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Gleeful numbers

e For positive integers n and k let f,(n) be the number of
representations of n as a sum of kth powers of consecutive
primes.

e Moser 1963 puts

sk(x) = f(n)

n<x

and shows that
51(x) ~ xlog2 as X — 00.

Upper and lower bounds for s(x) and sk(x) (for any k > 1)
appear in some recent works of Moore, Sorenson 2025.

e That preprint presents various heuristics concerning positive
integers n such that fx(n)f,(n) > 0 for some k' > k > 2.

Definition
A positive integer n with f(n) > 0 is called gleeful (of k-gleeful).

=
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Numbers n < x with f,(n) > 0
o Let

Gk(x) = {n < x : fi(n) > O}
e O’Sullivan, Sorenson, Stahl 2024 showed that for all kK > 2,
one has

x2/(k+1) x2/(k+1)

(loo x\2k/(k+1) < #Gk(x) < dkm’ X > Xg,

C
“(log x)
with some positive constants ¢, dx which are explicit.

e In fact, assume
K K K
”—pi+pi1+"'+pie1.

If n < x, we have
Kk kX
pi¢ < x therefore p=p; < \/;
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e Letting L be the largest ¢ can be and summing up the above,
we get

Ix 17k s 1/k[1-1/k
#gk(x><<zw(\f€> Iogxz\f S

<L
e How large can L be? Well, for sure
pX 4+ pf < x

e The left—hand side is

K1
PL

—>> LA (log L)X.
T

>k

e Thus,
1/ (k+1)
(log x)k/(k+1)"
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LK1 (log L)X <k x, therefore L <



¢ Putting the above together we get

x1/kx(1=1/K)/(k+1) x2/(k+1)
(log x)1+k/(k+1)(1=1/k) - (log x)2K/(k=1)"

#0k(X) <

e We can interpret this by saying that the probability that n is

k-gleeful is
1
o) as n— oo,
where
_q__2
Gk k+ 1
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e Based on this Moore, Sorenson 2025 make a number of
conjectures on n with f(n) > 0 and f(n) > 0.

For k < k" and k > 3 or k' > 5, there are only finitely many n
with f(n) > 0, fi.(n) > 0.

This is based on the fact that
ak+op =2— —r — —— > 1

in such instances.

For k' = 3, 4 there are infinitely many n with f(n) > 0 and
fx:(n) > 0.

e They found

23939=17% 4+ 19% 4 233 = 232 + 202 4 312 4 372 4+ 412 4 432 4 472 4 53% 4 592 4612 + 67°.

Multiply gleeful numbers



Conditional proof that >(n)fs(n) > 0 infinitely often

Our result relies on the following conjecture known as
Schinzel’s Hypothesis H.

Conjecture: ’s Hypothesis H

Let k > 2 and fi(X) € Z[X] be irreducible polynomials with
positive leading terms for i = 1,..., k. Assume that for all
primes p there exists n such that

ptf(mta(n)---f(n).

Then there exist infinitely many positive integers n such that
fi(n),..., f(n) are all primes.

Our result is the following.

Assume Schinzel’'s Hypothesis H. Then there are infinitely
many positive integers n such that f(n)fs(n) > 0.
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The construction
e We aim to construct positive integers m such that

25 25
_ 2 4
m=>) pi=>q"
Jj=1 j=1
where p; < --- < pog and g < --- < Qos are consecutive
primes.
e We start with the degree 4 side. We choose linear forms
X, X—a, X+a in Z[X] for i=1,...,12

which later we aim to specialize in some input n so that to
obtain primes. Then

12
MX) = X* 3 (X —a)* + (X + a)h)
i=1

12 12
= 25X +12() @)X +2> 4.
i=1 i=i

Multiply gleeful numbers



e We want to complete a square in the above so we calculate

._12(2}31312)_6 :z 2
5'_T_5 ;ai '

and get
2

12 12
6
M(X) = (5X%+6)°+v, where v:=2) a'—[ - a .
(X)=( ) +v v ; i 5 ; i
e We now look at the quadratic side. We take linear forms
Y,Y—-b, Y+b in Z[Y] for j=1,...,12,

and we calculate
12 12

N(Y)=Y2+ ) (Y =)+ (Y +b)? =25Y+2) b7
j=1 j=1
We want M(X) = N(Y), which gives

12
_ 2 2 _
5Y=5X2+4, 2 b=



e Numerically, we choose
ai=2i—1, i=1,...,11, and a;x = 123.

