

Multiply gleeful numbers

Florian Luca

**Online Number Theory Seminar, Debrecen, January 23,
2026**

Gleeful numbers

- For positive integers n and k let $f_k(n)$ be the number of representations of n as a sum of k th powers of consecutive primes.
- Moser 1963 puts

$$s_k(x) = \sum_{n \leq x} f_k(n)$$

and shows that

$$s_1(x) \sim x \log 2 \quad \text{as} \quad x \rightarrow \infty.$$

Upper and lower bounds for $s_2(x)$ and $s_k(x)$ (for any $k > 1$) appear in some recent works of **Moore, Sorenson 2025**.

- That preprint presents various heuristics concerning positive integers n such that $f_k(n)f_{k'}(n) > 0$ for some $k' > k \geq 2$.

Definition

A positive integer n with $f_k(n) > 0$ is called *gleeful* (of k -gleeful).

- Let

$$\mathcal{G}_k(x) = \{n \leq x : f_k(n) > 0\}.$$

- O'Sullivan, Sorenson, Stahl **2024** showed that for all $k \geq 2$, one has

$$c_k \frac{x^{2/(k+1)}}{(\log x)^{2k/(k+1)}} < \#\mathcal{G}_k(x) \leq d_k \frac{x^{2/(k+1)}}{(\log x)^{2k/(k+1)}}, \quad x > x_k,$$

with some positive constants c_k, d_k which are explicit.

- In fact, assume

$$n = p_i^k + p_{i+1}^k + \cdots + p_{i+\ell-1}^k.$$

If $n \leq x$, we have

$$p_i^k \ell \leq x \quad \text{therefore} \quad p = p_i \leq \sqrt[k]{\frac{x}{\ell}}.$$

- Letting L be the largest ℓ can be and summing up the above, we get

$$\#\mathcal{G}_k(x) \ll \sum_{\ell \leq L} \pi\left(\sqrt[k]{\frac{x}{\ell}}\right) \ll \frac{x^{1/k}}{\log x} \sum_{\ell \leq L} \frac{1}{\sqrt[k]{\ell}} \ll \frac{x^{1/k} L^{1-1/k}}{\log x}.$$

- How large can L be? Well, for sure

$$p_1^k + \cdots + p_L^k \leq x.$$

- The left-hand side is

$$\gg_k \frac{p_L^{k+1}}{(k+1) \log p_L} \gg_k L^{k+1} (\log L)^k.$$

- Thus,

$$L^{k+1} (\log L)^k \ll_k x, \quad \text{therefore} \quad L \ll \frac{x^{1/(k+1)}}{(\log x)^{k/(k+1)}}.$$

- Putting the above together we get

$$\#\mathcal{G}_k(x) \ll \frac{x^{1/k} x^{(1-1/k)/(k+1)}}{(\log x)^{1+k/(k+1)(1-1/k)}} = \frac{x^{2/(k+1)}}{(\log x)^{2k/(k-1)}}.$$

- We can interpret this by saying that the probability that n is k -gleeful is

$$\frac{1}{n^{\alpha_k + o(1)}} \quad \text{as} \quad n \rightarrow \infty,$$

where

$$\alpha_k = 1 - \frac{2}{k+1}.$$

- Based on this **Moore, Sorenson 2025** make a number of conjectures on n with $f_k(n) > 0$ and $f_{k'}(n) > 0$.

Conjecture

For $k < k'$ and $k \geq 3$ or $k' \geq 5$, there are only finitely many n with $f_k(n) > 0$, $f_{k'}(n) > 0$.

This is based on the fact that

$$\alpha_k + \alpha_{k'} = 2 - \frac{2}{k+1} - \frac{2}{k'+1} > 1$$

in such instances.

Conjecture

For $k' = 3, 4$ there are infinitely many n with $f_2(n) > 0$ and $f_{k'}(n) > 0$.

- They found

$$23939 = 17^3 + 19^3 + 23^3 = 23^2 + 29^2 + 31^2 + 37^2 + 41^2 + 43^2 + 47^2 + 53^2 + 59^2 + 61^2 + 67^2.$$

Conditional proof that $f_2(n)f_4(n) > 0$ infinitely often

Our result relies on the following conjecture known as Schinzel's Hypothesis H.

