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Gleeful numbers

• For positive integers n and k let fk (n) be the number of
representations of n as a sum of k th powers of consecutive
primes.

• Moser 1963 puts
sk (x) =

∑
n≤x

fk (n)

and shows that

s1(x) ∼ x log 2 as x →∞.

Upper and lower bounds for s2(x) and sk (x) (for any k > 1)
appear in some recent works of Moore, Sorenson 2025.

• That preprint presents various heuristics concerning positive
integers n such that fk (n)fk ′(n) > 0 for some k ′ > k ≥ 2.

Definition
A positive integer n with fk (n) > 0 is called gleeful (of k -gleeful).
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Numbers n ≤ x with fk (n) > 0

• Let
Gk (x) = {n ≤ x : fk (n) > 0}.

• O’Sullivan, Sorenson, Stahl 2024 showed that for all k ≥ 2,
one has

ck
x2/(k+1)

(log x)2k/(k+1) < #Gk (x) ≤ dk
x2/(k+1)

(log x)2k/(k+1) , x > xk ,

with some positive constants ck , dk which are explicit.

• In fact, assume

n = pk
i + pk

i+1 + · · ·+ pk
i+`−1.

If n ≤ x , we have

pk
i ` ≤ x therefore p = pi ≤ k

√
x
`
.
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• Letting L be the largest ` can be and summing up the above,
we get

#Gk (x)�
∑
`≤L

π

(
k

√
x
`

)
� x1/k

log x

∑
`≤L

1
k
√
`
� x1/kL1−1/k

log x
.

• How large can L be? Well, for sure

pk
1 + · · ·+ pk

L ≤ x .

• The left–hand side is

�k
pk+1

L
(k + 1) log pL

�k Lk+1(log L)k .

• Thus,

Lk+1(log L)k �k x , therefore L� x1/(k+1)

(log x)k/(k+1) .
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• Putting the above together we get

#Gk (x)� x1/kx (1−1/k)/(k+1)

(log x)1+k/(k+1)(1−1/k) =
x2/(k+1)

(log x)2k/(k−1) .

•We can interpret this by saying that the probability that n is
k -gleeful is

1
nαk+o(1) as n→∞,

where
αk = 1− 2

k + 1
.
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• Based on this Moore, Sorenson 2025 make a number of
conjectures on n with fk (n) > 0 and fk ′(n) > 0.

Conjecture

For k < k ′ and k ≥ 3 or k ′ ≥ 5, there are only finitely many n
with fk (n) > 0, fk ′(n) > 0.

This is based on the fact that

αk + αk ′ = 2− 2
k + 1

− 2
k ′ + 1

> 1

in such instances.

Conjecture

For k ′ = 3,4 there are infinitely many n with f2(n) > 0 and
fk ′(n) > 0.

• They found
23939=173 + 193 + 233 = 232 + 292 + 312 + 372 + 412 + 432 + 472 + 532 + 592 + 612 + 672.
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Conditional proof that f2(n)f4(n) > 0 infinitely often

Our result relies on the following conjecture known as
Schinzel’s Hypothesis H.

Conjecture: Schinzel’s Hypothesis H

Let k ≥ 2 and fi(X ) ∈ Z[X ] be irreducible polynomials with
positive leading terms for i = 1, . . . , k . Assume that for all
primes p there exists n such that

p - f1(n)f2(n) · · · fk (n).

Then there exist infinitely many positive integers n such that
f1(n), . . . , fk (n) are all primes.

Our result is the following.

Theorem
Assume Schinzel’s Hypothesis H. Then there are infinitely
many positive integers n such that f2(n)f4(n) > 0.
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The construction

•We aim to construct positive integers m such that

m =
25∑

j=1

p2
j =

25∑
j=1

q4
j ,

where p1 < · · · < p25 and q1 < · · · < q25 are consecutive
primes.

•We start with the degree 4 side. We choose linear forms

X , X − ai , X + ai in Z[X ] for i = 1, . . . ,12,

which later we aim to specialize in some input n so that to
obtain primes. Then

M(X ) := X 4 +
12∑

i=1

((X − ai)
4 + (X + ai)

4)

= 25X 4 + 12(
12∑

i=1

a2
i )X 2 + 2

12∑
i=1

a4
i .
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•We want to complete a square in the above so we calculate

δ :=
12(
∑12

i=1 a2
i )

10
=

6
5

(
12∑

i=1

a2
i

)
,

and get

M(X ) = (5X 2+δ)2+ν, where ν := 2
12∑

i=1

a4
i −

(
6
5

(
12∑

i=1

a2
i

))2

.

•We now look at the quadratic side. We take linear forms

Y , Y − bj , Y + bj in Z[Y ] for j = 1, . . . ,12,

and we calculate

N(Y ) = Y 2 +
12∑

j=1

(Y − bj)
2 + (Y + bj)

2 = 25Y 2 + 2
12∑

j=1

b2
j .

