The Mordell-Schinzel conjecture for cubic diophantine equations

János Kollár

(with David Villalobos Paz and Jennifer Li)

Princeton University

April, 2025

xyz = G(x, y) for $G \in \mathbb{Z}[x, y]$

History:

- Jacobsthal (1939) deg G = 2, symmetric in x, y.
- Mordell (1952) Claim: always infinitely many solutions. proof details for $xyz = ax^n + by^m + c$, for |abc| > 1.

$$xyz = G(x, y)$$
 for $G \in \mathbb{Z}[x, y]$

History:

- Jacobsthal (1939) deg G = 2, symmetric in x, y.
- Mordell (1952) Claim: always infinitely many solutions. proof details for $xyz = ax^n + by^m + c$, for |abc| > 1.
- Counterexamples in Jacobsthal (1939)

$$xyz = x^2 + y^2 - 1 \pm x \pm y.$$

$$xyz = G(x, y)$$
 for $G \in \mathbb{Z}[x, y]$

History:

- Jacobsthal (1939) deg G = 2, symmetric in x, y.
- Mordell (1952) Claim: always infinitely many solutions. proof details for $xyz = ax^n + by^m + c$, for |abc| > 1.
- Counterexamples in Jacobsthal (1939)

$$xyz = x^2 + y^2 - 1 \pm x \pm y.$$

• Schinzel (2015) proof for $xyz = ax^n + by^m + c + (\text{other terms})$ provided $n, m \ge 3$ and |abc| > 1.

Methods

- deg G = 2: Fix z = d, then dxy = G(x, y) degree 2, Pell-type equations, well known.
- deg G = 3: then dxy = G(x, y) are elliptic curves. Lot of data by Szabolcs Tengely.
- Mordell-Schinzel: explicit solutions using recursions.
- (with David Villalobos Paz and Jennifer Li): When Mordell-Schinzel fails, the automorphism group is infinite.

Why is degree 2 different?

- If deg G=2 then z is invariant under the automorphisms. The problem breaks up into the independent Pell-type equations dxy=G(x,y).
- If deg $G \ge 3$, then z is not invariant. So a solution of $d_0xy = G(x,y)$ is transformed into solutions of infinitely many different $d_ixy = G(x,y)$,

Claim: There are no invariant polynomials, so the solutions are Zariski dense.

János Kollár, *Log K3 surfaces with irreducible boundary*, https://arxiv.org/abs/2407.08051.

János Kollár and David Villalobos-Paz, *Cubic surfaces with infinite, discrete automorphism group*, https://arxiv.org/abs/2410.03934.

János Kollár and Jennifer Li, *The Mordell-Schinzel conjecture for cubic surfaces*, https://arxiv.org/abs/2412.12080.

Standard form

- the terms in G that are divisible by xy can be absorbed into xyz.
- For $abc \neq 0$, write equation as

$$xyz = ax^{n} + by^{m} + c + \sum_{i=1}^{n-1} a_{i}x^{i} + \sum_{j=1}^{m-1} b_{j}y^{j}$$

$$A(x) := ax^n + c + \sum_{i=1}^{n-1} a_i x^i, B(y) := by^m + c + \sum_{j=1}^{m-1} b_j y^j.$$

$$xyz = A(x) + B(y) - c,$$

Warning: *c* appears 3 times.

$$S_{A,B} := (xyz = A(x) + B(y) - c) \subset \mathbb{A}^3_{\mathbb{Z}}.$$

Assume from now on that $abc \neq 0$.

Mordell-Schinzel conjecture

Conjecture

If $m, n \ge 3$ (and $abc \ne 0$) then

$$xyz = ax^{n} + by^{m} + c + \sum_{i=1}^{n-1} a_{i}x^{i} + \sum_{j=1}^{m-1} b_{j}y^{j}$$
 (MS1)

has infinitely many integer solutions.

For historical accuracy note that:

- Neither author stated this as a conjecture.
- Mordell claimed it as true.
- Schinzel proved it when |abc| > 1.

Finding automorphisms I

Theorem (with David Villalobos Paz)

If $n, m \ge 3$ and |abc| = 1 then the automorphism group of $S_{A,B}$ is infinite.

Corollary of proof:

There is a polynomial P(A, B) in the coeffs of A, B such that

- either all solutions satisfy |xyz| < P(A, B),
- or there are infinitely many solutions.

Problem: The automorphisms are very complicated.

Finding automorphisms II

Example

Set
$$T_{n,m} := (xyz = x^3 + y^3 + dx + ey + 1)$$
 for $d, e \in \mathbb{Z} \setminus \{0\}$. Then

$$\operatorname{\mathsf{Aut}}_{\mathbb{Z}}(\mathcal{T}_{n,m})=\operatorname{\mathsf{Aut}}_{\mathbb{C}}(\mathcal{T}_{n,m})\cong egin{cases} \mathbb{Z}\ ext{if}\ d
eq e,\ ext{and}\ \mathbb{Z}
times\mathbb{Z}/2\ ext{if}\ d=e. \end{cases}$$

In their simplest form, the coordinate functions of the generator of $\ensuremath{\mathbb{Z}}$ are given by polynomials of

- degrees 13, 34, and 55, containing
- 110, 998, and 2881 monomials.

