
Value sets of binary forms

Peter Koymans
Utrecht University

Debrecen Online Number Theory Seminar

11 October 2024

1 / 17



The value set

Definition (Value set)

Let F ∈ Z[X ,Y ] be a binary form. Define

Val(F ) := {F (x , y) : (x , y) ∈ Z2}.

For two forms F ,G ∈ Z[X ,Y ], we say F ∼val G if Val(F ) = Val(G ).

We
denote by [F ]val the resulting equivalence class of F .

Value sets of binary quadratic forms are classical topics of study.

Example (Fermat)

We have

Val(X 2 + Y 2) = {n ∈ Z>0 : p | n and p ≡ 3 mod 4 ⇒ vp(n) ≡ 0 mod 2}.

Class field theory gives an explicit description of Val(F ) for F binary
quadratic. However, much less is known if deg(F ) ≥ 3.
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Equivalence of forms

Recall that two binary forms F ,G ∈ Z[X ,Y ] are GL2(Z)–equivalent,

written F ∼GL2(Z) G , if there exists γ =

(
a b
c d

)
∈ GL2(Z) with

F (γ(X ,Y )) = F (aX + bY , cX + dY ) = G (X ,Y ).

Lemma

If F ∼GL2(Z) G , then F ∼val G . Hence

[F ]GL2(Z) ⊆ [F ]val. (1)

Proof.

This follows from the fact that all γ ∈ GL2(Z) permute Z2.

The main question of today is: when is the inclusion (1) strict?

3 / 17



Equivalence of forms

Recall that two binary forms F ,G ∈ Z[X ,Y ] are GL2(Z)–equivalent,

written F ∼GL2(Z) G , if there exists γ =

(
a b
c d

)
∈ GL2(Z) with

F (γ(X ,Y )) = F (aX + bY , cX + dY ) = G (X ,Y ).

Lemma

If F ∼GL2(Z) G , then F ∼val G . Hence

[F ]GL2(Z) ⊆ [F ]val. (1)

Proof.

This follows from the fact that all γ ∈ GL2(Z) permute Z2.

The main question of today is: when is the inclusion (1) strict?

3 / 17



Equivalence of forms

Recall that two binary forms F ,G ∈ Z[X ,Y ] are GL2(Z)–equivalent,

written F ∼GL2(Z) G , if there exists γ =

(
a b
c d

)
∈ GL2(Z) with

F (γ(X ,Y )) = F (aX + bY , cX + dY ) = G (X ,Y ).

Lemma

If F ∼GL2(Z) G , then F ∼val G . Hence

[F ]GL2(Z) ⊆ [F ]val. (1)

Proof.

This follows from the fact that all γ ∈ GL2(Z) permute Z2.

The main question of today is: when is the inclusion (1) strict?

3 / 17



Equivalence of forms

Recall that two binary forms F ,G ∈ Z[X ,Y ] are GL2(Z)–equivalent,

written F ∼GL2(Z) G , if there exists γ =

(
a b
c d

)
∈ GL2(Z) with

F (γ(X ,Y )) = F (aX + bY , cX + dY ) = G (X ,Y ).

Lemma

If F ∼GL2(Z) G , then F ∼val G . Hence

[F ]GL2(Z) ⊆ [F ]val. (1)

Proof.

This follows from the fact that all γ ∈ GL2(Z) permute Z2.

The main question of today is: when is the inclusion (1) strict?

3 / 17



An example

Example

Take F (X ,Y ) = X 3 − 3XY 2 − Y 3 and R :=

(
0 1
−1 −1

)
. One checks

▶ we have F ◦ R = F ,

▶ we have R3 = id.

Let G (X ,Y ) := F (2X ,Y ).

Lemma

We have Val(F ) = Val(G ), but F ̸∼GL2(Z) G by looking at discriminants.
In particular, [F ]GL2(Z) ⊊ [F ]val.
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Proof of lemma

Recall F (X ,Y ) = X 3 − 3XY 2 − Y 3, R :=

(
0 1
−1 −1

)
, F ◦ R = F and

G (X ,Y ) := F (2X ,Y ). We must prove Val(F ) = Val(G ).

Proof.

Clearly, Val(G ) ⊆ Val(F ), so suffices to show Val(F ) ⊆ Val(G ).

Take
z ∈ Val(F ), so z = F (x , y) for some x , y ∈ Z. Exploiting
F = F ◦ R = F ◦ R2, we get

z = F (x , y) = F (y ,−x − y) = F (−x − y , x).

Now at least one of x , y ,−x − y is even, say x = 2m. Then

z = F (x , y) = F (2m, y) = G (m, y),

so z ∈ Val(G ), as desired.
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Our main result

Theorem (K.–Fouvry)

Let F ∈ Z[X ,Y ] be a binary form of degree d ≥ 3, and assume
disc(F ) ̸= 0. Then [F ]val consists of one or two GL2(Z)–equivalence
classes.