Conjecture: Schinzel's Hypothesis H

Let $k \geq 2$ and $f_i(X) \in \mathbb{Z}[X]$ be irreducible polynomials with positive leading terms for $i = 1, \dots, k$. Assume that for all primes p there exists n such that

$$p \nmid f_1(n)f_2(n) \cdots f_k(n).$$

Then there exist infinitely many positive integers n such that $f_1(n), \dots, f_k(n)$ are all primes.

Our result is the following.

Theorem

Assume Schinzel's Hypothesis H. Then there are infinitely many positive integers n such that $f_2(n)f_4(n) > 0$.

The construction

- We aim to construct positive integers m such that

$$m = \sum_{j=1}^{25} p_j^2 = \sum_{j=1}^{25} q_j^4,$$

where $p_1 < \dots < p_{25}$ and $q_1 < \dots < q_{25}$ are consecutive primes.

- We start with the degree 4 side. We choose linear forms

$$X, X - a_i, X + a_i \quad \text{in } \mathbb{Z}[X] \quad \text{for } i = 1, \dots, 12,$$

which later we aim to specialize in some input n so that to obtain primes. Then

$$\begin{aligned} M(X) &:= X^4 + \sum_{i=1}^{12} ((X - a_i)^4 + (X + a_i)^4) \\ &= 25X^4 + 12 \left(\sum_{i=1}^{12} a_i^2 \right) X^2 + 2 \sum_{i=1}^{12} a_i^4. \end{aligned}$$

- We want to complete a square in the above so we calculate

$$\delta := \frac{12(\sum_{i=1}^{12} a_i^2)}{10} = \frac{6}{5} \left(\sum_{i=1}^{12} a_i^2 \right),$$

and get

$$M(X) = (5X^2 + \delta)^2 + \nu, \quad \text{where} \quad \nu := 2 \sum_{i=1}^{12} a_i^4 - \left(\frac{6}{5} \left(\sum_{i=1}^{12} a_i^2 \right) \right)^2.$$

- We now look at the quadratic side. We take linear forms

$$Y, \quad Y - b_j, \quad Y + b_j \quad \text{in} \quad \mathbb{Z}[Y] \quad \text{for} \quad j = 1, \dots, 12,$$

and we calculate

$$N(Y) = Y^2 + \sum_{j=1}^{12} (Y - b_j)^2 + (Y + b_j)^2 = 25Y^2 + 2 \sum_{j=1}^{12} b_j^2.$$

We want $M(X) = N(Y)$, which gives

$$5Y = 5X^2 + \delta, \quad 2 \sum_{j=1}^{12} b_j^2 = \nu.$$

- Numerically, we choose

$$a_i = 2i - 1, \quad i = 1, \dots, 11, \quad \text{and} \quad a_{12} = 123.$$

Then

$$\delta = 20280, \quad \nu = 47518520.$$

We then have $\nu/2 = 23759260$ which can be written as a sum of 12 distinct squares, for example, as

$$1700^2 + 1701^2 + 1702^2 + 1703^2 + 1704^2 + 1705^2 + 1706^2 + 1707^2 + 100^2 + 160^2 + 492^2 + 516^2.$$

- So, we take

$$b_j = 1699 + j, \quad 1 \leq j \leq 8, \quad b_9 = 100, \quad b_{10} = 160, \quad b_{11} = 492, \quad b_{12} = 516.$$

With this choice,

$$Y = X^2 + \frac{\delta}{5} = X^2 + 4056.$$

Note that if replace a_j by $a_j\Lambda$ and b_j by $b_j\Lambda^2$ for any integer Λ then the same formulas apply. Thus, we take

$$p_j(X) := Y - b_j = X^2 + (\delta/5 - b_j)\Lambda^2, \quad j = 1, \dots, 12,$$

$$p_{13}(X) := Y = X^2 + (\delta/5)\Lambda^2,$$

$$p_j(X) := Y + b_{j-13} = X^2 + (\delta/5 + b_{j-13})\Lambda^2, \quad j = 14, \dots, 25.$$

