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xyz = G(x,y) for G € Z[x, y]

History:
e Jacobsthal (1939) deg G = 2, symmetric in x, y.
e Mordell (1952) Claim: always infinitely many solutions.

proof details for xyz = ax" + by + ¢, for |abc| > 1.
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xyz = G(x,y) for G € Z|x, y]

History:
e Jacobsthal (1939) deg G = 2, symmetric in x, y.
e Mordell (1952) Claim: always infinitely many solutions.
proof details for xyz = ax" + by + ¢, for |abc| > 1.
e Counterexamples in Jacobsthal (1939)
xyz=x>+y>’—1+x+y.
e Schinzel (2015) proof for
xyz = ax" + by™ + ¢ + (other terms)
provided n, m > 3 and |abc| > 1.



Methods

e deg G = 2: Fix z = d, then dxy = G(x, y) degree 2,
Pell-type equations, well known.

e deg G = 3: then dxy = G(x, y) are elliptic curves.
Lot of data by Szabolcs Tengely.

e Mordell-Schinzel: explicit solutions using recursions.

e (with David Villalobos Paz and Jennifer Li):
When Mordell-Schinzel fails, the
automorphism group is infinite.



Why is degree 2 different?

If deg G = 2 then z is invariant under the automorphisms.
The problem breaks up into the independent
Pell-type equations dxy = G(x, y).

If deg G > 3, then z is not invariant. So a
solution of dyxy = G(x, y) is transformed into
solutions of infinitely many different dixy = G(x, y),

Claim: There are no invariant polynomials, so the solutions
are Zariski dense.
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Standard form

e the terms in G that are divisible by xy can be
absorbed into xyz.

e For abc # 0, write equation as

xyz = ax" + by" + c + Z?;llaixi + ij 11bej

A(x) = ax" + ¢ + 31l aix! B(y) == by™ + ¢ + 7 by

xyz = A(x) + B(y) — ¢
Warning: c appears 3 times.

Sap = (xyz = A(x) + B(y) — c) C A}
Assume from now on that abc # 0.



Mordell-Schinzel conjecture

If m;n> 3 (and abc # 0) then

xyz = ax" + by™ +c+ S lax + Z}Zlbjyj (MS1)

has infinitely many integer solutions.

For historical accuracy note that:

— Neither author stated this as a conjecture.
— Mordell claimed it as true.

— Schinzel proved it when |abc| > 1.



Finding automorphisms |

Theorem (with David Villalobos Paz)

If n,m > 3 and |abc| = 1 then the automorphism group of
Sa.g is infinite.

Corollary of proof:

There is a polynomial P(A, B) in the coeffs of A, B such that
— either all solutions satisfy |xyz| < P(A, B),
— or there are infinitely many solutions.

Problem: The automorphisms are very complicated.



Finding automorphisms |l

Example

Set Tpm:= (xyz =x>+y*+dx +ey +1) for
d,e € Z\ {0}. Then

Z if d # e, and
Autz( T, m) = Aute( T, m) = 7
2 Toim) c(Tam) {ZNZ/2|fd:e.
In their simplest form, the coordinate functions of the
generator of 7 are given by polynomials of
e degrees 13, 34, and 55, containing
e 110, 998, and 2881 monomials.




Cubic case of the Mordell-Schinzel conjecture |

Theorem (with Jennifer Li)

For every a,b € 7\ {0} and ay, a>, by, bo, ¢ € Z, the cubic
equation

xyz = ax> + by> + ¢ + axx® + a;x + boy? + by

has infinitely many integral solutions.

Plan of the proof:

e If ¢ = 0 then trivial solutions (0,0, z).
e If |abc| > 1: done by Schinzel.

e In remaining cases, normal form:

Sarz0byby = (Xyz =x3+ y3 + 14 ax®+ a;x + b2y2 + bly)



Cubic case of the Mordell-Schinzel conjecture |l

581,82,b1,b2 :

(xyz =x3+ y3 + 1+ azx2 + aix + bzy2 + b1y)

e Trivial solutions: (xo, yo, Z0), where xo = +1, yp = +1.

e Step 1: If the orbits of the trivial solutions is finite, then
a;|, |bj| are bounded.

e Step 2: For small |a;|, |b;|, computer search for solution
with |xo)0| large enough.



Automorphisms of cubic surfaces |

S = (f(x,y,z) = 0) C A® cubic surface.
Problem: Determine Aut(S).
Note: over Z, or R or C

Well understood: Linear automorphisms:
Subgroups of Aut™(A%) = A% x GLs.

Example. Autc(xyz = 1) = (C*)? x Ss.



Automorphisms of cubic surfaces |

Markov/Markoff (1879)

3xyz = x% + y? + Z2.
Interchange the roots of x*> — (3yz)x + (y? + z%) = 0:
Tx - (va‘/z) = (—X—|—3yZ,y,Z)

Similarly: 7, 7,.