Then
6 = 20280, v =47518520.

We then have v/2 = 23759260 which can be written as a sum
of 12 distinct squares, for example, as

17002 + 17012 + 17022 + 17032 + 17042 4 17052 4 17062 + 17072 + 100% + 160% + 4922 + 516°.
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e So, we take
b, = 1699+, 1 <j <8, by = 100, byg = 160, by = 492, by, = 516.

With this choice,

0

Y=X2+_
T3

Note that if replace a; by a;A and b; by bjA2 for any integer A then the

same formulas apply. Thus, we take

= X2 + 4056.

pi(X) = Y—b=X2+(0/5-b)N2, j=1,...,12,
pi3(X) = Y =X%+(5/5)A2,
p](X) = Y+bj_13:X2+(6/5+bj_13)/\2, j=14,...,25.
We take
gi(X) = X-aA j=1,...,12
qi3(X) = X,
qj(X) = X+aj_13/\. j=14,...,25.
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o We take
AN=2357-11.13.17-19-23-29-31-37-41.43-47-53-59-61-67-71-73
to be the product of all the primes p < 73. Numerically,

A = 40729680599249024150621323470.
Let

25
P(X) := [T p(X)qi(X).
j=1

This is a polynomial of degree 75. If p < 75, then
P(X)= X" (mod p),

because p | A.

e This shows that there exists xp € {0,...,p — 1} such that
P(x0) 0 (mod p) for all p < 75 (for example, we can take

Xp = 1 for all such primes).

e The same is true for p > 75 because for such primes the
polynomial P(X) has at most deg(P) = 75 < p roots modulo p.
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e Since each p;(X) and q;(X) for j=1,...,25 is monic and
irreducible, it follows, by Schinzel’s Hypothesis H that there are
infinitely many n such that p;(n) and g;(n) are primes for all
j=1,...,25.

e As we remarked,
25 25
> pn)? = g(n)*
j=1 j=1

So, the number m which is the common value of the left and
right hand side of the above expression has f,(m) > 0 and
fa(m) > 0, provided p;(n) are consecutive primes and q;(n) are
consecutive primes for such n.
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e Well, let us insure that we can find such n. We put b3 :=0
and let

I:=[(6/5-1707)A%, (6/5+1707)AN2\{(6/5+b))A\? : 1 < j < 13}.

e let K:=#/and
/:{U1,U2,...,UK},

where the above are the elements of / labelled increasingly.
Select a finite set of K primes inductively {rx}1<x<k all larger
than 105A2 such that

(1) Mt > e
(i) The polynomial X? + uy has an integer root x, modulo r.
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e Put also aj3 = 0 and let

J = [-128N 128N\ {£aA : 1 < j <13} = {vq,..., v},
where L := #J and vy, ..., v, are the elements in J labelled
increasingly.

o Let {s¢}1<¢<1 be primes larger than 10°A2 which are distinct
from {r,...,rx}. Let

K L

M = H Iy H Sy,
k=1 =1

and let xp be such that

Xo = Xk (mod rk) for 1< k<K,
Xo = —V (mod Sg) for 1</<L

The fact that the above system is solvable follows from the way
we have chosen the primes r;, spfor1 <j < K, 1 </ < Land
from the Chinese Remainder Theorem.
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e Now we apply Schinzel’s Hypothesis H to the polynomials
p;j(MX + xo) and qi(MX + xp) for j=1,...,25

as polynomials in the variable X. We note that the condition
that for every prime number p there is ny such that Q(ny) # 0
(mod p) where

Q(X) := P(MX + xp)

is still satisfied.

e Indeed, this is trivially satisfied if p t M, while if p | M then we
can take ny = 0 since P(xp) is not zero modulo p. Indeed,
P(xo) being a multiple of p means that p divides one of