We take

$$q_j(X) := X - a_j\Lambda \quad j = 1, \dots, 12,$$

$$q_{13}(X) := X,$$

$$q_j(X) := X + a_{j-13}\Lambda. \quad j = 14, \dots, 25.$$

- We take

$$\Lambda = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 37 \cdot 41 \cdot 43 \cdot 47 \cdot 53 \cdot 59 \cdot 61 \cdot 67 \cdot 71 \cdot 73$$

to be the product of all the primes $p \leq 73$. Numerically,

$$\Lambda = 40729680599249024150621323470.$$

Let

$$P(X) := \prod_{j=1}^{25} p_j(X) q_j(X).$$

This is a polynomial of degree 75. If $p \leq 75$, then

$$P(X) \equiv X^{75} \pmod{p},$$

because $p \mid \Lambda$.

- This shows that there exists $x_0 \in \{0, \dots, p-1\}$ such that $P(x_0) \not\equiv 0 \pmod{p}$ for all $p \leq 75$ (for example, we can take $x_0 = 1$ for all such primes).
- The same is true for $p > 75$ because for such primes the polynomial $P(X)$ has at most $\deg(P) = 75 < p$ roots modulo p .

- Since each $p_j(X)$ and $q_j(X)$ for $j = 1, \dots, 25$ is monic and irreducible, it follows, by Schinzel's Hypothesis H that there are infinitely many n such that $p_j(n)$ and $q_j(n)$ are primes for all $j = 1, \dots, 25$.
- As we remarked,

$$\sum_{j=1}^{25} p_j(n)^2 = \sum_{j=1}^{25} q_j(n)^4.$$

So, the number m which is the common value of the left and right hand side of the above expression has $f_2(m) > 0$ and $f_4(m) > 0$, provided $p_j(n)$ are consecutive primes and $q_j(n)$ are consecutive primes for such n .

- Well, let us insure that we can find such n . We put $b_{13} := 0$ and let

$$I := [(\delta/5 - 1707)\Lambda^2, (\delta/5 + 1707)\Lambda^2] \setminus \{(\delta/5 \pm b_j)\Lambda^2 : 1 \leq j \leq 13\}.$$

- Let $K := \#I$ and

$$I = \{u_1, u_2, \dots, u_K\},$$

where the above are the elements of I labelled increasingly. Select a finite set of K primes inductively $\{r_k\}_{1 \leq k \leq K}$ all larger than $10^5 \Lambda^2$ such that

- (i) $r_{k+1} > r_k$;
- (ii) The polynomial $X^2 + u_k$ has an integer root x_k modulo r_k .

- Put also $a_{13} = 0$ and let

$$J := [-123\Lambda, 123\Lambda] \setminus \{\pm a_j \Lambda : 1 \leq j \leq 13\} = \{v_1, \dots, v_L\},$$

where $L := \#J$ and v_1, \dots, v_L are the elements in J labelled increasingly.

- Let $\{s_\ell\}_{1 \leq \ell \leq L}$ be primes larger than $10^5\Lambda^2$ which are distinct from $\{r_1, \dots, r_K\}$. Let

$$M := \prod_{k=1}^K r_k \prod_{\ell=1}^L s_\ell,$$

and let x_0 be such that

$$x_0 \equiv x_k \pmod{r_k} \quad \text{for} \quad 1 \leq k \leq K,$$

$$x_0 \equiv -v_\ell \pmod{s_\ell} \quad \text{for} \quad 1 \leq \ell \leq L.$$

The fact that the above system is solvable follows from the way we have chosen the primes r_j, s_ℓ for $1 \leq j \leq K, 1 \leq \ell \leq L$ and from the Chinese Remainder Theorem.

- Now we apply Schinzel's Hypothesis H to the polynomials

$$p_j(MX + x_0) \quad \text{and} \quad q_j(MX + x_0) \quad \text{for } j = 1, \dots, 25$$

as polynomials in the variable X . We note that the condition that for every prime number p there is n_0 such that $Q(n_0) \not\equiv 0 \pmod{p}$ where

$$Q(X) := P(MX + x_0)$$

is still satisfied.