We want M(X ) = N(Y ), which gives

5Y = 5X 2 + δ, 2
12∑

j=1

b2
j = ν.

We want

Y = X 2 +
δ

5
,

ν

2
=

12∑
j=1

b2
j .
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• Numerically, we choose

ai = 2i − 1, i = 1, . . . ,11, and a12 = 123.

Then
δ = 20280, ν = 47518520.

We then have ν/2 = 23759260 which can be written as a sum
of 12 distinct squares, for example, as
17002 + 17012 + 17022 + 17032 + 17042 + 17052 + 17062 + 17072 + 1002 + 1602 + 4922 + 5162.
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• So, we take

bj = 1699 + j , 1 ≤ j ≤ 8, b9 = 100, b10 = 160, b11 = 492, b12 = 516.

With this choice,

Y = X 2 +
δ

5
= X 2 + 4056.

Note that if replace aj by aj Λ and bj by bj Λ
2 for any integer Λ then the

same formulas apply. Thus, we take

pj (X ) := Y − bj = X 2 + (δ/5− bj )Λ2, j = 1, . . . ,12,

p13(X ) := Y = X 2 + (δ/5)Λ2,

pj (X ) := Y + bj−13 = X 2 + (δ/5 + bj−13)Λ2, j = 14, . . . ,25.

We take

qj (X ) := X − aj Λ j = 1, . . . ,12,
q13(X ) := X ,

qj (X ) := X + aj−13Λ. j = 14, . . . ,25.
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•We take

Λ = 2·3·5·7·11·13·17·19·23·29·31·37·41·43·47·53·59·61·67·71·73

to be the product of all the primes p ≤ 73. Numerically,

Λ = 40729680599249024150621323470.

Let

P(X ) :=
25∏

j=1

pj(X )qj(X ).

This is a polynomial of degree 75. If p ≤ 75, then

P(X ) ≡ X 75 (mod p),

because p | Λ.
• This shows that there exists x0 ∈ {0, . . . ,p − 1} such that
P(x0) 6≡ 0 (mod p) for all p ≤ 75 (for example, we can take
x0 = 1 for all such primes).
• The same is true for p > 75 because for such primes the
polynomial P(X ) has at most deg(P) = 75 < p roots modulo p.
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• Since each pj(X ) and qj(X ) for j = 1, . . . ,25 is monic and
irreducible, it follows, by Schinzel’s Hypothesis H that there are
infinitely many n such that pj(n) and qj(n) are primes for all
j = 1, . . . ,25.

• As we remarked,

25∑
j=1

pj(n)2 =
25∑

j=1

qj(n)4.

So, the number m which is the common value of the left and
right hand side of the above expression has f2(m) > 0 and
f4(m) > 0, provided pj(n) are consecutive primes and qj(n) are
consecutive primes for such n.
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•Well, let us insure that we can find such n. We put b13 := 0
and let

I := [(δ/5−1707)Λ2, (δ/5+1707)Λ2]\{(δ/5±bj)Λ2 : 1 ≤ j ≤ 13}.

• Let K := #I and

I = {u1,u2, . . . ,uK},

where the above are the elements of I labelled increasingly.
Select a finite set of K primes inductively {rk}1≤k≤K all larger
than 105Λ2 such that

(i) rk+1 > rk ;
(ii) The polynomial X 2 + uk has an integer root xk modulo rk .
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• Put also a13 = 0 and let

J := [−123Λ,123Λ]\{±ajΛ : 1 ≤ j ≤ 13} = {v1, . . . , vL},

where L := #J and v1, . . . , vL are the elements in J labelled
increasingly.

• Let {s`}1≤`≤L be primes larger than 105Λ2 which are distinct
from {r1, . . . , rK}. Let

M :=
K∏

k=1

rk

L∏
`=1

s`,

and let x0 be such that

x0 ≡ xk (mod rk ) for 1 ≤ k ≤ K ,
x0 ≡ −v` (mod s`) for 1 ≤ ` ≤ L.

The fact that the above system is solvable follows from the way
we have chosen the primes rj , s` for 1 ≤ j ≤ K , 1 ≤ ` ≤ L and
from the Chinese Remainder Theorem.
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• Now we apply Schinzel’s Hypothesis H to the polynomials

pj(MX + x0) and qj(MX + x0) for j = 1, . . . ,25

as polynomials in the variable X . We note that the condition
that for every prime number p there is n0 such that Q(n0) 6≡ 0
(mod p) where

Q(X ) := P(MX + x0)

is still satisfied.

