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xyz = G (x , y) for G ∈ Z[x , y ]

History:
• Jacobsthal (1939) degG = 2, symmetric in x , y .
• Mordell (1952) Claim: always infinitely many solutions.

proof details for xyz = axn + bym + c , for |abc | > 1.

• Counterexamples in Jacobsthal (1939)
xyz = x2 + y 2 − 1± x ± y .

• Schinzel (2015) proof for
xyz = axn + bym + c + (other terms)
provided n,m ≥ 3 and |abc | > 1.
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Methods

• degG = 2: Fix z = d , then dxy = G (x , y) degree 2,
Pell-type equations, well known.

• degG = 3: then dxy = G (x , y) are elliptic curves.
Lot of data by Szabolcs Tengely.

• Mordell-Schinzel: explicit solutions using recursions.

• (with David Villalobos Paz and Jennifer Li):
When Mordell-Schinzel fails, the
automorphism group is infinite.



Why is degree 2 different?

If degG = 2 then z is invariant under the automorphisms.
The problem breaks up into the independent
Pell-type equations dxy = G (x , y).

If degG ≥ 3, then z is not invariant. So a
solution of d0xy = G (x , y) is transformed into
solutions of infinitely many different dixy = G (x , y),

Claim: There are no invariant polynomials, so the solutions
are Zariski dense.
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Standard form

• the terms in G that are divisible by xy can be
absorbed into xyz .

• For abc 6= 0, write equation as

xyz = axn + bym + c +
∑n−1

i=1 aix
i +
∑m−1

j=1 bjy
j

A(x) := axn + c +
∑n−1

i=1 aix
i ,B(y) := bym + c +

∑m−1
j=1 bjy

j .

xyz = A(x) + B(y)− c ,

Warning: c appears 3 times.

SA,B :=
(
xyz = A(x) + B(y)− c

)
⊂ A3

Z.

Assume from now on that abc 6= 0.



Mordell-Schinzel conjecture

Conjecture

If m, n ≥ 3 (and abc 6= 0) then

xyz = axn + bym + c +
∑n−1

i=1 aix
i +
∑m−1

j=1 bjy
j (MS1)

has infinitely many integer solutions.

For historical accuracy note that:
— Neither author stated this as a conjecture.
— Mordell claimed it as true.
— Schinzel proved it when |abc | > 1.



Finding automorphisms I

Theorem (with David Villalobos Paz)

If n,m ≥ 3 and |abc | = 1 then the automorphism group of
SA,B is infinite.

Corollary of proof:
There is a polynomial P(A,B) in the coeffs of A,B such that

— either all solutions satisfy |xyz | < P(A,B),
— or there are infinitely many solutions.

Problem: The automorphisms are very complicated.



Finding automorphisms II

Example

Set Tn,m := (xyz = x3 + y 3 + dx + ey + 1) for
d , e ∈ Z \ {0}. Then

AutZ(Tn,m) = AutC(Tn,m) ∼=

{
Z if d 6= e, and

Z o Z/2 if d = e.

In their simplest form, the coordinate functions of the
generator of Z are given by polynomials of
• degrees 13, 34, and 55, containing
• 110, 998, and 2881 monomials.



Cubic case of the Mordell-Schinzel conjecture I

Theorem (with Jennifer Li)

For every a, b ∈ Z \ {0} and a1, a2, b1, b2, c ∈ Z, the cubic
equation

xyz = ax3 + by 3 + c + a2x
2 + a1x + b2y

2 + b1y

has infinitely many integral solutions.

Plan of the proof:
• If c = 0 then trivial solutions (0, 0, z).
• If |abc | > 1: done by Schinzel.
• In remaining cases, normal form:

Sa1,a2,b1,b2 :=
(
xyz = x3 + y 3 + 1 + a2x

2 + a1x + b2y
2 + b1y

)



Cubic case of the Mordell-Schinzel conjecture II

Sa1,a2,b1,b2 :=
(
xyz = x3 + y 3 + 1 + a2x

2 + a1x + b2y
2 + b1y

)
• Trivial solutions: (x0, y0, z0), where x0 = ±1, y0 = ±1.
• Step 1: If the orbits of the trivial solutions is finite, then
|ai |, |bj | are bounded.

• Step 2: For small |ai |, |bj |, computer search for solution
with |x0y0| large enough.



Automorphisms of cubic surfaces I

S =
(
f (x , y , z) = 0

)
⊂ A3 cubic surface.

Problem: Determine Aut(S).
Note: over Z, or R or C .....

Well understood: Linear automorphisms:
Subgroups of Autlin(A3) ∼= A3 oGL3.

Example. AutC(xyz = 1) ∼= (C×)2 o S3.



Automorphisms of cubic surfaces I

Markov/Markoff (1879)
3xyz = x2 + y 2 + z2.