- Indeed, this is trivially satisfied if $p \nmid M$, while if $p \mid M$ then we can take $n_0 = 0$ since $P(x_0)$ is not zero modulo p . Indeed, $P(x_0)$ being a multiple of p means that p divides one of

$$x_0^2 + (\delta/5 \pm b_j)\Lambda^2, \quad \text{or} \quad x_0 \pm a_j\Lambda,$$

for $j = 1, \dots, 13$. However, p also divides one of

$$x_0^2 + u_k \quad 1 \leq k \leq K, \quad \text{or} \quad x_0 + v_\ell, \quad 1 \leq \ell \leq L.$$

- Thus, p divides one of

$$(\delta/5 \pm b_j)\Lambda^2 - u_k, \quad (\delta/5 \pm b_j)\Lambda^2 + v_\ell^2, \quad \pm a_j \Lambda + v_\ell, \quad a_j^2 \Lambda^2 + u_k \quad (1)$$

for $1 \leq j \leq 13, 1 \leq k \leq K, 1 \leq \ell \leq L$.

- The first and third expressions are nonzero by constructions since the u_k 's the v_ℓ 's are the elements in their intervals

$$[(\delta/5 - 1707)\Lambda^2, (\delta/5 + 1707)\Lambda^2] \quad \text{and} \quad [-123\Lambda, 123\Lambda]$$

which are not of the form

$$(\delta/5 \pm b_j)\Lambda^2 \quad \text{or} \quad \pm a_j \Lambda \quad \text{for} \quad 1 \leq j \leq 13,$$

respectively.

- The second and the fourth ones are also nonzero since they are positive.

- Now the contradiction comes from the fact that the sizes of the above nonzero numbers are

$$< 10^5 \Lambda^2,$$

so they cannot be divisible by the prime

$$p \in \{r_1, \dots, r_K\} \cup \{s_1, \dots, s_L\}.$$

- Thus, there are infinitely many n such that

$$(Mn + x_0)^2 + (\delta/5 - b_j)\Lambda^2, \quad (Mn + x_0) \pm a_j \Lambda, \quad j = 1, \dots, 13$$

are all primes. If the first 25 or the last 25 are not consecutive primes, it follows that there exists either $1 \leq k \leq K$ or $1 \leq \ell \leq L$ such that

$$(Mn + x_0)^2 + u_k, \quad \text{or} \quad Mn + x_0 + s_\ell$$

is prime, but this is impossible since the above numbers are divisible by r_k and s_ℓ , respectively, by our construction.

- This finishes the argument.

Comment

The **Bateman-Horn** conjecture is a qualitative form of the **Schinzel** Hypothesis H and predicts for a large positive real number T an asymptotic for the number of $n \leq T$ such that

$$f_1(n), \dots, f_k(n)$$

are primes in case

$$f_1(X), \dots, f_k(X)$$

satisfy the hypothesis of **Schinzel**'s Hypothesis H. For our construction, it predicts that the number of $m \leq T$ such that

$$f_2(m)f_4(m) > 0$$

is

$$\gg \frac{T^{1/4}}{(\log T)^{50}}.$$

- We give no further details.

$f_2(n)$ is unbounded

We use a similar method to prove the following result.

Theorem

Assume *Schinzel's Hypothesis H*. Then

$$\limsup_{n \rightarrow \infty} f_2(n) = \infty.$$

The construction

- Let $u \geq 1$ be an integer.
- Put $k := k_u = 2^{2u+1}$ and consider the quadratic polynomial

$$Q_u(X) := \sum_{i=1}^{k_u} \left((X - a_{i,u})^2 + (X + a_{i,u})^2 \right) = 2k_u X^2 + 2 \sum_{i=1}^{k_u} a_{i,u}^2.$$

- Here, we assume that

$$a_{1,u} > a_{2,u} > \cdots > a_{k_u,u} > 0$$

are integers.

