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Plan of the talk

Joint work with T. Miyazaki

e Introduction

e Brief summary of earlier results

e Main result

e Sketch of the proof of the main result
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Introduction

e Let a, b, ¢ be fixed co-prime positive integers with
min{a, b, c} > 1.
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e Let a, b, ¢ be fixed co-prime positive integers with
min{a, b, c} > 1.

e Consider equation
>+ b =cf (1)

in positive integer unknowns (x, y, z).
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e Let a, b, ¢ be fixed co-prime positive integers with
min{a, b, c} > 1.

e Consider equation
>+ b =cf (1)

in positive integer unknowns (x, y, z).

e Mahler (1933): equation (1) has finitely many solutions. This
result depends on p-adic analogue of the Diophantine
approximation method of Thue and Siegel and hence is ineffective.
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Introduction

e Let a, b, ¢ be fixed co-prime positive integers with
min{a, b, c} > 1.

e Consider equation
>+ b =cf (1)

in positive integer unknowns (x, y, z).

e Mahler (1933): equation (1) has finitely many solutions. This
result depends on p-adic analogue of the Diophantine
approximation method of Thue and Siegel and hence is ineffective.

e Gelfond (1940): the first effective finiteness result for the
solutions (x, y, z) of (1).
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e Equation
a+b =c* (1)
can be rewritten as
x1+x =1 (S)

where x; = a*c 7%, xp = bYc%.
7
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e Equation

a+ b =c (1)
can be rewritten as

x1+x =1 (S)

where x; = a*c7%,x, = bYc%.

e Equation (1) can be regarded as an (inhomogeneous) S-unit
equation in two unknowns over the rational field, where S consists
of the prime factors of abc.
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a+b =c* (1)
can be rewritten as

x1+x =1 (S)

where x; = a*c7%,x, = bYc%.

e Equation (1) can be regarded as an (inhomogeneous) S-unit

equation in two unknowns over the rational field, where S consists
of the prime factors of abc.

e By a classical result of Gyéry (1979) on equation (s) over number
fields => equation (1) has at most finitely many effectively
computable solutions,
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e Equation

a+b =c* (1)
can be rewritten as

x1+x =1 (S)

where x; = a*c7%,x, = bYc%.

e Equation (1) can be regarded as an (inhomogeneous) S-unit

equation in two unknowns over the rational field, where S consists
of the prime factors of abc.

e By a classical result of Gyéry (1979) on equation (s) over number
fields => equation (1) has at most finitely many effectively
computable solutions, that is max{x, y, z} < Kg(a, b, ¢).
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Introduction

e Equation
a+b =c* (1)

can be rewritten as
x1+x =1 (S)

where x; = a*c7%,x, = bYc%.

e Equation (1) can be regarded as an (inhomogeneous) S-unit

equation in two unknowns over the rational field, where S consists
of the prime factors of abc.

e By a classical result of Gyéry (1979) on equation (s) over number
fields => equation (1) has at most finitely many effectively
computable solutions, that is max{x, y, z} < Kg(a, b, ¢).

e Method: Baker's theory of linear forms in complex and p-adic
logarithms of algebraic numbers.
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e Let K be a number field and let a3, a2 € K\ {0} be fixed.
Consider the S-unit equation

a1xy +axxo =1 inxy,x € Us. (s2)

Istvan Pink Special type of unit equations in two unknowns



Introduction

Introduction

e Let K be a number field and let a3, a2 € K\ {0} be fixed.
Consider the S-unit equation

a1xy +axxo =1 inxy,x € Us. (s2)

Theorem (Evertse, 1984)

The number of solutions of (s2) is at most 3 - 79725, where
d =[K: Q] and s is the cardinality of the set S.

Istvan Pink Special type of unit equations in two unknowns



Introduction

Introduction

e Let K be a number field and let a3, a2 € K\ {0} be fixed.
Consider the S-unit equation

a1xy +axxo =1 inxy,x € Us. (s2)

Theorem (Evertse, 1984)

The number of solutions of (s2) is at most 3 - 79725, where
d =[K: Q] and s is the cardinality of the set S.

e The S-unit equations aiyx; + asxp = 1 and Bixy + PBoxp = 1 are
called S-equivalent if /5 € Us (i =1,2).
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e Let K be a number field and let a3, a2 € K\ {0} be fixed.
Consider the S-unit equation

a1xy +axxo =1 inxy,x € Us. (s2)

Theorem (Evertse, 1984)

The number of solutions of (s2) is at most 3 - 79725, where
d =[K: Q] and s is the cardinality of the set S.

e The S-unit equations a1xy + aoxo = 1 and [B1x1 + fBoxo = 1 are
called S-equivalent if /5 € Us (i =1,2).