It consists of two classes if and only if there exists G ∈ [F ]val and
σ ∈ Aut(G ) := {γ ∈ GL2(Q) : G ◦ γ = G} satisfying:

▶ σ has order exactly 3,

▶ σ ∈ GL2(Z).
Furthermore, in this case

[F ]val = [G (X ,Y )]GL2(Z) ∪ [G (2X ,Y )]GL2(Z).

Remark.
▶ We prove a similar result if d = 2.
▶ The possibilities for Aut(G ) have been classified (as an abstract

group). In particular, |Aut(G )| ≤ 12.
▶ Generically, we have Aut(F ) = {id} for d odd, Aut(F ) = {id,−id}

for d even. In particular, we generically have [F ]GL2(Z) = [F ]val.
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Counting value sets

Theorem (Stewart–Xiao, “Asymptotic density of value sets”)

Let F be a binary form with non-zero discriminant of degree d ≥ 3. Then
there exists C > 0 such that

|{|h| ≤ Z : h = F (x , y) for some (x , y) ∈ Z2}| ∼ CZ 2/d .

Although we shall not directly use the full strength of this result, we use
many classical techniques for counting asymptotic densities of value sets.

Of particular importance for us is the determinant method developed by
Heath-Brown, Salberger etc.
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High level proof strategy

Consider the surface S ⊆ P3 defined by

F (X ,Y ) = G (Z ,W ).

The key proof idea is that Val(F ) = Val(G ) gives an abundance of
rational points on S .

However, the determinant method shows that the rational points can only
come in a rather structured way, namely from the lines on the surface.

The lines on the surface have been classified, which will then turn our
problem into a question of lattice coverings.
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Detailed proof strategy

Step 1: use the determinant method to show that almost all points on S
come from the lines lying on the surface.

Step 2: classify the complex lines L ⊆ P3(C) on S .

Proposition (Boissière–Sarti)

The lines L ⊆ P3(C) on S are:

▶ There exists (x1 : x2) with F (x1, x2) = 0 and (x3 : x4) with
G (x3 : x4) = 0, and L is the unique line going through
(x1 : x2 : 0 : 0) and (0 : 0 : x3 : x4).

▶ There exists ρ ∈ GL2(C) with G ◦ ρ = F such that the line Lρ has
the parametric equation Lρ : (u, v) ∈ C2 7→ (u, v , ρ(u, v)).

Note: if (z1 : z2 : z3 : z4) is a point on a line of type 1, then
F (z1, z2) = G (z3, z4) = 0. Lines of type 1 will contribute negligibly to the
total point count.
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Detailed proof strategy II

Step 3: show that the lines Lρ with ρ ∈ GL2(C)− GL2(Q) contribute
negligibly to the number of rational points. From Step 1, 2, 3, we will
deduce the key claim:

Theorem (K.–Fouvry, “The lattice theorem”)

Let F ,G with Val(F ) = Val(G ), and let ρ ∈ GL2(Q) satisfy F = G ◦ ρ.
Then

Z2 =
⋃

σ1∈Aut(F )

{(
x
y

)
∈ Z2 : ρσ1

(
x
y

)
∈ Z2

}
and

Z2 =
⋃

σ2∈Aut(G)

{(
x
y

)
∈ Z2 : σ2ρ

−1

(
x
y

)
∈ Z2

}
.

Remark. The first and second equality mean that Z2 is the union of
sublattices of Z2 indexed by Aut(F ) respectively Aut(G ).
Remark. Such a ρ must exist, since Val(F ) = Val(G ) implies that S
has many rational points, so by Step 1, 2, 3, there must be such a ρ.

10 / 17



Detailed proof strategy II

Step 3: show that the lines Lρ with ρ ∈ GL2(C)− GL2(Q) contribute
negligibly to the number of rational points. From Step 1, 2, 3, we will
deduce the key claim:

Theorem (K.–Fouvry, “The lattice theorem”)

Let F ,G with Val(F ) = Val(G ), and let ρ ∈ GL2(Q) satisfy F = G ◦ ρ.

Then

Z2 =
⋃

σ1∈Aut(F )

{(
x
y

)
∈ Z2 : ρσ1

(
x
y

)
∈ Z2

}
and

Z2 =
⋃

σ2∈Aut(G)

{(
x
y

)
∈ Z2 : σ2ρ

−1

(
x
y

)
∈ Z2

}
.

Remark. The first and second equality mean that Z2 is the union of
sublattices of Z2 indexed by Aut(F ) respectively Aut(G ).
Remark. Such a ρ must exist, since Val(F ) = Val(G ) implies that S
has many rational points, so by Step 1, 2, 3, there must be such a ρ.