- We aim to choose positive integers m_u such that

$$Q_u(m_u) = Q_v(m_v) \quad \text{for } u, v = 1, 2, \dots, T. \quad (2)$$

- If we denote by N the common value of the numbers shown at (2) and if furthermore:

- (i) $m_u - a_{1,u}, m_u - a_{2,u}, \dots, m_u - a_{k_u,u}, m_u + a_{k_u,u}, \dots, m_u + a_{1,u}$ are primes for all $u = 1, \dots, T$;
- (ii) the primes mentioned at (i) above are consecutive primes in the sequence of prime numbers;

then obviously

$$f_2(N) \geq T.$$

- Since T is arbitrary, we get the desired result.
- It remains to justify that we can meet conditions (i) and (ii) above.
- In order for (2) to hold it suffices that

$$2k_u m_u^2 = 2k_v m_v^2 \quad \text{and} \quad 2 \sum_{i=1}^{k_u} a_{i,u}^2 = 2 \sum_{i=1}^{k_v} a_{i,v}^2.$$

- The first condition above implies $2^{u+1}m_u = 2^{v+1}m_v$ for $u, v = 1, \dots, T$. This is fulfilled if we choose $m_T = n$ and $m_i = 2^{T-i}n$ for $i = 1, \dots, T-1$. For the second part, we look for an integer M such that

$$M = \sum_{i=1}^{k_u} a_{i,u}^2, \quad u = 1, \dots, T. \quad (3)$$

- We will want some other things from the integers $a_{i,j}$ for $j = 1, \dots, T$ and $i = 1, \dots, k_j$. Let

$$W = 2 \sum_{u=1}^T k_u = \frac{2^{2T+4} - 16}{3}.$$

- This gives the total number of linear forms

$$m_u \pm a_{i,u} = 2^{T-u}n \pm a_{i,u}, \quad \text{for } i = 1, \dots, k_u \quad u = 1, \dots, T$$

in the variable n appearing in (i).

- We would like to argue that there are numbers M which have T representations as in (3), where all $a_{i,u}$ for $1 \leq i \leq k_u$ and $u = 1, \dots, T$ have the property that they are not only distinct but also coprime to all primes $q \leq W$.
- We choose M large, $M \equiv 8 \pmod{24}$.
- For each $u = 1, \dots, T$, we choose

$$a_{k_u,u} < a_{k_u-1,u} < \dots < a_{5,u} \leq M^{1/3}$$

to be such that they are coprime to

$$P := \prod_{q \leq W} q.$$

Note that

$$\sum_{j=5}^{k_u} a_{j,k_u}^2 \equiv k_u - 4 \pmod{24} \equiv 2^{2u+1} - 4 \pmod{24} \equiv 4 \pmod{24},$$

because $a_{j,u}^2$ are odd squares which are not divisible by 3 so they are congruent to 1 $\pmod{24}$.

- Then

$$M_u := M - \sum_{j=5}^{k_u} a_{j,u}^2 \equiv 4 \pmod{24},$$

and is a number of size $M - O_T(M^{2/3})$.

- By a result of **Ching 2020**, for large M , the number M_u can be written as

$$M_u = a_{1,u}^2 + a_{2,u}^2 + a_{3,u}^2 + a_{4,u}^2,$$

where each prime factor of $a_{i,u}$ exceeds M^ω (where $\omega > 0$ is some fixed small constant).

- Furthermore, the number of such representations is

$$\gg \frac{M}{(\log M)^4}.$$

- Choosing M such that $M^\omega > W$ ensures that $a_{j,u}$ are coprime to P . It remains to ensure that we may assume that

$$a_{1,u} > a_{2,u} > a_{3,u} > a_{4,u} > a_{5,u}.$$

- Well, if the last inequality fails it means that $a_{4,u} \leq M^{1/3}$. Note that $a_{3,u} \leq M^{1/2}$. With $a_{3,u}$ and $a_{4,u}$ fixed, we have that

$$M_u - a_{3,u}^2 - a_{4,u}^2 = a_{1,u}^2 + a_{2,u}^2.$$

- The number of such representation is a divisor function (the number of divisors of the left-hand side in $\mathbb{Z}[i]$) and so it is at most $M^{o(1)}$ as $M \rightarrow \infty$. So, the number of such representations $(a_{1,u}, a_{2,u}, a_{3,u}, a_{4,u})$ is

$$\ll M^{1/2+1/3+o(1)} \quad \text{as } M \rightarrow \infty,$$

and this is much smaller than $M/(\log M)^4$. Thus, we may ensure that $a_{4,u} > a_{5,u}$.