Xg +(0/5+ bj)/\2, or Xo £ aj/\,
forj=1,...,13. However, p also divides one of

XE + Uk 1<k<K, or  Xp+ Vo, 1</¢<L.
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e Thus, p divides one of

(6/5£b)N2—uy,  (5/5£b)N+VE, Lah+vy,  aN+uk

(1)
for1<j<13,1<k<K,1<¢<L.

e The first and third expressions are nonzero by constructions
since the ug’s the v/'s are the elements in their intervals

[(6/5 —1707)A%,(6/5 + 1707)A?] and  [—123A,123A]
which are not of the form
(6/5+b)N2 or LaA for 1<;j<13,

respectively.

e The second and the fourth ones are also nonzero since they
are positive.
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e Now the contradiction comes from the fact that the sizes of
the above nonzero numbers are

< 10°A2,
so they cannot be divisible by the prime
pe{r,....,rk}U{sy,...,s.}.
e Thus, there are infinitely many n such that
(Mn+ x0)? + (6/5 — bj)A2,  (Mn+xo) £ aA, j=1,...,13

are all primes. If the first 25 or the last 25 are not consecutive
primes, it follows that there exists either 1 < k < Kor1</<L
such that

(Mn+ x0)? + ux, or Mn+xy+ S

is prime, but this is impossible since the above numbers are
divisible by ry, and sy, respectively, by our construction.

¢ This finishes the argument.
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Comment

The Bateman-Horn conjecture is a qualitative form of the
Schinzel Hypothesis H and predicts for a large positive real
number T an asymptotic for the number of n < T such that

are primes in case
fi (X)v SRR fk(X)

satisfy the hypothesis of Schinzel’s Hypothesis H. For our
construction, it predicts that the number of m < T such that

fg(m)f4(m) >0
T1/4
~ (log T

e We give no further details.
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f(n) is unbounded

We use a similar method to prove the following result.

Assume Schinzel’s Hypothesis H. Then

limsup f(n) = co.
n—oo
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The construction
e Let u > 1 be an integer.
e Put k := k, = 22U*" and consider the quadratic polynomial
ku ku
Qu(X) =Y ((X = @)+ (X + a0)?) =2k X2 + 2 &,
i=1 i=1
e Here, we assume that

ay>ay > > aky>0

are integers.

e We aim to choose positive integers m, such that

Qu(mu) = Qv(mv) fOI’ U, vV = 1,27 ey T (2)
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e If we denote by N the common value of the numbers shown
at (2) and if furthermore:

(i) mu—ayy, My—asy,. .., Mu—ak,u, Mu+ag,u,---,Mu+ay
are primesforallu=1,..., T;

(if) the primes mentioned at (i) above are consecutive primes
in the sequence of prime numbers;

then obviously
B(N) > T.

e Since T is arbitrary, we get the desired result.

e It remains to justify that we can meet conditions (i) and (ii)
above.

e In order for (2) to hold it suffices that

Ko kv
2kymf = 2kymi, and 2> &, =2> &,
i= i=
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e The first condition above implies 2% 'm, = 2"+'m, for

uv=1,..., T. This is fulfilled if we choose mr = n and
mj=2""Infori=1,..., T — 1. For the second part, we look
for an integer M such that
Ku
M=>"a, u=1,...,T. (3)

e We will want some other things from the integers a; ; for

2T+4 _
W:ZZKU:Z?)m.

u=1

e This gives the total number of linear forms
my+a,=2""Yn+tay, for i=1,.. . ku=1,.T

in the variable n appearing in (i).
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e We would like to argue that there are numbers M which have
T representations as in (3), where all g; , for 1 </ < k, and
u=1,..., T have the property that they are not only distinct but
also coprime to all primes g < W.

e We choose M large, M = 8 (mod 24).
eForeachu=1,..., T, we choose
Ay < 8y Ay < ... < asy < M3
to be such that they are coprime to
= H q.
q<w
Note that

Z i = ku—4  (mod 24) =22"T1—4 (mod 24) =4 (mod 24),

because af are odd squares which are not divisible by 3 so
they are congruent to 1 (mod 24).
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e Then

and is a number of size M — Or(M?/3).