Theorem (Evertse, Gydry, Stewart, Tijdeman, 1988)

Apart from finitely many S-equivalence classes equation (s2) has
at most two solutions.

= = =

=
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Bounds for the number of solutions of equation (1)

e In view of the above general results the number of solutions of
(1) can also be bounded.
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e In view of the above general results the number of solutions of
(1) can also be bounded.

e Denote by N(a, b, ¢) the number of solutions (x,y, z) of (1).

e Evertse's result provides effective upper bound for N(a, b, c¢) of
(1) which depends on the bases a, b, ¢ (in fact on w(abc)).
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e In view of the above general results the number of solutions of
(1) can also be bounded.

e Denote by N(a, b, ¢) the number of solutions (x,y, z) of (1).

e Evertse's result provides effective upper bound for N(a, b, c¢) of
(1) which depends on the bases a, b, ¢ (in fact on w(abc)).

e As a straightforward consequence of a refined result of Beukers
and Schlickewei (1996) on the number of solutions of binary S-unit
equations Hirata-Kohno proved the following:
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Bounds for the number of solutions of equation (1)

e In view of the above general results the number of solutions of
(1) can also be bounded.

e Denote by N(a, b, ¢) the number of solutions (x,y, z) of (1).

e Evertse's result provides effective upper bound for N(a, b, c¢) of
(1) which depends on the bases a, b, ¢ (in fact on w(abc)).

e As a straightforward consequence of a refined result of Beukers
and Schlickewei (1996) on the number of solutions of binary S-unit
equations Hirata-Kohno proved the following:

Theorem (Hirata-Kohno, 2006)
N(a, b, c) < 236,
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Bounds for the number of solutions of equation (1)

e In view of the above general results the number of solutions of
(1) can also be bounded.

e Denote by N(a, b, ¢) the number of solutions (x,y, z) of (1).

e Evertse's result provides effective upper bound for N(a, b, c¢) of
(1) which depends on the bases a, b, ¢ (in fact on w(abc)).

e As a straightforward consequence of a refined result of Beukers
and Schlickewei (1996) on the number of solutions of binary S-unit
equations Hirata-Kohno proved the following:

Theorem (Hirata-Kohno, 2006)
N(a, b, c) < 236,

e This is the first absolute upper bound for N(a, b, c).

Istvan Pink Special type of unit equations in two unknowns



Brief summary of earlier results

Some solutions of (1)

e The bound N(a, b, c) < 230, although absolute, is far from the
real order of magnitude supported by examples.
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Brief summary of earlier results

Some solutions of (1)

e The bound N(a, b, c) < 230, although absolute, is far from the
real order of magnitude supported by examples.

345=23 3345=25 3453=27,
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Brief summary of earlier results

Some solutions of (1)

e The bound N(a, b, c) < 230, although absolute, is far from the
real order of magnitude supported by examples.

3+5=2%334+5=2° 3+5>=27,

54+22=32 5242=3%74+2=32 72425=3%

324+2=11, 3+2°=11;33+23=135, 3+2%=235;
3%+ 2% =250, 3428 =259:5% 4+ 23 =133, 5427 =133;
3+10=13, 3" +10 = 133,89 +2 =91, 89 + 213 = 912;
2+3=5, 2*4+3%2=52,01%2+ 2 = 8283, 91 + 2'3 = 8283;
3413 =2% 3°+13 =283+ 133 =2200, 3" + 13 = 2200;
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Brief summary of earlier results

Some solutions of (1)

e The bound N(a, b, c) < 230, although absolute, is far from the
real order of magnitude supported by examples.

3+5=2%334+5=2° 3+5>=27,

5422 =35 42=3%7+2=3% 774+2°=3%
324+2=11, 3+2°=11;33+23=135, 3+2%=235;
3%+ 2% =250, 3428 =259:5% 4+ 23 =133, 5427 =133;
3+10=13, 3" +10 = 133,89 +2 =91, 89 + 213 = 912;
2+3=5, 2*4+3%2=52,01%2+ 2 = 8283, 91 + 2'3 = 8283;
3413 =2% 3°+13 =283+ 133 =2200, 3" + 13 = 2200;
21 1 (2k — 1)t = (2K + 1)1, 2k+2 4 (2K — 1)%2 = (2K 4+ 1), where k

is any integer with k > 2.