Cubic case of the Mordell-Schinzel conjecture I

Theorem (with Jennifer Li)

For every $a,b\in\mathbb{Z}\setminus\{0\}$ and $a_1,a_2,b_1,b_2,c\in\mathbb{Z}$, the cubic equation

$$xyz = ax^3 + by^3 + c + a_2x^2 + a_1x + b_2y^2 + b_1y$$

has infinitely many integral solutions.

Plan of the proof:

- If c = 0 then trivial solutions (0, 0, z).
- If |abc| > 1: done by Schinzel.
- In remaining cases, normal form:

$$S_{a_1,a_2,b_1,b_2} := (xyz = x^3 + y^3 + 1 + a_2x^2 + a_1x + b_2y^2 + b_1y)$$

Cubic case of the Mordell-Schinzel conjecture II

$$S_{a_1,a_2,b_1,b_2} := (xyz = x^3 + y^3 + 1 + a_2x^2 + a_1x + b_2y^2 + b_1y)$$

- Trivial solutions: (x_0, y_0, z_0) , where $x_0 = \pm 1, y_0 = \pm 1$.
- Step 1: If the orbits of the trivial solutions is finite, then $|a_i|, |b_i|$ are bounded.
- Step 2: For small $|a_i|, |b_j|$, computer search for solution with $|x_0y_0|$ large enough.

Automorphisms of cubic surfaces I

 $S = (f(x, y, z) = 0) \subset \mathbb{A}^3$ cubic surface.

Problem: Determine Aut(S).

Note: over \mathbb{Z} , or \mathbb{R} or \mathbb{C}

Well understood: Linear automorphisms:

Subgroups of $\operatorname{Aut}^{\operatorname{lin}}(\mathbb{A}^3) \cong \mathbb{A}^3 \rtimes \operatorname{G} L_3$.

Example. Aut_{\mathbb{C}} $(xyz = 1) \cong (\mathbb{C}^{\times})^2 \rtimes S_3$.

Automorphisms of cubic surfaces I

Markov/Markoff (1879)

$$3xyz = x^2 + y^2 + z^2.$$
Interchange the root

Interchange the roots of
$$x^2 - (3yz)x + (y^2 + z^2) = 0$$
: $\tau_x : (x, y, z) \mapsto (-x + 3yz, y, z)$

Similarly: τ_y, τ_z .

Theorem. $\langle \tau_x, \tau_y, \tau_z \rangle$ is the free product $\mathbb{Z}/2 * \mathbb{Z}/2 * \mathbb{Z}/2$, so infinite.

No other cubic surface with

infinite discrete automorphism group was known.

But: it was rediscovered many times.

Automorphisms of cubic surfaces I

Markov/Markoff (1879)

$$3xyz = x^2 + y^2 + z^2.$$

Interchange the roots of
$$x^2 - (3yz)x + (y^2 + z^2) = 0$$
:
 $\tau_x : (x, y, z) \mapsto (-x + 3yz, y, z)$

Similarly: τ_y, τ_z .

Theorem. $\langle \tau_x, \tau_y, \tau_z \rangle$ is the free product $\mathbb{Z}/2 * \mathbb{Z}/2 * \mathbb{Z}/2$, so infinite.

No other cubic surface with

infinite discrete automorphism group was known.

But: it was rediscovered many times.

Ruzsa lecture on July 2024:
$$(x^2 + 1)(y^2 + 1) = z^2 + 1$$
.

with t = z - xy becomes a Markov equation:

$$2xyt = x^2 + y^2 - t^2.$$

Automorphisms of cubic surfaces II

Write $A(x) = xA^*(x) + c$. Then the equation becomes

$$xyz = xA^*(x) + B(y)$$
, equivalently $x(yz - A^*(x)) = B(y)$.

Plan:

$$\sigma_y: (x,y) \mapsto (yz - A^*(x), y) = \left(\frac{B(y)}{x}, y\right).$$

Problem: What happens to z?

Automorphisms of cubic surfaces III

Proposition. Set

$$ar{A}(t) := rac{1}{a_0^{n-1}a_n} t^n Aig(rac{a_0}{t}ig), \quad ext{then } \sigma_y ext{ maps}$$

the surface
$$S_{A,B}:=\left(xyz=A(x)+B(y)-c\right)$$
 to the surface $S_{\bar{A},B}:=\left(xyz=\bar{A}(x)+B(y)-c\right)$.

Automorphisms of cubic surfaces III

Proposition. Set

$$ar{A}(t) := rac{1}{a_0^{n-1}a_n} t^n Aig(rac{a_0}{t}ig), \quad ext{then } \sigma_y ext{ maps}$$

the surface
$$S_{A,B} := (xyz = A(x) + B(y) - c)$$

to the surface
$$S_{\bar{A},B}:=\left(xyz=\bar{A}(x)+B(y)-c\right)$$
.

