutions in positive integers
(x,y, z) to the equation

X+ b =c*abceZt b>a>1gcd(ab)=1, (1)

with a, b, ¢ not perfect powers.



Conjecture (Cases with N(a, b, c) > 1)
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The Pillai Case

A special case of the title equation is the familiar Pillai equation:
let P(d, b, c) equal the number of solutions (x,y, z) (with ¢ and b

not perfect powers) to

c—b' =d,d>0,gcd(b,c)=1.

(2)

Bennett conjectured that P(d, b, c) = 1 except for the following

cases:

P(1,2,3) =
P(3,5,2) =
P(5,3,2) =
P(13,3,2)
)
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Conjecture (Revised by removing trivial rearrangements)

Let N(a, b, c) equal the number of solutions (x,y,z) to

a4+ b = ¢#, now allowing a =1 (in which case N(a, b, c) is the
number of solutions (y, z) to a* + b¥ = ¢*). Then N(a,b,c) =1
except for the following cases and trivial rearrangements of these
cases:

N(1,2,3)=2:(y,z) = (1,1),(3,2),
N(3,5,2) =3: (x,y,z) = (1,1,3),(3,1,5),(1,3,7),
N(3,13,2) =2 : (x,y,z) = (1,1,4),(5,1,8),
N(3,10,13) =2 (x,y,2) = (1,1,1),(7,1,3),
N(2,89,91) =2 : (x,y,z) = (1,1,1),(13,1,2),
N(2,5,3) =2:(x,y,2) = (1,2,3),(2,1,2),
N(2,3,5) =2:(x,y,z) = (1,1,1),(4,2,2),
N(2,7,3) =2: (x,y,2) = (1,1,2),(5,2,4),
N(2,2" —1,2"+1) =2: (x,y,2) = (1,1,1),(r +2,2,2),r > 3.



Double Solutions

Known cases of (a, b, ¢) giving exactly two solutions to
a* 4+ b¥ = c¢* are of three types:
» Cases in which at least one exponent is the same in both
solutions, giving a Pillai case.
» (a,b,c) or (a,b,c?) equals (2,27 —1,2" 4+ 1), r > 0, giving a
Mersenne-Fermat case.
» (a,b,c) =(2,5,3): (x,y,2) =(1,2,3), (2,1,2), the only case
not related to a Pillai case or the Mersenne-Fermat infinite
family.



Eight Cases we will consider

P atmost2 versus atmostl
» ¢ — b¥ =d (Pillai) versus a* + b’ = ¢* (general)
P> Prime bases versus unrestricted positive integer bases



Methods Used

Difference between methods needed for prime bases and methods
needed for unrestricted bases.
RED indicates prime bases.
BLUE indicates unrestricted bases.
PURPLE indicates method of proof uses ideals in imaginary
quadratic fields or other elementary methods.
GREEN indicates method of proof uses lower bounds on linear
forms in logs or other deeper methods.

indicates complete proof for the case in question.



atmost2Pillai (¢ — b = d)

Bennett, On some exponential equations of S. S. Pillai, CJM, 2001.

¢ prime: at most two solutions to
cc—b=d

(Section 2 of Bennett 2001
summarizes earlier results for ¢
prime which include atmost2).
Ideals in imaginary quadratic
fields is all that is needed
(elementary)

C any positive integer: atmost2
solutions to ¢ — b = d
(Section 3 of Bennett 2001 gives
the proof.)

Lower bounds on linear forms in
logs used in proof (Mignotte
1998).



atmost2 for a* + b¥ = ¢*

Early results with prime bases:
Nagell (1958), Le (1985), Cao
(1991).

¢ prime: at most two solutions to
a*+ b =c* ~ Shown using
ideals in imaginary quadratic
fields (Theorem 6 of Scott, 1993)

At most two solutions to

a* + b = ¢* (allowing
composite bases) with one
exceptional (a, b, ¢) (Miyazaki
and Pink, Number of solutions to
a special type of unit equation in
two variables, to appear in Amer.
J. Math.

(Details follow.)



atmost2 for general case (a*¥ + b = ¢?)

Best available published bound before recent work:

N(a, b, c) < 236 (derived from Beukers and Schlickewei, 1996).
Possible unpublished bound: N(a, b, c) < 200 (Hirata-Kohno?)
Recent results showing N(a, b,c) < 2:

» ¢ odd (Scott and Styer. Number of Solutions to a* + b” = ¢
, Debrecen, 2016.)

» c even and max(a, b, c) > 10°2 (Hu and Le. An upper bound
for the number of solutions of ternary purely exponential
Diophantine equations, Il, Debrecen 2019.)