Brief summary of earlier results

Some special cases of (1)

e If in (1) we have x = 1 then (1) becomes
cc—b =a (2)

in positive integers a, b, c,z,y.
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Some special cases of (1)

e If in (1) we have x = 1 then (1) becomes
cc—b =a (2)
in positive integers a, b, c,z,y.

e If in (2) only a is fixed and (c, b, z, y) are unknown integers
exceeding unity then (2) is Pillai's famous conjecture.
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Brief summary of earlier results

Some special cases of (1)

e If in (1) we have x = 1 then (1) becomes
cc—b =a (2)
in positive integers a, b, c,z,y.

e If in (2) only a is fixed and (c, b, z, y) are unknown integers
exceeding unity then (2) is Pillai's famous conjecture.

e It is well known by a result of Mihdilescu (2004) that if a =1
then the only solution of (2) is (¢, b,z,y) = (3,2,2,3).
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Brief summary of earlier results

Some special cases of (1)

e If in (1) we have x = 1 then (1) becomes
cc—b =a (2)
in positive integers a, b, c,z,y.

e If in (2) only a is fixed and (c, b, z, y) are unknown integers
exceeding unity then (2) is Pillai's famous conjecture.

e It is well known by a result of Mihdilescu (2004) that if a =1

then the only solution of (2) is (¢, b,z,y) =(3,2,2,3). Fora>2
the conjecture is still open.
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Brief summary of earlier results

Some special cases of (1)

e Consider now equation

cc—b =a (2)

in the case where (a, b, ¢) are fixed positive integers and the
unknowns are (z, y).
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Brief summary of earlier results

Some special cases of (1)

e Consider now equation

c“—b =a (2)

in the case where (a, b, ¢) are fixed positive integers and the
unknowns are (z, y).

e After some classical results of Pillai (1940's), Bennett proved the
following definitive result:

Istvan Pink Special type of unit equations in two unknowns



Brief summary of earlier results

Some special cases of (1)

e Consider now equation

cc—b =a (2)

in the case where (a, b, ¢) are fixed positive integers and the
unknowns are (z, y).

e After some classical results of Pillai (1940's), Bennett proved the
following definitive result:

Theorem (Bennett, 2001)

If a, b, ¢ are positive integers with min{c, b} > 1 then equation (2)
has at most two solutions in positive integers (z,y).
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Brief summary of earlier results

Some special cases of (1)

e The proof of Bennett uses lower bounds for linear forms in
logarithms of two algebraic numbers together with a ‘gap principle’
based upon some nice congruence arguments which gives rise to a
large gap among three hypothetical solutions.
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Brief summary of earlier results

Some special cases of (1)

e The proof of Bennett uses lower bounds for linear forms in
logarithms of two algebraic numbers together with a ‘gap principle’
based upon some nice congruence arguments which gives rise to a
large gap among three hypothetical solutions.

e This result is essentially sharp in the sense that there are a
number of examples where there are two solutions to equation (2).
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Brief summary of earlier results

Some special cases of (1)

e The proof of Bennett uses lower bounds for linear forms in
logarithms of two algebraic numbers together with a ‘gap principle’
based upon some nice congruence arguments which gives rise to a
large gap among three hypothetical solutions.

e This result is essentially sharp in the sense that there are a
number of examples where there are two solutions to equation (2).

e |t should be also remarked that the non-coprimality case, i.e.
gcd(c, b) > 1 is handled just by a short elementary observation.
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Brief summary of earlier results

Some results of Scott and Styer on equation (1)

e For a, b, ¢ fixed co-prime positive integers with min{a, b,c} > 1
consider equation
a4+ b =c (1)

in positive integer unknowns (x, y, z).

Theorem (Scott, 1993)

If ¢ = 2 then equation (1) has at most one solution except for
(taking a < b): (a, b, c) = (3,5,2) which has exactly three
solutions and (a, b, ¢) = (3, 13,2) which has exactly two solutions.

Istvan Pink Special type of unit equations in two unknowns



Brief summary of earlier results

Some results of Scott and Styer on equation (1)

Theorem (Scott and Styer, 2006)

If ¢ is odd then equation (1) has at most two solutions.
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Brief summary of earlier results

Some results of Scott and Styer on equation (1)

Theorem (Scott and Styer, 2006)

If ¢ is odd then equation (1) has at most two solutions.

e The method of the proof is elementary and uses the theory of
quadratic fields.
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Brief summary of earlier results

Some results of Scott and Styer on equation (1)

Theorem (Scott and Styer, 2006)

If ¢ is odd then equation (1) has at most two solutions.

e The method of the proof is elementary and uses the theory of
quadratic fields.

e Note that this method works only for ¢ odd.
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Brief summary of earlier results

Some results of Scott and Styer on equation (1)

Theorem (Scott and Styer, 2006)

If ¢ is odd then equation (1) has at most two solutions.

e The method of the proof is elementary and uses the theory of
quadratic fields.

e Note that this method works only for ¢ odd.

e Therefore for ¢ even other method is needed.
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Brief summary of earlier results

Some results of Hu and Le on equation (1)

Theorem (Hu and Le, 2018)

If max{a, b, c} >5-10%" then equation (1) has at most three
solutions.