Corollary

We get \mathbb{Z} -isomorphisms only when |abc| = 1.

Automorphisms of cubic surfaces IV

$$A(t) := t^3 + a_2t^2 + a_1t + 1, \quad B(t) := t^3 + b_2t^2 + b_1t + 1, \bar{A}(t) := t^3 + a_1t^2 + a_2t + 1, \quad \bar{B}(t) := t^3 + b_1t^2 + b_2t + 1.$$

For a given A, B, there are 8 **companion** surfaces in play:

$$S_{A,B}, S_{\bar{A},B}, S_{A,\bar{B}}, S_{\bar{A},\bar{B}}, S_{B,A}, S_{\bar{B},A}, S_{B,\bar{A}}, S_{\bar{B},\bar{A}}$$

Theorem (with Villalobos Paz)

The groupoid of isomorphisms between all the surfaces $S_{A,B}$ is generated by

- 1 linear isomorphisms,
- \bullet $\sigma_{\mathsf{y}}: \mathcal{S}_{\mathsf{A},\mathsf{B}} \cong \mathcal{S}_{\bar{\mathsf{A}},\mathsf{B}}$
- $\bullet \ \sigma_{\mathsf{x}}: S_{\mathsf{A},\mathsf{B}} \cong S_{\mathsf{A},\bar{\mathsf{B}}}.$

Automorphisms of cubic surfaces V

$$\begin{array}{ccc} S_{A,B} & \stackrel{\sigma_x}{\longleftrightarrow} & S_{A,\bar{B}} \\ \sigma_y \updownarrow & & \updownarrow \sigma_y \\ S_{\bar{A},B} & \stackrel{\sigma_x}{\longleftrightarrow} & S_{\bar{A},\bar{B}} \end{array}$$

Theorem (with Villalobos Paz)

The composite

$$\sigma_{A,B}: S_{A,B} \xrightarrow{\sigma_x} S_{\bar{A},B} \xrightarrow{\sigma_y} S_{\bar{A},\bar{B}} \xrightarrow{\sigma_x} S_{A,\bar{B}} \xrightarrow{\sigma_y} S_{A,B}.$$

generates an infinite, cyclic subgroup of finite index in $Aut_{\mathbb{Z}}(S_{A,B})$.

Finding solutions I

$$S := (xyz = \pm x^n \pm y^m \pm 1 + \sum_{i=1}^{n-1} a_i x^i + \sum_{j=1}^{m-1} b_j y^j).$$

$$\sigma_y:(x,y)\mapsto \big(B(y)/x,y\big) \text{ and } \sigma_x:(x,y)\mapsto \big(x,A(x)/y\big);$$

Elementary estimates:

Lemma

Let
$$p_0 = (x_0, y_0, z_0) \in S$$
 be a complex point. If

$$\max\{|x_0|,|y_0|\} > 1 + \max\{1,\sum_{i=0}^{n-1}|a_i|,\sum_{j=0}^{m-1}|b_j|\},$$

then the $\sigma_{A,B}$ -orbit of p_0 is infinite.

Finding solutions II

Now assume n = m = 3, so S is a cubic surface.

Proposition

The $\operatorname{Aut}_{\mathbb{Z}}(S)$ -orbit of every trivial solution is finite iff S is a companion surface of:

$$xyz - x^3 - y^3 - 1 = -x^2 - y^2,$$

 $xyz - x^3 - y^3 - 1 = -2x^2 - x - 2y^2 - y,$
 $xyz - x^3 - y^3 - 1 = -2x^2 - x - y^2.$

Finding solutions III

$$(-7, -17, -47)$$
 : $-x^2 - y^2$,
 $(293, -601, 1095)$: $-2x^2 - x - 2y^2 - y$,
 $(11, -13, 9)$: $-2x^2 - x - y^2$.

Finding solutions: higher degrees

Why cubics?

$$(x,y) \mapsto ((y^3 + b_2y^2 + b_1y + 1)/x, y).$$

Can chose $\pm y$ such that b_2y^2 and b_1y have same sign. In degrees ≥ 4 , the b_i may cancel each other.

Example. If A(x), B(y) are of the form

$$t^4 - t^2 + 1 + r(t^3 - t)$$

the the orbit of all trivial solutions is finite.

The Mordell-Schinzel method

Preliminary: If |abc| > 1, then there are infinitely many $\mathbb{Z}[(abc)^{-1}]$ -integral solutions: x, y monomials in a, b, c, and z = G(x, y)/(xy).

Constructing solutions. Follow the denominator changes: For every r > 0 there is a monomial point p_r such that $\sigma^r_{A,B}(p_r)$ is a \mathbb{Z} -integral point.

The x_r, y_r are given as $a^{\lambda_r} b^{\mu_r} c^{\nu_r}$, where λ_r, μ_r, ν_r satisfy Fibonacci-type recursions. (Formula 30 in Schinzel).

Different r give different solutions if |abc| > 1. This is the harder part of Schinzel's papers, very careful estimates are needed.