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Differences between perfect powers : Catalan’s Conjecture

Theorem (Mihăilescu, 2004)

If x, y, n and m are positive integers with n,m ≥ 2, then the
equation

xm − yn = 1

has only the solution (x, y,m, n) = (3, 2, 2, 3).

Question Is there another gap of length 2 other than that
following 25? i.e. What about the equation

xm − yn = 2?
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Conjecture If c is a positive integer, then there are at most
finitely many positive integers x, y,m and n with m,n ≥ 2
such that

xm − yn = c.

i.e. the length of the gaps in the sequence of perfect powers
goes to ∞.

This conjecture is open for every c > 1.
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Gaps between squares and other powers

If we denote by P (m) the greatest prime divisor of a nonzero
integer m, we may prove that there exists an absolute positive
constant c such that

P (x2 − yn) ≥ c log n

and, for suitably large x,

P (x2 − yn) ≥ log log y

30n
.
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What we’ll focus on

We will consider the equation

x2 +D = yn,

in situations where either

1 D is a fixed integer, or

2 the prime divisors of D belong to a fixed, finite set of
primes S.

These problems are generally known as Lebesgue-Nagell
equations.

The aforementioned results from linear forms in logarithms
imply the existence of an algorithm to solve such equations.
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A sketch of how such results are proved

Consider the equation

x2 +D = yn.

Then if we have

±x+
√
−D = (a+ b

√
−D)n,

for integers a and b, it follows that we have a solution to our
equation with y = a2 +Db2.



The Lebesgue-
Nagell

equation

Michael
Bennett

A sketch of how such results are proved: continued

Now the existence of integers a and b for which

±x+
√
−D = (a+ b

√
−D)n

is necessary in order to have a solution to x2 +D = yn if

D 6≡ 3 mod 4,

the question of units did not arise,

Q(
√
−D) has class number one,

D is squarefree, and

the factors ±x+
√
−D are coprime.
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A sketch of how such results are proved: continued

If we have
±x+

√
−D = (a+ b

√
−D)n

then, writing α = a+ b
√
−D,

αn − αn = 2
√
−D

and so ∣∣∣n log
(α
α

)
− kπi

∣∣∣ =
∣∣∣n log

(α
α

)
− k log(−1)

∣∣∣
is really small, for a suitable choice of k.

Lower bounds for
linear forms in two complex logarithms then gives an upper
bound upon n.
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Moreover

For each fixed n ≥ 3, the equation

±x+
√
−D = (a+ b

√
−D)n

leads to a degree n Thue equation.

Also, writing

Ln =
αn − αn

α− α
,

we may show that Ln is a Lucas sequence, and that Ln = ±1.

The Primitive Divisor Theorem of Bilu, Hanrot and Voutier
then provides a very sharp bound upon n.
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More generally : the easy cases

Similar arguments work for the equation

x2 +D = yn,

where we assume

D > 0,

gcd(x,D) = 1,

y is odd, and

gcd(n, h(Q(
√
−D)) = 1.
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More generally : the easy cases

This enable one to easily solve, by way of example, the equation

x2 +D = yn,

if

e.g. D = 5, or

e.g. D = 2a3b11c, etc

There is a very extensive literature on equations solved via
appeal to the Primitive Divisor Theorem.
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A hard case : D = −2

Consider the equation

x2 − 2 = yn.

Linear forms in logs enable us to explicitly bound x, y and n. In
fact, we have (assuming that n is prime), n ≤ 4111.

For each fixed smaller n ≥ 3, solutions to our equations
correspond to solutions to a given Thue equation of the shape
F (a, b) = ±1. Here, F (a, b) is a binary form over Z[a, b] of
degree n.

We’re left with prime n, 41 ≤ n ≤ 4111, n ≡ 13, 17, 19, 23
mod 24.
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Our focus

We consider the equations

x2 + 2α3β5γ7δ11τ = yn

and
x2 ± qa = yn,

where q is prime and primitive divisor arguments fail.
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i.e., we will consider equations of the shape

x2 + 2α3β5γ7δ11τ = yn,

x2 − qa = yn

and
x2 + qa = yn,

where q is prime and, in the last case, q ≡ 7 mod 8.
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The equation x2 + 2α3β5γ7δ11τ = yn

Theorem (B., Siksek, 2022)

There are precisely 1240 solutions to the equation

x2 + 2α3β5γ7δ11τ = yn,

in integers, with x, y positive, gcd(x, y) = 1 and n ≥ 3. They
are distributed as follows.

n #(x, y) n #(x, y) n #(x, y) n #(x, y)