Istvan Pink Special type of unit equations in two unknowns



Brief summary of earlier results

Some results of Hu and Le on equation (1)

Theorem (Hu and Le, 2018)

If max{a, b, c} >5-10%" then equation (1) has at most three
solutions.

Theorem (Hu and Le, 2019)

If max{a, b, c} > 10°2 then equation (1) has at most two solutions.
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Brief summary of earlier results

Some results of Hu and Le on equation (1)

Theorem (Hu and Le, 2018)

If max{a, b, c} >5-10%" then equation (1) has at most three
solutions.

Theorem (Hu and Le, 2019)

If max{a, b, c} > 10°2 then equation (1) has at most two solutions.

e Elementary methods including congruences modulo powers of a
single base number together with the theory of continued fractions
show that there is a large gap among three hypothetical solutions.
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Brief summary of earlier results

Some results of Hu and Le on equation (1)

Theorem (Hu and Le, 2018)

If max{a, b, c} >5-10%" then equation (1) has at most three
solutions.

Theorem (Hu and Le, 2019)

If max{a, b, c} > 10°2 then equation (1) has at most two solutions.

e Elementary methods including congruences modulo powers of a
single base number together with the theory of continued fractions
show that there is a large gap among three hypothetical solutions.
e Then the combination of this gap principle with Baker's method
implies that (1) has at most two solutions whenever max{a, b, c} is
sufficiently large.
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Main result

Main result

e For a, b, c fixed co-prime positive integers with min{a, b,c} > 1
consider equation
>+ b =cf (1)

in positive integer unknowns (x, y, z).
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Main result

Main result

e For a, b, c fixed co-prime positive integers with min{a, b,c} > 1
consider equation
>+ b =cf (1)

in positive integer unknowns (x, y, z).

Theorem (Miyazaki and Pink, 2027)
(

Equation (1) has at most two solutions except when
(a, b, c) = (3,5,2) or (5,3,2) which exactly gives three solutions.
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Main result

Main result

e For a, b, c fixed co-prime positive integers with min{a, b,c} > 1
consider equation
>+ b =cf (1)

in positive integer unknowns (x, y, z).

Theorem (Miyazaki and Pink, 2027)
(

Equation (1) has at most two solutions except when
(a, b, c) = (3,5,2) or (5,3,2) which exactly gives three solutions.

e The exceptional case comes from the identities
3+5=2%33+5=2%and3+5%=2"
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Main result

Main result

a+b =c* (1)

e Our result is essentially sharp and definitive in the sense that
there are infinitely many examples allowing equation (1) to have
two solutions.
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Main result

Main result

a+b =c* (1)

e Our result is essentially sharp and definitive in the sense that
there are infinitely many examples allowing equation (1) to have
two solutions.

o2t (2k — 1) = (2K +- 1)1, 2Kk+2 4 (2K —1)2 = (2K 4-1)2, where
k is any integer with k > 2.
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the bound for z in equation (1)
ounds for the solutions of the first two equations of (3)
g th p principle of Hu and Le

Sketch of the proof of the main theorem Method of the -

Main steps of the proof

e The proof of our theorem proceeds under the assumption that
max{a, b,c} < 10°2 and c is even, and there are four main steps.

Istvan Pink Special type of unit equations in two unknowns



Main steps of the proof

Impr g the bound for z in equation (1)

Sharp bounds for the solutior the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Main steps of the proof

e The proof of our theorem proceeds under the assumption that
max{a, b,c} < 10°2 and c is even, and there are four main steps.

e Step 1 Improving the upper bounds for the unknowns x, y, z of
(1) in terms of a, b, c.
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Main steps of the proof

Impr g the bound for z in equation (1)

Sharp bounds for the solutior the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Main steps of the proof

e The proof of our theorem proceeds under the assumption that
max{a, b,c} < 10°2 and c is even, and there are four main steps.

e Step 1 Improving the upper bounds for the unknowns x, y, z of
(1) in terms of a, b, c. For this we apply very carefully the theory
of linear forms in two 2-adic logarithms.
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Sketch of the proof of the main theorem Method of the proof