» ¢ even and max(a, b, ¢) < 102 (Miyazaki and Pink. Number
of solutions to a special type of unit equation in two variables,
to appear in Amer. J. Math.)



Miyazaki and Pink

Two main steps:

» Results of Hu and Le (2009) used and improved to reduce
bound on max(a, b, ¢) when 3 solutions exist.

» Assuming 3 solutions, (x;, yi,z), i =1,2,3, with
z1 < zp < z3, sharp bounds on x1, y1, z1, X2, V2, Z» are
obtained using 2-adic arguments made possible by assuming ¢
is even (using Scott and Styer 2016).

> Additional theoretical maneuvers.

» Extensive calculations.



c even and max{a, b, c} > 10° (Hu and Le, 2019)

Earlier result of Hu and Le:

max{x, y, z} < 6500(log(max{a, b, c}))3

linear forms in logs (Laurent, Mignotte, Nesterenko, 1995)

linear forms in p-adic logs (Bugeaud, 1999)
Now elementary approaches suffice, using ¢ even:

Lemma 4.6 bounds max{a, b, c} when 3 solutions satisfying
certain conditions exist.

When Lemma 4.6 does not apply, continued fractions are
derived from the exponents x;, y;, z; which lead to an upper bound
on max{a, b, c}.



c odd (Scott and Styer 2018)

Lower bounds on linear forms in logs not needed.
Consider solutions (A, B, z) to the equation

A+B=c? (+)
where ¢ > 1 and AB =[[;_, p/", oj > 0.
[A— B+2V—AB] = ¢*.

Let w be the number of primes dividing ¢: number of solutions to
(*) bounded by 2"*“~1. To improve this to 2"~ 4 1:

Let p be the number of parity classes possible for «;, let g be the
number of ideal factorizations possible for a given parity class of «;.

pg=2""1.

(Scott and Styer, Two terms with known prime divisors adding to
a power, Debrecen, 2018.)



atmost1Pillai (¢ — b = d)

c prime, (Bennett 2001): b and d not

necessarily prime.
At most one solution when ¢ = 2, 3, 5, 17,

257, 65537.

¢ = 2 handled in Section 2 of Bennett 2001.

¢ a Fermat prime handled in Section 7 of
Bennett 2001.
b, ¢ prime, b # 1 mod 12 (Scott Styer 2004):
» if c? — b¥ = d has two solutions, ¢ must
be a base b Wieferich prime, with five
listed exceptions (linear forms in logs).
» At most one solution to ¢ — b¥ = d
when either b > % or ¢ > 3%, excepting
listed (b, c,d) (linear forms in logs).

Bennett 2001:
> d> ch2 log(c)
» at most one
solution with
b¥ > 6000d.
Using lower bounds
on linear forms in
logs.



atmostl (a* + b’ = ¢?)

a, b, c primes:

New results for prime
bases discussed in the
remaining slides.

“On a conjecture
concerning the number of
solutions to a* + b¥ = ¢Z,
I1.” Le, Scott, Styer,
arXiv:2211.13378

Allowing composite a, b, ¢

Miyazaki and Pink (arXiv:2205.11217)
At most one solution (with listed
exceptions) for ¢ =2, 3, 5, 6, 17, 257,
65537.

Note that ¢ = 6 was not even handled
for Pillai case!

¢ = 6 is the first composite value
completely handled.

Infinite number of values of ¢ reduced
to a finite (albeit impractical) search.
This case (allowing composite a, b, c)
already handled in the Debrecen
seminar last November by Miyazaki.



atmostl for general case (8 + b¥ = ¢?) for prime bases

Quite different methods for prime bases than for composite bases.
Let S(a, b, c) be the number of solutions in positive integers
(x,y, z) to the equation

a+ b’ =c?a,b,cprime,a<b.

Conjecture

For a, b, and c distinct primes with a < b, we have S(a, b,c) <1,
except for

(i) 5(2,3,5) =2, (x,y,z) = (1,1,1) and (4,2,2).

(i) S(2,3,11) = 2, (x,y,2) = (1,2,1) and (3,1,1).

(iii) $(2,5,3) = 2, (x,y,2) = (1,2,3) and (2,1,2).

(iv) 5(2,7,3) =2, (x,y,z) = (1,1,2) and (5,2, 4).

(v) 5(3,5,2) =3, (x,y,z) =(1,1,3), (1,3,7), and (3,1,5).