3 755 7 5 12 4 26 1
4 385 8 17 13 1
5 11 9 1 14 4
6 51 10 4 15 1

The hard cases for the proof occur when α = 0, and where,
writing

3β5γ7δ11τ = c2d

with d squarefree, we have d ∈ {7, 15, 55, 231} (so that we may
have y even).
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Ingredients in the proof

x2 + 2α3β5γ7δ11τ = yn

1 appeal to bounds for linear forms in two p-adic logarithms

2 refined use of lower bounds for linear forms in two and
three complex logarithms

3 efficient sieving with Frey-Hellegouarch curves

4 a computationally efficient approach to treat the genus
one curves encountered when solving the equation for
n ∈ {3, 4}

5 new practical techniques for solving Thue-Mahler
equations of moderate (n ≤ 13) degree.
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Linear forms in p-adic logarithms

x2 + 2α3β5γ7δ11τ = yn

With α = 0, 3β5γ7δ11τ = c2d, d ∈ {7, 15, 55, 231} and y even,
we apply bounds for p-adic logarithms with p ∈ {3, 5, 7, 11}
and, when all is said and done, obtain from our lower bounds
for linear forms in three complex logarithms, essentially the
same upper bound upon n as one does for the equation

x2 + d = yn.
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Upper bounds on n and elliptic curve obstructions

d N(d) Primes 13 ≤ n < N(d) Pairs (E, d)

7 6× 108 31324698 39

15 4× 108 21336321 28

55 5× 108 26355862 27

231 1.2× 109 60454700 20

Table: The table records the number of primes in the interval
13 ≤ n < N(d) and the number of pairs (E, d).
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Efficient sieving with Frey-Hellegouarch curves I

We applied an argument originally due to Kraus to the
remaining ≈ 3.7× 109 triples (E, d, n). For each such triple,
we searched for a prime q = kn+ 1 with k < 103 such that a
particular technical hypothesis was satisfied. This computation
took around 29000 hours, but was in fact distributed over 64
processors, and finished in around 20 days. For all but 1230 of
the 3739782484 triples (E, d, n) the script found some q which
enabled us to eliminate the triple. We are therefore reduced to
considering the remaining 1230 triples (E, d, n); we note that
the largest value of n appearing in any of these triples is
n = 1861 and this corresponds to E being the elliptic curve
with Cremona label 210A1 and d = 15.
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Efficient sieving with Frey-Hellegouarch curves II

For the remaining triples, we applied a more refined sieve, using
several auxiliary primes simultaneously and applying additional
symplectic criteria. We reached an empty intersection in 1224
cases. The remaining 6 cases are as follows :

Elliptic Curve d n

462b1 231 13

462f1 231 13

2310j1 231 13

2310l1 231 13

2310m1 231 13

2310o1 15 13
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Efficient sieving with Frey-Hellegouarch curves III

To eliminate the first 5 of these cases, we make use of the
following result of Halberstadt and Kraus :

Theorem (Halberstadt and Kraus)

Let E1 and E2 be elliptic curves over Q and write ∆j for the
minimal discriminant of Ej . Let n ≥ 5 be a prime such that
ρE1,n ∼ ρE2,n. Let q1, q2 6= n be distinct primes of
multiplicative reduction for both elliptic curves such that
ordqi(∆j) 6≡ 0 (mod n) for i, j ∈ {1, 2}. Then

ordq1(∆1) · ordq2(∆1)

ordq1(∆2) · ordq2(∆2)

is congruent to a square modulo n.
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The remaining obstruction

We are left with the last triple, which we are unable to
eliminate by any of our sieving.

This is because it arises from a solution to our equation, namely

81432 + 33 · 5 · 72 · 112 = 413.

We are thus forced to solve the equation

x2 + 3β5γ7δ11τ = y13,

with y even, βγ ≡ 1 mod 2 and δ ≡ τ ≡ 0 mod 2.
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A Thue-Mahler equation

Standard arguments reduce this problem to that of solving the
Thue-Mahler equation

F13(r, s) =

13∑
i=0

air
13−isi = ±4 · 3β3 · 5β5 · 7β7 · 11β11 ,

where
i ai i ai i ai
0 1 5 36036 10 195624
1 0 6 −34320 11 −95160
2 −312 7 −226512 12 −51428
3 −1144 8 −66924 13 924.
4 8580 9 340340
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A Thue-Mahler equation

The only solution is with

r = 0, s = ±1, β3 = 1, β5 = 0, β7 = 1 and β11 = 1.

This corresponds to the identity

81432 + 33 · 5 · 72 · 112 = 413.
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Finishing touches : small values of n

1 n = 3 – solutions correspond to elliptic curves over Q with
good reduction outside {2, 3, 5, 7, 11}.

2 n = 4 – solutions correspond to solutions to equations of
the shape u+ v = z2, where u and v are S-units for
S = {2, 3, 5, 7, 11}.

3 n = 5 – Thue-Mahler equations.
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x2 − qa = yn : earlier work . . . linear forms in logarithms

Theorem (Bugeaud, 1997)

If x, y, n and a are positive integers with y odd, and q is an
odd prime with gcd(x, q) = 1 and

x2 − qa = yn,

then
n < 4.5× 106q2 log2 q.