Main steps of the proof

e The proof of our theorem proceeds under the assumption that
max{a, b,c} < 10°2 and c is even, and there are four main steps.

e Step 1 Improving the upper bounds for the unknowns x, y, z of
(1) in terms of a, b, c. For this we apply very carefully the theory
of linear forms in two 2-adic logarithms. As a consequence, we
obtain improved upper bounds for the unknowns x, y, z, which are
logarithmic in terms of a, b, c.
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Main steps of the proof
Improving the bound for z in equation (1)

inds for the solutions of the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Main steps of the proof

e The proof of our theorem proceeds under the assumption that
max{a, b,c} < 10°2 and c is even, and there are four main steps.

e Step 1 Improving the upper bounds for the unknowns x, y, z of
(1) in terms of a, b, c. For this we apply very carefully the theory
of linear forms in two 2-adic logarithms. As a consequence, we
obtain improved upper bounds for the unknowns x, y, z, which are
logarithmic in terms of a, b, c.

e Assume that equation (1) has three solutions
(xt, yt,2¢), t =1,2,3 with z; < z < z3, that is we have the
system

SN+ P =", A%+ b=, a8+ b =B (3)
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Main steps of the proof

Impr g the bound for z in equation (1)

Sharp bounds for the solutior the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Main steps of the proof

e Step 2 Under assumption (3) the second step is to find sharp
upper bounds for all the exponential unknowns of the first two
equations in (3). Namely, we obtain sharp upper bounds for
max{z1,z} and max{x1, y1, x2, y2}.
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Sketch of the proof of the main theorem Method of the proof

Main steps of the proof

e Step 2 Under assumption (3) the second step is to find sharp
upper bounds for all the exponential unknowns of the first two
equations in (3). Namely, we obtain sharp upper bounds for
max{z1,z} and max{x1, y1, x2, y2}.

e This is done elementarily by basically comparing the 2-adic
valuations of both sides of each of the three equations occurring in

(3)-
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Main steps of the proof

the bound for z in equation (1)
Sharp bounds for the solutions of the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Main steps of the proof

e Step 3 Improving the gap principle of Hu and Le.
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Main steps of the proof

Impr g the bound for z in equation (1)

Sharp bounds for the solutior the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Main steps of the proof

e Step 3 Improving the gap principle of Hu and Le.

e Under assumption (3) the main idea to improve the gap principle
of Hu and Le is to consider two congruences ‘simultaneously’ by
using modulus of each powers of the base numbers.
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Main steps of the proof
Improving the bound for z in equation (1)

inds for the solutions of the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Main steps of the proof

e Step 3 Improving the gap principle of Hu and Le.

e Under assumption (3) the main idea to improve the gap principle
of Hu and Le is to consider two congruences ‘simultaneously’ by
using modulus of each powers of the base numbers.

e Under assumption (3) we worked out the above three steps and
combined them with several other number theoretical methods
(e.g. ternary equations of various signatures) to obtain sharp upper
bounds for all letters a, b, ¢, x1, y1, 21, X2, Y2, Z» occurring in the
first two equations of (3).
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ounds for the solutions of the first two equations of (3)
g th p principle of Hu and Le

Sketch of the proof of the main theorem Method of the -

Main steps of the proof

e Step 4 Finally, in each of the above cases we check whether the
first two equations of system (3) hold or not.
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Sketch of the proof of the main theorem Method of the proof

Main steps of the proof

e Step 4 Finally, in each of the above cases we check whether the
first two equations of system (3) hold or not.

e At this point it is worth noting that although the derived general
bounds for all letters in the first two equations of (3) are relatively
sharp, a direct enumeration of the solutions impossible.
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inds for the solutions of the first two equations of (3)
ing the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Main steps of the proof

e Step 4 Finally, in each of the above cases we check whether the
first two equations of system (3) hold or not.

e At this point it is worth noting that although the derived general
bounds for all letters in the first two equations of (3) are relatively
sharp, a direct enumeration of the solutions impossible.

e Therefore, we worked very carefully and found efficient methods
for solving the system

ST+ P =", 2+ B2 = 2. (4)

in a reasonable computational time.