Interchange the roots of x2 − (3yz)x + (y 2 + z2) = 0:
τx : (x , y , z) 7→ (−x + 3yz , y , z)

Similarly: τy , τz .
Theorem. 〈τx , τy , τz〉 is the free product Z/2 ∗ Z/2 ∗ Z/2,

so infinite.

No other cubic surface with
infinite discrete automorphism group was known.

But: it was rediscovered many times.

Ruzsa lecture on July 2024: (x2 + 1)(y 2 + 1) = z2 + 1.
with t = z − xy becomes a Markov equation:

2xyt = x2 + y 2 − t2.
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Automorphisms of cubic surfaces II

Write A(x) = xA∗(x) + c . Then the equation becomes

xyz = xA∗(x) + B(y), equivalently
x
(
yz − A∗(x)

)
= B(y).

Plan:

σy : (x , y) 7→
(
yz − A∗(x), y

)
=
(

B(y)
x
, y
)
.

Problem: What happens to z?



Automorphisms of cubic surfaces III

Proposition. Set

Ā(t) := 1
an−1

0 an
tnA
(
a0

t

)
, then σy maps

the surface SA,B :=
(
xyz = A(x) + B(y)− c

)
to the surface SĀ,B :=

(
xyz = Ā(x) + B(y)− c

)
.

Corollary

We get Z-isomorphisms only when |abc | = 1.
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Automorphisms of cubic surfaces IV

A(t) := t3 + a2t
2 + a1t + 1, B(t) := t3 + b2t

2 + b1t + 1,
Ā(t) := t3 + a1t

2 + a2t + 1, B̄(t) := t3 + b1t
2 + b2t + 1.

For a given A,B , there are 8 companion surfaces in play:

SA,B , SĀ,B , SA,B̄ , SĀ,B̄ , SB,A, SB̄,A, SB,Ā, SB̄,Ā.

Theorem (with Villalobos Paz)

The groupoid of isomorphisms between all the surfaces SA,B

is generated by

1 linear isomorphisms,

2 σy : SA,B
∼= SĀ,B

3 σx : SA,B
∼= SA,B̄ .



Automorphisms of cubic surfaces V

SA,B
σx←→ SA,B̄

σy l l σy
SĀ,B

σx←→ SĀ,B̄

Theorem (with Villalobos Paz)

The composite

σA,B : SA,B
σx−→ SĀ,B

σy−→ SĀ,B̄
σx−→ SA,B̄

σy−→ SA,B .

generates an infinite, cyclic subgroup of finite index in
AutZ(SA,B).



Finding solutions I

S :=
(
xyz = ±xn ± ym ± 1 +

∑n−1
i=1 aix

i +
∑m−1

j=1 bjy
j
)
.

σy : (x , y) 7→
(
B(y)/x , y

)
and σx : (x , y) 7→

(
x ,A(x)/y

)
;

Elementary estimates:

Lemma
Let p0 = (x0, y0, z0) ∈ S be a complex point. If

max{|x0|, |y0|} > 1 + max
{

1,
∑n−1

i=0 |ai |,
∑m−1

j=0 |bj |
}
,

then the σA,B-orbit of p0 is infinite.



Finding solutions II

Now assume n = m = 3, so S is a cubic surface.

Proposition

The AutZ(S)-orbit of every trivial solution is finite iff S is a
companion surface of:

xyz − x3 − y 3 − 1 = −x2 − y 2,
xyz − x3 − y 3 − 1 = −2x2 − x − 2y 2 − y ,
xyz − x3 − y 3 − 1 = −2x2 − x − y 2.



Finding solutions III

(−7,−17,−47) : −x2 − y 2,
(293,−601, 1095) : −2x2 − x − 2y 2 − y ,
(11,−13, 9) : −2x2 − x − y 2.



Finding solutions: higher degrees

Why cubics?

(x , y) 7→
(

(y 3 + b2y
2 + b1y + 1)/x , y

)
.

Can chose ±y such that b2y
2 and b1y have same sign.

In degrees ≥ 4, the bi may cancel each other.

Example. If A(x),B(y) are of the form

t4 − t2 + 1 + r(t3 − t)

the the orbit of all trivial solutions is finite.



The Mordell-Schinzel method

Preliminary: If |abc | > 1, then there are infinitely many
Z[(abc)−1]-integral solutions:
x , y monomials in a, b, c , and z = G (x , y)/(xy).

Constructing solutions. Follow the denominator changes:
For every r > 0 there is a monomial point pr such that
σr
A,B(pr ) is a Z-integral point.

The xr , yr are given as aλrbµr cνr , where λr , µr , νr satisfy
Fibonacci-type recursions. (Formula 30 in Schinzel).

Different r give different solutions if |abc | > 1.
This is the harder part of Schinzel’s papers, very careful
estimates are needed.