The bounds on n in case y is even, or for the equation
x2 + qa = yn are quite a bit worse.
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x2 − qa = yn : earlier work . . . Frey curves

Theorem (Ivorra and Kraus, 2004)

“Solves” the more general equation

xn + qayn = z2,

unless q can be written in the form

q = |t2 ± 2k|,

where t and k are integers, with k = 0, k = 3 or k ≥ 7.



The Lebesgue-
Nagell

equation

Michael
Bennett

Frey curves, continued

The primes q with q < 100 that are not of the form |t2 ± 2k|,
for t and k integers, with k = 0, k = 3 or k ≥ 7, are

q ∈ {11, 13, 19, 29, 43, 53, 59, 61, 67, 83}.



The Lebesgue-
Nagell

equation

Michael
Bennett A conclusion : the good news

The modular method (based on the modularity of Galois
representations attached to Frey curves) enable one to solve
equations like

x2 − qa = yn

and
x2 + qa = yn,

“completely”, without recourse to linear forms in logarithms,
for most primes q.
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A conclusion : the bad news

The modular method, at least with current technology, does
not appear to be able to fully solve equations like

x2 − qa = yn,

when, say, q = 3 or q = t2 + 1, for t an integer, even with all
the help linear forms in logarithms can provide.
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What about the ugly?

What if q = |t2 ± 8| or q = |t2 ± 2k|, with k ≥ 7, but
q 6= u2 ± 1, for every u ∈ Z?
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Theorem (B., Siksek, 2022)

If q ∈ {7, 11, 13, 19, 23, 29, 31, 43, 47, 53, 59, 61, 67, 71, 79, 83},
then there are no solutions to the equation

x2 − qa = yn,

in integers x, y and a with q - x and prime n ≥ 7.
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Theorem (B., Siksek, 2022)

If x, y, q, a and n are positive integers with q prime,
2 ≤ q < 100, q - x, n ≥ 3 and

x2 + qa = yn,

then n = 3 or (q, a, y, n) is one of

(2, 5, 3, 4), (7, 1, 2, 4), (7, 2, 5, 4), (7, 1, 2, 5),
(7, 1, 8, 5), (7, 1, 2, 7), (7, 3, 2, 9), (7, 1, 2, 15),
(17, 1, 3, 4), (19, 1, 55, 5), (23, 3, 78, 4), (23, 1, 2, 5),
(23, 1, 2, 11), (29, 2, 5, 7), (31, 1, 4, 4), (31, 1, 2, 5),
(31, 1, 2, 8), (41, 2, 29, 4), (41, 2, 5, 5), (47, 1, 3, 5),
(47, 1, 2, 7), (53, 1, 3, 6), (71, 1, 6, 4), (71, 1, 3, 7),
(71, 1, 2, 9), (79, 1, 2, 7), (83, 1, 3, 9) or (97, 1, 7, 4).
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Ingredients in the proofs

x2 ± qa = yn

1 Refinements in the modular method, using auxiliary
primes,

2 Minor sharpenings of complex linear form bounds,

3 Careful use of bounds for q-adic logarithms, and

4 Sieving using Frey curves, symplectic criteria and primes
≡ 1 mod n.
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x2 − 2 = yn, (1)

x2 − q2k+1 = yn, 2 - y, (2)

for q ∈ {3, 5, 17, 37, 41, 73, 89}, and

x2 − q2k+1 = yn, 2 | y, (3)

for q ∈ {17, 41, 89, 97}.
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Remaining unsolved cases for x2 − qa = yn, q < 100

The fundamental obstructions to resolving equation (3)
correspond to the identities

232 − 17 = 29, 132 − 41 = 27, 912 − 89 = 213

and 152 − 97 = 27.
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Remaining unsolved cases for x2 − qa = yn, q < 100

Theorem (B., Michaud-Jacobs, Siksek, 2022)

Let q ∈ {41, 97}. Then the solutions to the equation

x2 − q2k+1 = yn, 2 | y,

in integers x, y, k, n, with x, k ≥ 0, n ≥ 3 and gcd(x, y) = 1
are as follows:

(q, x, y, k, n) = (41, 3,−2, 0, 5), (41, 7, 2, 0, 3), (41, 13, 2, 0, 7),
(41, 411, 10, 1, 5), (97, 15, 2, 0, 7) and (97, 77, 18, 0, 3).
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We overcome our obstructions through the use of Q-curves and
multi-Frey techniques.

The identities 132 − 41 = 27 and 152 − 97 = 27 have
corresponding Frey Q-curves without multiplicative reduction
at primes above 2.

Regrettably, this fails to be the case for the identities
232 − 17 = 29 and 912 − 89 = 213.