Theorem. (7,.7,,7,) is the free product Z/2 « /2 « 7/ 2,
so infinite.

No other cubic surface with
infinite discrete automorphism group was known.
But: it was rediscovered many times.



Automorphisms of cubic surfaces |

Markov/Markoff (1879)

3xyz = x% + y? + Z2.
Interchange the roots of x*> — (3yz)x + (y? + z%) = 0:
Tx - (va‘/z) = (—X—|—3yZ,y,Z)

Similarly: 7, 7,.

Theorem. (7,.7,,7,) is the free product Z/2 « /2 « 7/ 2,
so infinite.

No other cubic surface with
infinite discrete automorphism group was known.
But: it was rediscovered many times.
Ruzsa lecture on July 2024: (x* + 1)(y? + 1) = z% + L.
with t = z — xy becomes a Markov equation:
2xyt = x2 4+ y? — t2.



Automorphisms of cubic surfaces Il

Write A(x) = xA*(x) + c. Then the equation becomes

xyz = xA*(x) + B(y),
x(yz — A*(X))
Plan:

equivalently
= B(y).

oy (x,y) = (yz — A*(x),y)

= (82,y).
Problem: What happens to z7

DA



Automorphisms of cubic surfaces Ill
Proposition. Set

A(t) = ag_llan t"A(%), then o, maps

the surface Sy == (xyz = A(x) + B(y) — ¢)

to the surface Sz 5 := (xyz = A(x) + B(y) — ¢)



Automorphisms of cubic surfaces Ill J

Proposition. Set

A(t) :== 2—t"A(%), then o, maps

ap ta,

the surface Sa g == (xyz = A(x) + B(y) — ¢)
to the surface S 5 := (xyz = A(x) + B(y) — c).

We get 7-isomorphisms only when |abc| = 1.




Automorphisms of cubic surfaces IV

Alt) =+ at? +at+1, B(t):=t3+ bt> + byt + 1,

A(t) =t +ait? +apt +1, B(t) := 3+ bit?> + bot + 1.
For a given A, B, there are 8 companion surfaces in play:

SaB:Sap Saps: Sas SB.A SEA SB A SB.A-

Theorem (with Villalobos Paz)

The groupoid of isomorphisms between all the surfaces Sy g
is generated by

© linear isomorphisms,
© 0,:548= S5
e Ox . SA,B = SA-B'




Automorphisms of cubic surfaces V

Ox
Sag < Sag
Oy i) Oy

Tx
Sig < Sis

Theorem (with Villalobos Paz)
The composite
OAB - SA,B i> 5/573 i) SAB &> SAB i> SA,B-

generates an infinite, cyclic subgroup of finite index in
Autz(SAVB).




Finding solutions | |

S = (xyZ*iX +ym 14> 1aX +ZJ 1 Jyj>

oy (x,y) — (B(y)/x, y) and o, : (x,y) — (X,A(x)/y);

Elementary estimates:

Let po = (x0, Y0, 20) € S be a complex point. If

n—1 m—1
max{|xol, [yol} > 1+ max{l, > icolail, ijo |bj|}’

then the o4 g-orbit of py is infinite.




Finding solutions Il |

Now assume n= m = 3, so S is a cubic surface.

Proposition

The Auty(S)-orbit of every trivial solution is finite iff S is a
companion surface of:

xyz—x3—y3—1 = —x*>—y2
xyz—x3—y3—1 = —2x> —x—-2y?>—y,

xyz—x3—y3—1 = —2x> —x—y2




Finding solutions IlI

(=7, —17, —47)
(293, —601, 1095)
(11,-13,9)

2 2
— X" =Yy,

—2x%2 —x —2y%> —y,
—2x% — x — y2.

APAN G4



Finding solutions: higher degrees

Why cubics?

(x,y) = (7 + by + buy + 1)/x,v).

Can chose £y such that b,y? and b;y have same sign.
In degrees > 4, the b; may cancel each other.

Example. If A(x), B(y) are of the form

t— 2+ 1+r(—t)

the the orbit of all trivial solutions is finite.



The Mordell-Schinzel method

Preliminary: If |abc| > 1, then there are infinitely many
Z|(abc)~']-integral solutions:

x,y monomials in a, b, ¢, and z = G(x, y)/(xy).
Constructing solutions. Follow the denominator changes:
For every r > 0 there is a monomial point p, such that
o) 5(pr) is a Z-integral point.

The x,, y, are given as a’ b c”", where \,, ji,, v, satisfy
Fibonacci-type recursions. (Formula 30 in Schinzel).
Different r give different solutions if |abc| > 1.

This is the harder part of Schinzel's papers, very careful
estimates are needed.



o