(vi) $(3,13,2) =2, (x,y,z) = (1,1,4) and (5,1,8).



atmost1 for general case for prime bases, continued

Well known elementary results summarized in Section 2 of Bennett
2001 immediately give:

If two solutions (x1, y1,21) and (x2, y2, z2) to a* + b¥ = ¢ occur
and (a, b, ¢) is not equal to (2,3,5), (2,3,11), (2,5,3), (2,7,3),
(3,5,2), (3,13,2), we must have

2 4+ P =¢

and
22 4 b7 =c®,2, > 1.

Red exponents are even, blue exponents are odd.



atmost1 for general case for prime bases, continued

From these two equations it follows that we must have one of six
cases:
b=2mod 3:
xp>1,yp>1,
xp>1, yo =1,
xp=1,yp > 1.
b=1mod 3:
b =13 mod 24, ¢ = 5 mod 24,
b =13 mod 24, ¢ = 17 mod 24,
b=1mod 24, c =17 mod 24.
These six cases are handled in six completely different ways.



atmost1 for general case for prime bases, continued

b=2mod 3, xo > 1, y» > 1: handled using deep result of Bennett
and Skinner (2004).

b=2mod 3, xo > 1, y» = 1: handled using Bauer and Bennett
(2002).

b=2mod3, xo =1, y» > 1: handled using Bennett (2008).

Deep methods required.



atmost1 for general case for prime bases, continued

b =13 mod 24, ¢ = 5 mod 24: handled using special properties of
special continued fractions.

b= 13 mod 24, ¢ = 17 mod 24: handled using the theory of
quartic residues (as proved by Dirichlet).

b=1mod 24, c = 17 mod 24: not yet completely handled.
Methods used here are elementary.



The unhandled case, prime bases

The case b =1 mod 24, ¢ = 17 mod 24 gives more parity
restrictions on the exponents:

If two solutions (x1, y1,21) and (x2, y2, 22) to a* + b¥ = ¢ occur
and (a, b, ¢) is not equal to (2,3,5), (2,3,11), (2,5,3), (2,7,3),
(3,5,2), (3,13,2), we must have

24t =

and
2% 4+ b2 =c*,20 > 1.

Red exponents are even, blue exponents are odd.
From these two equations the following restrictions are derived:



The unhandled case, continued

v

a=2, b=1mod 48, c =17 mod 48;

b>10% c > 10%;

at least one of the multiplicative orders up(c) or uc(b) must
be odd (where up(n) is the least integer t such that

nt =1 mod p);

2 must be an octic residue modulo ¢ except for one specific
case;

2 | vo(b — 1) < va(c — 1) (where va(n) satisfies 22(") || n);

there must be exactly two solutions (xi, y1,z1) and (x2, y2, 22)
with 1 = z; < 2 and either x; > 28 or x, > 88.



Unlikelihood of further solutions

_ log(c)
~ log(rad(abc))
Then for the equation 2°2 + b2 = ¢®2 we have
0- 2 log(c) S 3log(c)
~ log(2) + log(b) + log(c) ~ (3/2)log(c) + log(2)
—2- 2log(2) > 1.97.

(3/2) log(c) + log(2)

The highest value for Q found in recent researches on the abc
conjecture is Q = 1.62991 for (a, b, c) = (2,3%° - 109, 23%). If
zo > 3, then we have Q > 3.29: if a conjecture of Tenenbaum
(quoted in Section B19 of Guy) is true, then Q = 3.29 is
impossible, so that z, = 3.



bounds on b and c for a, b, ¢ all prime

If a° + b¥ = ¢# has more than one solution:

b > 10°

c > 10"

Some key ideas: z; = 1, and z must divide the class number of
Q(v/—b). Examine exponents modulo small primes to eliminate
values of b < 10°.

Details in Section 5 of “On a conjecture concerning the number of
solutions to a* + b = ¢* ", Le and Styer, BAMS, 2022.



Bounds on a, b, ¢ not necessarily prime

Styer recently showed that the general conjecture (allowing
composite bases) holds for a, b < 1000, ¢ < 1010.
» The c even case uses the ideas of Miyazaki and Pink (to
appear).
» The c odd case also includes ideas of Scott (1993).



The unhandled case, with prime bases

b=1mod 48, c = 17 mod 48:

If two solutions (x1, y1,21) and (x2, y2, z2) to a* + b = ¢ occur
and (a, b, ¢) is not equal to (2,3,5), (2,3,11), (2,5,3), (2,7,3),
(3,5,2), (3,13,2), we must have

24t =

and
2% 4+ b2 =c*?,2 > 1.

Red exponents are even, blue exponents are odd.

These two equations lead to many restrictions as outlined above.
Will new methods be required to finish this case?