10 / 17



Detailed proof strategy II

Step 3: show that the lines Lρ with ρ ∈ GL2(C)− GL2(Q) contribute
negligibly to the number of rational points. From Step 1, 2, 3, we will
deduce the key claim:

Theorem (K.–Fouvry, “The lattice theorem”)

Let F ,G with Val(F ) = Val(G ), and let ρ ∈ GL2(Q) satisfy F = G ◦ ρ.
Then

Z2 =
⋃

σ1∈Aut(F )

{(
x
y

)
∈ Z2 : ρσ1

(
x
y

)
∈ Z2

}
and

Z2 =
⋃

σ2∈Aut(G)

{(
x
y

)
∈ Z2 : σ2ρ

−1

(
x
y

)
∈ Z2

}
.

Remark. The first and second equality mean that Z2 is the union of
sublattices of Z2 indexed by Aut(F ) respectively Aut(G ).
Remark. Such a ρ must exist, since Val(F ) = Val(G ) implies that S
has many rational points, so by Step 1, 2, 3, there must be such a ρ.
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Proof of lattice theorem assuming Step 1, 2, 3

We show

Z2 =
⋃

σ1∈Aut(F )

{(
x
y

)
∈ Z2 : ρσ1

(
x
y

)
∈ Z2

}
=: U.

The inclusion ⊇ is obvious, so we prove ⊆. Suppose not. Then there
exists M > 1, c1, c2 such that

E := {(u, v) ∈ Z2 : u ≡ c1 mod M, v ≡ c2 mod M}

is disjoint from U. Using that Val(F ) = Val(G ), we get for (u, v) ∈ E
that there exists (m, n) with F (u, v) = G (m, n). We get many rational
points on S in this way.

By Step 1, 2, 3, such rational points must lie on the rational lines of S ,
which are {ρσ1 : σ1 ∈ Aut(F )}. But the points on E are not on such
lines, contradiction.
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The main result for trivial automorphism group

The “lattice theorem” is extremely useful. For example, if Aut(F ) = id,
we get

Z2 =

{(
x
y

)
∈ Z2 : ρ

(
x
y

)
∈ Z2

}

and

Z2 =

{(
x
y

)
∈ Z2 : ρ−1

(
x
y

)
∈ Z2

}
.

This implies that ρ(Z2) ⊆ Z2 and ρ−1(Z2) ⊆ Z2. So ρ and ρ−1 have
integer coefficients.

This means precisely that ρ ∈ GL2(Z), so F and G are
GL2(Z)–equivalent.
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The main result for automorphism group C2

This argument also works if

Aut(F ) =

{(
1 0
0 1

)
,

(
0 1
1 0

)}
=:

{(
1 0
0 1

)
, σ

}
,

i.e. F (X ,Y ) = F (Y ,X ).

In this case

Z2 =

{(
x
y

)
∈ Z2 : ρ

(
x
y

)
∈ Z2

}
∪
{(

x
y

)
∈ Z2 : ρσ

(
x
y

)
∈ Z2

}
and

Z2 =

{(
x
y

)
∈ Z2 : ρ−1

(
x
y

)
∈ Z2

}
∪
{(

x
y

)
∈ Z2 : σρ−1

(
x
y

)
∈ Z2

}
.

However, if lattices L1, L2 ⊆ Z2 satisfy L1 ∪ L2 = Z2, then L1 = Z2 or
L2 = Z2. This still implies that F ,G are GL2(Z)–equivalent.
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The general case

In general, we are led to the question: let L1, . . . , L6 ⊆ Z2 be lattices.
Suppose that Z2 = L1 ∪ · · · ∪ L6. What can L1, . . . , L6 be?

Remark. The number 6 comes from the largest possible automorphism
group, which is D6.

Theorem (K.–Fouvry, “Lattice covering classification”)

▶ There is exactly 1 (i.e. up to permutation and inclusion) covering
with 3 lattices.

▶ There are exactly 4 coverings with 4 lattices.

▶ There are exactly 9 coverings with 5 lattices.

▶ There are exactly 40 coverings with 6 lattices.
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The cover with 3 lattices

The unique cover with 3 lattices is

Z2 =

{(
x
y

)
∈ Z2 : x ≡ 0 mod 2

}
∪
{(

x
y

)
∈ Z2 : y ≡ 0 mod 2

}
∪
{(

x
y

)
∈ Z2 : x + y ≡ 0 mod 2

}
.

This covering can actually arise from binary forms!

Indeed, these are exactly the cases where [F ]val consists of two classes: in
particular, this is the covering one would get from our first example.

The other cases do not arise.
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Ruling out all other coverings

Ruling out the remaining coverings is the hardest part of our papers,
although completely elementary. We use:

▶ Many case distinctions...

▶ Some Gröbner basis computations...

▶ Many brute force searches with the computer...
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Summary

We classify precisely when [F ]GL2(Z) = [F ]val.

We reduce this problem to a lattice covering problem by the determinant
method and a classification of lines on the surface F (X ,Y ) = G (Z ,W ).

We completely solve this lattice covering problem with a computer
algorithm.

We then rule out almost all of these coverings (except for 1) with a long
elementary argument with many cases and also some further computer
assistance.

Thank you for your attention!
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