• Indeed, this is trivially satisfied if p - M, while if p | M then we
can take n0 = 0 since P(x0) is not zero modulo p. Indeed,
P(x0) being a multiple of p means that p divides one of

x2
0 + (δ/5± bj)Λ2, or x0 ± ajΛ,

for j = 1, . . . ,13. However, p also divides one of

x2
0 + uk 1 ≤ k ≤ K , or x0 + v`, 1 ≤ ` ≤ L.
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• Thus, p divides one of

(δ/5±bj)Λ2−uk , (δ/5±bj)Λ2+v2
` , ±ajΛ+v`, a2

j Λ2+uk
(1)

for 1 ≤ j ≤ 13,1 ≤ k ≤ K ,1 ≤ ` ≤ L.

• The first and third expressions are nonzero by constructions
since the uk ’s the v`’s are the elements in their intervals

[(δ/5− 1707)Λ2, (δ/5 + 1707)Λ2] and [−123Λ,123Λ]

which are not of the form

(δ/5± bj)Λ2 or ± ajΛ for 1 ≤ j ≤ 13,

respectively.

• The second and the fourth ones are also nonzero since they
are positive.
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• Now the contradiction comes from the fact that the sizes of
the above nonzero numbers are

< 105Λ2,

so they cannot be divisible by the prime

p ∈ {r1, . . . , rK} ∪ {s1, . . . , sL}.

• Thus, there are infinitely many n such that

(Mn + x0)2 + (δ/5− bj)Λ2, (Mn + x0)± ajΛ, j = 1, . . . ,13

are all primes. If the first 25 or the last 25 are not consecutive
primes, it follows that there exists either 1 ≤ k ≤ K or 1 ≤ ` ≤ L
such that

(Mn + x0)2 + uk , or Mn + x0 + s`

is prime, but this is impossible since the above numbers are
divisible by rk and s`, respectively, by our construction.

• This finishes the argument.
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Comment

The Bateman-Horn conjecture is a qualitative form of the
Schinzel Hypothesis H and predicts for a large positive real
number T an asymptotic for the number of n ≤ T such that

f1(n), · · · , fk (n)

are primes in case
f1(X ), . . . , fk (X )

satisfy the hypothesis of Schinzel’s Hypothesis H. For our
construction, it predicts that the number of m ≤ T such that

f2(m)f4(m) > 0

is

� T 1/4

(log T )50 .

•We give no further details.
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f2(n) is unbounded

We use a similar method to prove the following result.

Theorem
Assume Schinzel’s Hypothesis H. Then

lim sup
n→∞

f2(n) =∞.
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The construction

• Let u ≥ 1 be an integer.

• Put k := ku = 22u+1 and consider the quadratic polynomial

Qu(X ) :=

ku∑
i=1

(
(X − ai,u)2 + (X + ai,u)2

)
= 2kuX 2 + 2

ku∑
i=1

a2
i,u.

• Here, we assume that

a1,u > a2,u > · · · > aku ,u > 0

are integers.

•We aim to choose positive integers mu such that

Qu(mu) = Qv (mv ) for u, v = 1,2, . . . ,T . (2)
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• If we denote by N the common value of the numbers shown
at (2) and if furthermore:

(i) mu−a1,u, mu−a2,u, . . . ,mu−aku ,u, mu +aku ,u, . . . ,mu +a1,u
are primes for all u = 1, . . . ,T ;

(ii) the primes mentioned at (i) above are consecutive primes
in the sequence of prime numbers;

then obviously
f2(N) ≥ T .

• Since T is arbitrary, we get the desired result.

• It remains to justify that we can meet conditions (i) and (ii)
above.

• In order for (2) to hold it suffices that

2kum2
u = 2kv m2

v and 2
ku∑

i=1

a2
i,u = 2

kv∑
i=1

a2
i,v .
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• The first condition above implies 2u+1mu = 2v+1mv for
u, v = 1, . . . ,T . This is fulfilled if we choose mT = n and
mi = 2T−in for i = 1, . . . ,T − 1. For the second part, we look
for an integer M such that

M =

ku∑
i=1

a2
i,u, u = 1, . . . ,T . (3)

•We will want some other things from the integers ai,j for
j = 1, . . . ,T and i = 1, . . . , kj . Let

W = 2
T∑

u=1

ku =
22T+4 − 16

3
.

• This gives the total number of linear forms

mu ± ai,u = 2T−un ± ai,u, for i = 1, . . . , ku u = 1, . . . ,T

in the variable n appearing in (i).
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•We would like to argue that there are numbers M which have
T representations as in (3), where all ai,u for 1 ≤ i ≤ ku and
u = 1, . . . ,T have the property that they are not only distinct but
also coprime to all primes q ≤W .

•We choose M large, M ≡ 8 (mod 24).

• For each u = 1, . . . ,T , we choose

aku ,u < aku−1,u < . . . < a5,u ≤ M1/3

to be such that they are coprime to

P :=
∏

q≤W

q.

