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If x,y,n and m are positive integers with n, m > 2, then the
equation

:L'm—yn=1

has only the solution (z,y, m,n) = (3,2,2,3).
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Differences between perfect powers : Catalan's Conjecture J

Theorem (Mihailescu, 2004)
If x,y,n and m are positive integers with n,m > 2, then the
equation

" -y =1

has only the solution (x,y, m,n) = (3,2,2,3).

Question Is there another gap of length 2 other than that
following 257 i.e. What about the equation

" —y" =27



PlecCane ]

Conjecture If ¢ is a positive integer, then there are at most
finitely many positive integers x,y, m and n with m,n > 2
such that
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Conjecture If ¢ is a positive integer, then there are at most
finitely many positive integers x,y, m and n with m,n > 2
such that

i.e. the length of the gaps in the sequence of perfect powers
goes to oo.
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Pillai's Conjecture

Conjecture If ¢ is a positive integer, then there are at most
finitely many positive integers x,y, m and n with m,n > 2
such that

i.e. the length of the gaps in the sequence of perfect powers
goes to oo.

This conjecture is open for every ¢ > 1.
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If we denote by P(m) the greatest prime divisor of a nonzero
integer m, we may prove that there exists an absolute positive
constant ¢ such that

P(z* —y™) > clogn
and, for suitably large =z,

loglogy

P(z? —y") >
(@ =y") = =55,



(What welll focusion Iy

We will consider the equation

2’ +D=y",

in situations where either
@ D is a fixed integer, or

@ the prime divisors of D belong to a fixed, finite set of
primes S.
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What we'll focus on

We will consider the equation
2 _.n
x4+ D =y",

in situations where either
@ D is a fixed integer, or

@ the prime divisors of D belong to a fixed, finite set of
primes S.

These problems are generally known as Lebesgue-Nagell
equations.
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What we'll focus on

We will consider the equation
2 _.n
x4+ D =y",
in situations where either
@ D is a fixed integer, or
@ the prime divisors of D belong to a fixed, finite set of
primes S.
These problems are generally known as Lebesgue-Nagell
equations.

The aforementioned results from linear forms in logarithms
imply the existence of an algorithm to solve such equations.
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Consider the equation

2?2+ D =y
Then if we have
tz++vV—-D = (a+bv—D)",

for integers a and b, it follows that we have a solution to our
equation with y = a? + Db
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Now the existence of integers a and b for which
tr++vV-D = (a+bv-D)"

is necessary in order to have a solution to 22 + D = y" if
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Now the existence of integers a and b for which
tr++vV-D = (a+bv-D)"

is necessary in order to have a solution to 22 + D = y" if
e D #3 mod 4,
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Now the existence of integers a and b for which
tz+vV—-D=(a+bvV—-D)"

is necessary in order to have a solution to 22 + D = y" if
e D #3 mod 4,
@ the question of units did not arise,
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Now the existence of integers a and b for which
tz+vV—-D=(a+bvV—-D)"

is necessary in order to have a solution to 22 + D = y" if
e D #3 mod 4,
@ the question of units did not arise,
e Q(v/—D) has class number one,
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A sketch of how such results are proved: continued

Now the existence of integers a and b for which
tzx++vV—-D=(a+bv/—D)"

is necessary in order to have a solution to > + D = y" if
e D #3 mod 4,
@ the question of units did not arise,
e Q(v/—D) has class number one,

@ D is squarefree, and
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A sketch of how such results are proved: continued

Now the existence of integers a and b for which
tzx++vV—-D=(a+bv/—D)"

is necessary in order to have a solution to > + D = y" if
e D #3 mod 4,
@ the question of units did not arise,
e Q(v/—D) has class number one,
@ D is squarefree, and
e the factors +2 + /—D are coprime.
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If we have

tr++vV—-D = (a+bv—-D)"
then, writing a« = a 4+ bv—D,

o —a" =2v/—-D
and so
‘nlog (%) — km” = ’nlog (%) - klog(—l)‘

is really small, for a suitable choice of k.
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If we have

tz+vV—-D=(a+bvV—-D)"
then, writing « = a + b/ —D,

and so
‘nlog (%) — k:m" = ‘nlog (%) — klog(—1)

is really small, for a suitable choice of k. Lower bounds for
linear forms in two complex logarithms then gives an upper
bound upon n.