Istvan Pink Special type of unit equations in two unknowns



Main steps of the proof

Impr the bound for z in equation (1)

Sharp nds for the solutions of the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Technical assumptions in (1)

e By some earlier results on (1) we may assume w.l.0.g that
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Main steps of the proof

Impr g the bound for z in equation (1)

Sharp bounds for the solutior the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Technical assumptions in (1)

e By some earlier results on (1) we may assume w.l.0.g that

none of a, b, ¢ is a power, a, b, c are pairwise coprime;

=—-1 (mod4) or b=-1 (mod4); (%)
max{a, b} > 11, 18 < max{a, b,c} < 102
2]¢c, c>2

Istvan Pink Special type of unit equations in two unknowns



Main steps of the proof

Impr g the bound for z in equation (1)

Sharp bounds for the solutior the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Technical assumptions in (1)

e By some earlier results on (1) we may assume w.l.0.g that

none of a, b, ¢ is a power, a, b, c are pairwise coprime;

=—-1 (mod4) or b=-1 (mod4); (%)
max{a, b} > 11, 18 < max{a, b,c} < 102
2]¢c, c>2

o Put o = min{ro(a® — 1) — 1, no(b? — 1) — 1}, B =1p(c).
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Main steps of the proof

Improving the bound for z in equation (1)

Sharp bounds for the solutions of the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Improved bound for z in (1)

Since c is even and z > 1, it follows from equation (1) that
a* + b =0 (mod 4). Therefore, one of the following cases holds.

a=1 b=-1 (mod4), 2ty;
a=-1,b=1 (mod4), 2%x; (5)
a=b=-1 (mod4), x#y (mod2).

Put A = a4+ bY. Since A = ¢#, we have
1

z= 3 -va(N). (6)
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Improving the bound for z in equation (1)

Sharp bounds for the solutions of the first two equations of (3)
Impre g the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the -

Improved bound for z in (1)

Since c is even and z > 1, it follows from equation (1) that
a* + b =0 (mod 4). Therefore, one of the following cases holds.

a=1l b=-1 (mod4), 2ty;
a=-1,b=1 (mod4), 2%x; (5)
a=b=-1 (mod4), xZ#y (mod2).

Put A = a4+ bY. Since A = ¢#, we have

z= ; -va(N). (6)

o A careful application of a result of Bugeaud on A yields a
non-trivial upper bound for 5(A).
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Main steps of the proof

Improving the bound for z in equation (1)

Sharp bounds for the solutions of the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Improved bound for z in (1)

Lemma 1 Assume that max{a, b} > 9. Put
a=min{ry(a® = 1) — 1, (b — 1) =1}, B =uws(c). Let
(x,y,z) be a solution of equation (1) with z > 1. Then

z < Hapm(c;a,b) = max{q, ¢ log?(cs log c)} (log a) log b,
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Sharp bounds for the solutions of the first two equations of (3)
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Sketch of the proof of the main theorem Method of the -

Improved bound for z in (1)

Lemma 1 Assume that max{a, b} > 9. Put
a=min{ry(a® = 1) — 1, (b — 1) =1}, B =uws(c). Let
(x,y,z) be a solution of equation (1) with z > 1. Then

z < Hapm(cia,b) :=max{ci, log?(c3 log c)} (log a) log b,

where
1803.3m, 23.865m, 143.75(mp+1) e
(1o, ogom, 1TEG ) ifo=2,
(C]_ C2 C3) == log vey 2
1T 2705m;3 156.30ms (1+ mfl) 646.9(m3+1) £ >3
aﬁ ) a3/3 9 a2ﬁ ) fetl

with v, = 3alog 2 — log(3alog 2), and

log 8 .
L C R
1, if min{a, b} > 7, log(2> — 1)
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Main steps of the proof

Improving the bound for z in equation (1)

Sharp bounds for the solutions of the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Improved bound for z in (1)

Assume that max{a, b} > 9 and put M = max{a, b, c}. Let
(x,y,z) be a solution of equation (1) with z > 1. Then

max{x, y,z} < max {1804 log? M, 46 log® M log?(416 log M)}
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Main steps of the proof

Improving the bound for z in equation (1)

Sharp bounds for the solutions of the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Improved bound for z in (1)

Assume that max{a, b} > 9 and put M = max{a, b, c}. Let
(x,y,z) be a solution of equation (1) with z > 1. Then

max{x, y,z} < max {1804 log? M, 46 log® M log?(416 log M)}

e The bound in the paper of Hu and Le (2019) paper was

max{x, y,z} < 6500 log> M.

Istvan Pink Special type of unit equations in two unknowns



Main steps of the proof

Improving the bound for z in equation (1)

Sharp bounds for the solutions of the first two equations of (3)
Imp g the gap principle of Hu and Le

Method of the proof

Sketch of the proof of the main theorem

Sharp bounds for the solutions of the first two equations of

(3)

e The key ingredient is the following elementary lemma.