Note that
ku∑

j=5

a2
j,ku
≡ ku−4 (mod 24) ≡ 22u+1−4 (mod 24) ≡ 4 (mod 24),

because a2
j,u are odd squares which are not divisible by 3 so

they are congruent to 1 (mod 24).
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• Then

Mu := M −
ku∑

j=5

a2
j,u ≡ 4 (mod 24),

and is a number of size M −OT (M2/3).

• By a result of Ching 2020, for large M, the number Mu can be
written as

Mu = a2
1,u + a2

2,u + a2
3,u + a2

4,u,

where each prime factor of ai,u exceeds Mω (where ω > 0 is
some fixed small constant).

• Furthermore, the number of such representations is

� M
(log M)4 .

• Choosing M such that Mω > W ensures that aj,u are coprime
to P. It remains to ensure that we may assume that

a1,u > a2,u > a3,u > a4,u > a5,u.
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•Well, if the last inequality fails it means that a4,u ≤ M1/3. Note
that a3,u ≤ M1/2. With a3,u and a4,u fixed, we have that

Mu − a2
3,u − a2

4,u = a2
1,u + a2

2,u.

• The number of such representation is a divisor function (the
number of divisors of the left–hand side in Z[i]) and so it is at
most Mo(1) as M →∞. So, the number of such representations
(a1,u,a2,u,a3,u,a4,u) is

� M1/2+1/3+o(1) as M →∞,
and this is much smaller than M/(log M)4. Thus, we may
ensure that a4,u > a5,u.

• To ensure that

a1,u > a2,u > a3,u > a4,u,

we note that the number of representations of Mu as a sum of
four non-distinct squares is� M1/2+o(1) as M →∞ and this is
much smaller that the number of representations from Ching’s
theorem.
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• Thus, we can indeed find M ’s which admit representations as
in (3) where all ai,u for u = 1, . . . ,T and i = 1, . . . , ku are
distinct and coprime to P.

• Now it suffices to choose n such that for each u = 1, . . . ,T ,

2T−un ± ai,u, i = 1, . . . , ku

are consecutive primes.

• To ensure that they are primes, we can use Schinzel’s
Hypothesis H.

• The only condition we need to check is that for all primes p
there is n such that the polynomial

f (X ) :=
T∏

u=1

ku∏
i=1

(2T−uX − ai,u)(2T−uX + ai,u)

evaluated in n is not a multiple of p.
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• This is a condition that needs to be checked only for primes q
which are at most the degree of the above polynomial which is
W and for such primes we have that f (n) is nonzero modulo q
for all q ≤W from the way we have chosen the ai,u for
u = 1, . . . ,T and i = 1, . . . , ku.

• The only fact that now needs to be checked is to ensure that
for fixed u,

2T−un−a1,u, . . . , 2T−un−aku ,u, 2T−un +aku ,u, . . . , 2T−un +a1,u

are consecutive primes.

• Let hu := a1,u − ku be the cardinality of

[1,a1,u]\{aku ,u,aku−1,u, . . . ,a1,u}, (4)

and let {b1,u,b2,u, . . . ,bhu ,u} be the elements in the set shown
at (4). Now we choose Pu to be a set or 2hu primes labeled
q1,j , q−1,j for j = 1, . . . ,hu which are all larger than W and ask
of n to be even and to solve the Chinese Remainder Lemma

2T−un ≡ εbj,u (mod qε,j) for ε ∈ {−1,1}. (5)
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•We further choose the sets of such primes Pu to be disjoint
as u ranges from 1 to T .

• Then we choose n even in such a way that all Chinese
Remainder Lemmas (5) are satisfied for u = 1, . . . ,T .

• This puts n into a progression A (mod B), where

B := 2
T∏

u=1

∏
q∈Pu

q.

• Finally, we return to our problem and we now only look for n in
the arithmetic progression A (mod B) such that

2T−un ± ai,u for i = 1, . . . , ku, and u = 1, . . . ,T

are primes.

• The fact that we can find infinitely many such n is again a
consequence of Schinzel’s Hypothesis H.
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• Clearly, such n’s do ensure that

2T−un−a1,u, . . . , 2T−u−aku ,u, 2T−un + aku ,u, . . . , 2T−un + a1,u,

are consecutive primes just because any intermediary positive
integer (positive integer which is between two consecutive
members of the above list) is a multiple of q for some q ∈ Pu.
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Comment

• Again by the Bateman-Horn for our construction it predicts
that the number of N ≤ Y such that f2(N) ≥ T is

� Y 1/2

(log Y )W .

It would be interesting to also make T tend to infinity slowly with
N. Perhaps it is true that

f2(N)� log log N holds for infinitely many N.

This would be consistent with a Uniform Bateman-Horn
conjecture with an error term of size O(

√
Y ). We give no

further details.
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THANK YOU VERY MUCH!
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