Moreover

For each fixed n > 3, the equation
tr++vV—-D = (a+bv—-D)"

leads to a degree n Thue equation.




Moreover

For each fixed n > 3, the equation
tz++vV—-D=(a+bv—D)"

leads to a degree n Thue equation.

Also, writing
n -n
a — @
Ln = —_ 5
a—Q

we may show that L, is a Lucas sequence, and that L, = +1.
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Moreover

For each fixed n > 3, the equation
tz++vV—-D=(a+bv/—-D)"
leads to a degree n Thue equation.

Also, writing
n —-Nn
a" -«
Ln = —
a—Q

we may show that L,, is a Lucas sequence, and that L, = +1.

The Primitive Divisor Theorem of Bilu, Hanrot and Voutier
then provides a very sharp bound upon n.



I,

Similar arguments work for the equation

2 +D=y"
where we assume
e D >0,
e ged(x, D) =1,
@ y is odd, and

o ged(n, H(Q(V=D)) = 1.



e,

This enable one to easily solve, by way of example, the equation

2?4+ D =y",
if
eeg D=5 or
e eg. D =2%3"11°, etc



e,

This enable one to easily solve, by way of example, the equation

22+ D =1y,
if
eeg D=5 or
e eg. D =2%3"11¢, etc

There is a very extensive literature on equations solved via
appeal to the Primitive Divisor Theorem.



Ahardicase: D=2y

Consider the equation




Ahardicase: D=2y

Consider the equation

T —2=y9".

Linear forms in logs enable us to explicitly bound z,y and n. In
fact, we have (assuming that n is prime), n < 4111.
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A hard case : D = —2

Consider the equation

T —2=y9".

Linear forms in logs enable us to explicitly bound =,y and n. In
fact, we have (assuming that n is prime), n < 4111.

For each fixed smaller n > 3, solutions to our equations
correspond to solutions to a given Thue equation of the shape
F(a,b) = £+1. Here, F(a,b) is a binary form over Z[a, b] of
degree n.
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n

T —2=y9".

Linear forms in logs enable us to explicitly bound =,y and n. In
fact, we have (assuming that n is prime), n < 4111.

For each fixed smaller n > 3, solutions to our equations
correspond to solutions to a given Thue equation of the shape
F(a,b) = £+1. Here, F(a,b) is a binary form over Z[a, b] of
degree n.

We're left with prime n, 41 <n <4111, n =13,17,19,23
mod 24.



Ourforss

We consider the equations

a? + 27305770117 = "

and
gt =y,

where ¢ is prime and primitive divisor arguments fail.



(Quur foeus : continued

i.e., we will consider equations of the shape

2?4+ 27305 7117 =y,

and
2 4 q" = y",

where ¢ is prime and, in the last case, ¢ =7 mod 8.



™ The equation a? + 2375777117 = y"

equation

Michael

Bennett Theorem (B_, Siksek, 2022)

There are precisely 1240 solutions to the equation
2% + 22385770117 = 7,

in integers, with x,y positive, gcd(x,y) = 1 and n > 3. They
are distributed as follows.

n| #@y) | n | #@y) | 0| #@y | 0| #@y)
3] w5 [7] 5 [12] 4 [26] 1
4] 38 | 8| 17 |13] 1

50 11 |9 1 14| 4

6| 51 |10] 4 |15| 1
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Ingredients in the proof

© 0

© 0

2 + 29305770117 = o

appeal to bounds for linear forms in two p-adic logarithms
refined use of lower bounds for linear forms in two and
three complex logarithms

efficient sieving with Frey-Hellegouarch curves

a computationally efficient approach to treat the genus
one curves encountered when solving the equation for

n € {3,4}

new practical techniques for solving Thue-Mahler
equations of moderate (n < 13) degree.
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Linear forms in p-adic logarithms