e By a result of Ching 2020, for large M, the number M, can be
written as
M, = a?,u + ag,u + ag,u + aézl,w
where each prime factor of g; , exceeds M“ (where w > 0 is
some fixed small constant).
e Furthermore, the number of such representations is
M
= Tlog M)*

e Choosing M such that M~ > W ensures that g; , are coprime
to P. It remains to ensure that we may assume that

Ay >y >asy > asy > asu-
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o Well, if the last inequality fails it means that a; , < M'/3. Note
that a3 , < M'/2. With az, and ay , fixed, we have that

M, — ag,u - ai,u = a?,u + ag,u-
e The number of such representation is a divisor function (the
number of divisors of the left-hand side in Z[i]) and so it is at
most M°(Y) as M — ~o. So, the number of such representations
(@1,u; 82,u; @3,u; A4,u) 1S
< MV2H1/3+0() a5 M 5 o0,

and this is much smaller than M/(log M)*. Thus, we may
ensure that a4 , > as .

e To ensure that
ay > a2y > azy > aau,

we note that the number of representations of M, as a sum of
four non-distinct squares is < M'/2t°(1) as M — oo and this is
much smaller that the number of representations from Ching’s
theorem.
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e Thus, we can indeed find M’s which admit representations as
in(3)whereall g;,foru=1,...,Tandi=1,...,k, are
distinct and coprime to P.

¢ Now it suffices to choose n such that foreachu=1,..., T,
2"Un+ g;, i=1,... ky

are consecutive primes.

¢ To ensure that they are primes, we can use Schinzel’s
Hypothesis H.

¢ The only condition we need to check is that for all primes p
there is n such that the polynomial

T ku
(X)) = [T T]7T4X - a,,)@7YX + a;y)

u=1i=1

evaluated in nis not a multiple of p.
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e This is a condition that needs to be checked only for primes q
which are at most the degree of the above polynomial which is
W and for such primes we have that f(n) is nonzero modulo g
for all g < W from the way we have chosen the a; , for
u=1,....,Tandi=1,... k.

e The only fact that now needs to be checked is to ensure that
for fixed v,

2T n—ay ..., 2" n—ay, 4, 2" Vntagy, ..., 2T Yn+a,
are consecutive primes.
e Let h, := a1, — ky be the cardinality of

(1, a1.u]\{@k,u> Aky—1,05 - - - @10} 4)

and let {b1 4, b2y, ..., bn,u} be the elements in the set shown
at (4). Now we choose P, to be a set or 2h, primes labeled

Q1j, 91 forj=1,..., h, which are all larger than W and ask
of nto be even and to solve the Chinese Remainder Lemma
2" Un=cb;, (modq.;) for ee€{-1,1} (5)
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e We further choose the sets of such primes P, to be disjoint
as uranges from1to T.

e Then we choose n even in such a way that all Chinese
Remainder Lemmas (5) are satisfiedforu=1,..., T.

e This puts n into a progression A (mod B), where

e Finally, we return to our problem and we now only look for nin
the arithmetic progression A (mod B) such that

2™-Un+g;, for i=1,....k;, and u=1,...,T

are primes.

¢ The fact that we can find infinitely many such nis again a
consequence of Schinzel's Hypothesis H.
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e Clearly, such n’s do ensure that
2T n—ayy,..., 2" Y ~ag, 4, 2" n+agu, ..., 2T Yn+ary,

are consecutive primes just because any intermediary positive
integer (positive integer which is between two consecutive
members of the above list) is a multiple of g for some g € P,,.
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Comment

e Again by the Bateman-Horn for our construction it predicts
that the number of N < Y such that L(N) > T is

Y1/2
> 7(|Og Y) W

It would be interesting to also make T tend to infinity slowly with
N. Perhaps it is true that

fo(N) > loglog N holds for infinitely many N.

This would be consistent with a Uniform Bateman-Horn
conjecture with an error term of size O(v/Y). We give no
further details.
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THANK YOU VERY MUCH!