Let (x,y,z) = (X, Y,Z),(X", Y, Z") be two solutions of equation
(1). Then XY' # X'Y, and

B-min{Z,Z'} < a+ (XY = X'Y).
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Main steps of the proof

Improving the bound for z in equation (1)

Sharp bounds for the solutions of the first two equations of (3)
Improving the gap principle of Hu and Le

Method of the proof

Sketch of the proof of the main theorem

Sharp bounds for the solutions of the first two equations of

(3)

e The key ingredient is the following elementary lemma.

Let (x,y,z) = (X, Y,Z),(X", Y, Z") be two solutions of equation
(1). Then XY' # X'Y, and

B-min{Z,Z'} < a+ (XY = X'Y).

e As a consequence we get
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Main steps of the proof

Improving the bound for z in equation (1)

Sharp bounds for the solutions of the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem et off (i presh

Sharp bounds for the solutions of the first two equations of

(3)

Assume that equation (1) has three solutions
(xt,yt,2t), t=1,2,3 with z; < zp < z3. Then

Bz < o+ vo(Xeyer1 — Xer1yr) (t=1,2); (7)
z3 < Hap,m(C; a, b), (8)

respectively, where

Hap,m(U; v, w) = max{cl, ¢ log?(c3 log u)} -log v - logw.
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e bound for z in equation (1)
Sharp bounds for the solutions of the first two equations of (3)
Improving the principle of Hu and Le

Sketch of the proof of the main theorem Method of the -

Sharp bounds for the solutions of the first two equations of

(3)

e On combining (7) with (8) we obtain the following bounds for
the solutions of the first two equations of (3).
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Sharp bounds for the solutions of the first two equations of

(3)

e On combining (7) with (8) we obtain the following bounds for
the solutions of the first two equations of (3).

Sketch of the proof of the main theorem

We have z; < zp < 230 and max{x1, y1,x2, y2} < 4300.
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bound for z in equation (1)
s for the solutions of the first two equations of (3)
g the gap principle of Hu and Le
of the proof

Sharp bounds for the solutions of the first two equations of

(3)

e On combining (7) with (8) we obtain the following bounds for
the solutions of the first two equations of (3).

Sketch of the proof of the main theorem

We have z; < zp < 230 and max{x1, y1,x2, y2} < 4300.

e A direct application of the general Baker type bound gives only

,melné{x,-,y,-,z,-} < 1.14 - 108
=1,
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Main steps of the proof

Impr he bound for z in equation (1)

Sharp bounds for the solutions of the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Some notations

e For fixed a, b, ¢ co-prime positive integers with min{a, b,c} > 1
equation
a+ b =c* (1)

in positive integer unknowns (x, y, z) can be rewritten as
AX 4+ ABY = C?, (7)

where A € {1, -1},

(A, B,C,\) € {(a,b,c,1),(c,b,a,—1),(c,a,b,—1)} and
(X,Y,2) e{(x,y,2),(z,y,x),(z,x,y)} is the corresponding
permutation of (x, y, z).
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quations of (3)
Improvmg the gap prlnclple of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Some notations

e Note that if (1) has a solution (x,y, z) is equivalent to saying
that (7) has the solution (X, Y, Z).
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Sketch of the proof of the main theorem I\mprovmgrthe gap prlnclple ofliiufandile
Method of the proof

Some notations

e Note that if (1) has a solution (x,y, z) is equivalent to saying
that (7) has the solution (X, Y, Z).

e Thus for every

(A, B,C,\) € {(a,b,c,1),(c,b,a,—1),(c,a,b,—1)} the number
of solutions of (1) and (7) are equal.
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Main steps of the proof

Impr he bound for z in equation (1)

Sharp bounds for the solutions of the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Some notations

e Note that if (1) has a solution (x,y, z) is equivalent to saying
that (7) has the solution (X, Y, Z).

e Thus for every
(A, B,C,\) € {(a,b,c,1),(c,b,a,—1),(c,a,b,—1)} the number
of solutions of (1) and (7) are equal.

e We present our improved gap principle obtained for (7) and then
we apply it many times in our proof concerning (1).
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Sketch of the proof of the main theorem Method of the proof

Some notations

e Note that if (1) has a solution (x,y, z) is equivalent to saying
that (7) has the solution (X, Y, Z).

e Thus for every
(A, B,C,\) € {(a,b,c,1),(c,b,a,—1),(c,a,b,—1)} the number
of solutions of (1) and (7) are equal.

e We present our improved gap principle obtained for (7) and then
we apply it many times in our proof concerning (1).

e For our purpose, it suffices to consider equation (7) under the
following conditions (corresponding to (x)):

none of A, B, C is a power;
21 C, C>2 max{A B} >11, ifX=1; ()
2| A A>2 max{B,C} >11, if A=—-1.
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Main steps of the proof