22 + 29385770117 = ¢
With a = 0, 3°577°117 = ¢%d, d € {7,15,55,231} and y even,
we apply bounds for p-adic logarithms with p € {3,5,7,11}
and, when all is said and done, obtain from our lower bounds
for linear forms in three complex logarithms, essentially the
same upper bound upon n as one does for the equation

2?4+ d=y".
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| d | N(d) [ Primes13<n < N(d) | Pairs (E,d) |

7 | 6x108 31324698 39
15 | 4x 108 21336321 28
55 | 5x 108 26355862 27
231 | 1.2 x 107 60454700 20

Table: The table records the number of primes in the interval
13 <n < N(d) and the number of pairs (E,d).
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Efficient sieving with Frey-Hellegouarch curves |

We applied an argument originally due to Kraus to the
remaining ~ 3.7 x 10° triples (E,d,n). For each such triple,
we searched for a prime ¢ = kn + 1 with k& < 103 such that a
particular technical hypothesis was satisfied. This computation
took around 29000 hours, but was in fact distributed over 64
processors, and finished in around 20 days. For all but 1230 of
the 3739782484 triples (FE,d,n) the script found some ¢ which
enabled us to eliminate the triple. We are therefore reduced to
considering the remaining 1230 triples (E,d,n); we note that
the largest value of n appearing in any of these triples is

n = 1861 and this corresponds to E being the elliptic curve
with Cremona label 210A1 and d = 15.
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Efficient sieving with Frey-Hellegouarch curves Il

For the remaining triples, we applied a more refined sieve, using
several auxiliary primes simultaneously and applying additional
symplectic criteria. We reached an empty intersection in 1224
cases. The remaining 6 cases are as follows :

Elliptic Curve \ d \ n ‘
462b1 231 | 13
462f1 231 | 13
231031 231 | 13
231011 231 | 13
2310m1 231 | 13
231001 15 | 13




The Lebesgue-
Nagell
equation

Michael
Bennett

Efficient sieving with Frey-Hellegouarch curves Ill

To eliminate the first 5 of these cases, we make use of the
following result of Halberstadt and Kraus :

Theorem (Halberstadt and Kraus)

Let By and E> be elliptic curves over Q and write A; for the
minimal discriminant of E;. Let n > 5 be a prime such that
PEyn ~ PEyn- Let g1, g2 # n be distinct primes of
multiplicative reduction for both elliptic curves such that
ordy,(Aj) # 0 (mod n) fori,j € {1,2}. Then

OrdQl (Al) ) Ord(]z (Al)
Ordql (AQ) ’ Ordfh (A2>

is congruent to a square modulo n.
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We are left with the last triple, which we are unable to
eliminate by any of our sieving.
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We are left with the last triple, which we are unable to
eliminate by any of our sieving.

This is because it arises from a solution to our equation, namely
81432 4+ 3% . 5. 7% . 112 = 413,
We are thus forced to solve the equation
22 + 385770117 = ¢13,

with y even, Sy =1 mod 2 and § =7 =0 mod 2.
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Thue-Mahler equation

Fi3(r, s) Za 1370t = 4.3 5P L 7P 1P

where
1 a; 1 a; 1 a;
0 1 5 36036 |10 195624
1 0 6 —34320 |11 —-95160
2 =312 |7 -—-226512 |12 —51428
3 —1144 |8 —-66924 |13 924.
4 8580 |9 340340
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The only solution is with

1"=0, 8=:|:1, ﬂ3=1, ﬂ5=0, ,37=1 and ﬂ11=1.
This corresponds to the identity

81432 +33.5.72. 112 = 413,
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Finishing touches : small values of n

J

@ n = 3 — solutions correspond to elliptic curves over Q with
good reduction outside {2,3,5,7,11}.

@ n = 4 — solutions correspond to solutions to equations of
the shape u +v = 22, where u and v are S-units for
S ={2,3,5,7,11}.

© n =5 — Thue-Mahler equations.
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x2_qa n

= y" : earlier work ... linear forms in logarithms

Theorem (Bugeaud, 1997)

If x,y,n and a are positive integers with y odd, and q is an
odd prime with ged(x,q) = 1 and

then
n < 4.5 x 105¢%log? q.