- To ensure that

$$a_{1,u} > a_{2,u} > a_{3,u} > a_{4,u},$$

we note that the number of representations of M_u as a sum of four non-distinct squares is $\ll M^{1/2+o(1)}$ as $M \rightarrow \infty$ and this is much smaller than the number of representations from Ching's theorem.

- Thus, we can indeed find M 's which admit representations as in (3) where all $a_{i,u}$ for $u = 1, \dots, T$ and $i = 1, \dots, k_u$ are distinct and coprime to P .
- Now it suffices to choose n such that for each $u = 1, \dots, T$,

$$2^{T-u}n \pm a_{i,u}, \quad i = 1, \dots, k_u$$

are consecutive primes.

- To ensure that they are primes, we can use Schinzel's Hypothesis H.
- The only condition we need to check is that for all primes p there is n such that the polynomial

$$f(X) := \prod_{u=1}^T \prod_{i=1}^{k_u} (2^{T-u}X - a_{i,u})(2^{T-u}X + a_{i,u})$$

evaluated in n is not a multiple of p .

- This is a condition that needs to be checked only for primes q which are at most the degree of the above polynomial which is W and for such primes we have that $f(n)$ is nonzero modulo q for all $q \leq W$ from the way we have chosen the $a_{i,u}$ for $u = 1, \dots, T$ and $i = 1, \dots, k_u$.

- The only fact that now needs to be checked is to ensure that for fixed u ,

$2^{T-u}n - a_{1,u}, \dots, 2^{T-u}n - a_{k_u,u}, 2^{T-u}n + a_{k_u,u}, \dots, 2^{T-u}n + a_{1,u}$
are consecutive primes.

- Let $h_u := a_{1,u} - k_u$ be the cardinality of

$$[1, a_{1,u}] \setminus \{a_{k_u,u}, a_{k_u-1,u}, \dots, a_{1,u}\}, \quad (4)$$

and let $\{b_{1,u}, b_{2,u}, \dots, b_{h_u,u}\}$ be the elements in the set shown at (4). Now we choose \mathcal{P}_u to be a set of $2h_u$ primes labeled $q_{1,j}, q_{-1,j}$ for $j = 1, \dots, h_u$ which are all larger than W and ask of n to be even and to solve the Chinese Remainder Lemma

$$2^{T-u}n \equiv \varepsilon b_{j,u} \pmod{q_{\varepsilon,j}} \quad \text{for } \varepsilon \in \{-1, 1\}. \quad (5)$$

- We further choose the sets of such primes \mathcal{P}_u to be disjoint as u ranges from 1 to T .
- Then we choose n even in such a way that all Chinese Remainder Lemmas (5) are satisfied for $u = 1, \dots, T$.
- This puts n into a progression $A \pmod{B}$, where

$$B := 2 \prod_{u=1}^T \prod_{q \in \mathcal{P}_u} q.$$

- Finally, we return to our problem and we now only look for n in the arithmetic progression $A \pmod{B}$ such that

$$2^{T-u}n \pm a_{i,u} \quad \text{for } i = 1, \dots, k_u, \quad \text{and } u = 1, \dots, T$$

are primes.

- The fact that we can find infinitely many such n is again a consequence of **Schinzel's Hypothesis H**.

- Clearly, such n 's do ensure that

$$2^{T-u}n - a_{1,u}, \dots, 2^{T-u} - a_{k_u,u}, 2^{T-u}n + a_{k_u,u}, \dots, 2^{T-u}n + a_{1,u},$$

are consecutive primes just because any intermediary positive integer (positive integer which is between two consecutive members of the above list) is a multiple of q for some $q \in \mathcal{P}_u$.

Comment

- Again by the **Bateman-Horn** for our construction it predicts that the number of $N \leq Y$ such that $f_2(N) \geq T$ is

$$\gg \frac{Y^{1/2}}{(\log Y)^W}.$$

It would be interesting to also make T tend to infinity slowly with N . Perhaps it is true that

$$f_2(N) \gg \log \log N \quad \text{holds for infinitely many } N.$$

This would be consistent with a *Uniform Bateman-Horn conjecture* with an error term of size $O(\sqrt{Y})$. We give no further details.

THANK YOU VERY MUCH!