The bounds on n in case y is even, or for the equation
x? + ¢% = y" are quite a bit worse.




gt =y eaterwork . Freyauves )
Theorem (lvorra and Kraus, 2004)
“Solves” the more general equation
2" 4 gyt = 22,
unless q can be written in the form
g =[t* +£2%,

where t and k are integers, with k =0, k=3 ork > 7.
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The primes ¢ with ¢ < 100 that are not of the form [t? + 2|,
for t and k integers, with k =0, k=3 or k > 7, are

q € {11,13,19,29,43,53,59, 61,67, 83}.
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A conclusion : the good news

The modular method (based on the modularity of Galois
representations attached to Frey curves) enable one to solve
equations like

and

l‘2 + qa _ yn’
“completely”, without recourse to linear forms in logarithms,
for most primes q.



(Aeonclusion’ the bad news|

The modular method, at least with current technology, does
not appear to be able to fully solve equations like

when, say, ¢ = 3 or ¢ = t?> + 1, for t an integer, even with all
the help linear forms in logarithms can provide.



e

What if ¢ = [t? £ 8| or ¢ = [t? £ 2¥|, with k& > 7, but
q# u®=£1, for every u € Z?




Ifqe{7,11,13,19,23,29,31,43,47,53,59,61,67, 71,79, 83},
then there are no solutions to the equation

xZ_qa:yn,

in integers x,y and a with q t z and primen > 7.
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Theorem (B., Siksek, 2022)

If x,y,q,a and n are positive integers with q prime,
2<¢g<100,gtz, n>3and

$2 + qa _ yn’

then n =3 or (q,a,y,n) is one of

2,5,3,4),(7,1,2,4), (7,2,5,4), (7,1,2,5),
7,1,8,5),(7,1,2,7),(7,3,2,9), (7,1,2,15),
,(19,1,5 ),(23,1,2,5),

1 5,5 4
,(29,2,5,7),(31,1,4,4),(31,1,2,5),
(41,2,29,4), (41,2,5,5), (47,1,3,5),
(53,1,3,6), (71,1,6,4), (71,1,3,7),

( ),(83,1,3,9) or (97,1,7,4).

2,5
3,2

, ),(23 3,78,
(
(
7
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Ingredients in the proofs

© 00

$2 + qa — yn
Refinements in the modular method, using auxiliary
primes,
Minor sharpenings of complex linear form bounds,
Careful use of bounds for g-adic logarithms, and

Sieving using Frey curves, symplectic criteria and primes
=1 mod n.



Remaining unsolved cases for o* — ¢ =37, ¢ <100 |

a? -2 = y", (1)
w2 - q2k+1 = yn, 2 )f Y, (2)
for ¢ € {3,5,17,37,41,73,89}, and

a? — =y 21y, (3)

for ¢ € {17,41,89,97}.



The fundamental obstructions to resolving equation (3)
correspond to the identities

232 —17=27 132 -41 =27, 912 — 89 = 213

and 152 — 97 = 27.
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Remaining unsolved cases for 22 — ¢* = 4", ¢ < 100

Theorem (B., Michaud-Jacobs, Siksek, 2022)
Let g € {41,97}. Then the solutions to the equation

2? — ¢ =y, 2|y,

in integers x,y, k,n, with z,k > 0, n > 3 and ged(z,y) =1
are as follows:

(Q’ "E, y? k? n) = (417 37 _27 07 5)? (4]‘7 77 27 0? 3)’ (417 ]‘3’ 2’ 0’ 7)7
(41,411,10,1,5), (97,15,2,0,7) and (97,77, 18,0, 3).
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g unsolved cases for z“ — ¢* = y", ¢ < 100 J

We overcome our obstructions through the use of Q-curves and
multi-Frey techniques.

The identities 132 — 41 = 27 and 152 — 97 = 27 have
corresponding Frey Q-curves without multiplicative reduction
at primes above 2.

Regrettably, this fails to be the case for the identities
232 — 17 =29 and 912 — 89 = 213,