Improving the bound for z in equation (1)

Sharp bounds for the solutions of the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem VEierl G e

Improved gap principle 1

Proposition (Gap principle 1)
Suppose that equation (7) has three solutions
(X,Y,Z)= (X, Yr,Z) with r € {1,2,3} such that
Zy < Zy < Z3. and put Gy = gcd(Xa, Y2). If C4 > 2 then
CZ2_21 ’ G2 . (X2 Y3 — X3 Y2); (9)

Moreover, if either A =1, or A = —1 with G, > 1, then

Z
cl4 </C'tA,B'?i"X2Y3_X3Y2” (10)

. logmin{A,B} G
where tA,B = W and K < Go—1°
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of the proof
the bound for z in equation (1)
Sharp bounds for the solutions of the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem el of e e

Remarks

e In the corresponding result of Hu and Le (2019) one has
CL—4 | Ys - (X2 Yz — X3 Y2) leading to

C2™ A <Yy XY — X3Yal.
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Sharp bounds for the solutions of the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Remarks

e In the corresponding result of Hu and Le (2019) one has
CL—4 | Ys - (X2 Yz — X3 Y2) leading to

C2™ A <Yy XY — X3Yal.

e In one hand we replaced the factor Y, by Gy = ged(Xz, Y2).
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Main steps of the proof

Impr he bound for z in equation (1)

Sharp bounds for the solutions of the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Remarks

e In the corresponding result of Hu and Le (2019) one has
CL—4 | Ys - (X2 Yz — X3 Y2) leading to

C2™ A <Yy XY — X3Yal.

e In one hand we replaced the factor Y, by Gy = ged(Xz, Y2).
e On the other hand, the constant K - t4 g - % is close to 1 if Gy

grows and Z, — Z; is small.
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Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Remarks

e In the corresponding result of Hu and Le (2019) one has
CL—4 | Ys - (X2 Yz — X3 Y2) leading to

C2™ A <Yy XY — X3Yal.

e In one hand we replaced the factor Y, by Gy = ged(Xz, Y2).

e On the other hand, the constant K - t4 g - 2 s close to 1 if Gy

grows and Z, — Z; is small. o

e If C = max{A, B, C} then our improved Baker type bound
provides a bound for | X2 Y3 — X3Y>| is logarithmic in C =>
inequality (10) leads to an improved bound for C%~41 and hence
for C and Z» — Z7, as well.
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Sketch of the proof of the main theorem Method of the proof

Remarks

e In the corresponding result of Hu and Le (2019) one has
CL—4 | Ys - (X2 Yz — X3 Y2) leading to

C2™ A <Yy XY — X3Yal.

e In one hand we replaced the factor Y, by Gy = ged(Xz, Y2).
e On the other hand, the constant K - t4 g - % is close to 1 if Gy

grows and Z, — Z; is small.

e If C = max{A, B, C} then our improved Baker type bound
provides a bound for | X2 Y3 — X3Y>| is logarithmic in C =>
inequality (10) leads to an improved bound for C%~41 and hence
for C and Z» — Z7, as well.

e In order to obtain bounds for C and Z, — Z; as sharp as possible,
we can iterate the use of inequality (10).
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Main steps of the proof

Improving the bound for z in equation (1)

Sharp bounds for the solutions of the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Improved gap principle 2

Proposition (Gap principle 2)

Suppose that equation (7) for A = 1 has three solutions
(X,Y,Z)= (X, Yr,Z) with r € {1,2,3} such that
Z1 = Z» < Z3. Then one of the following inequalities holds.

2
——— /.
log min{A, B} %
CZ2/2/Z2 < tg}[?)é} {|X3Z2 = XtZ3’, ’Y3ZQ = YtZ3‘}.

c%/? <
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of the proof
the bound for z in equation (1)
nds for the solutions of the first two equations of (3)

Sketch of the proof of the main theorem Improving the gap principle of Hu and Le

Method of the proof

e Assume that equation (1) has three solutions
(xt,yt,2t), t =1,2,3 with z; < z < z3, that is we have the
system

Method of the proof

AN+ P =", A+ B2 =, a8+ PP =B (3)
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Main steps of the proof
he bound for z in equation (1)
inds for the solutions of the first two equations of (3)

Sketch of the proof of the main theorem ing the gap principle of Hu and Le

Method of the proof

e Assume that equation (1) has three solutions
(xt,yt,2t), t =1,2,3 with z; < z < z3, that is we have the
system

Method of the proof

AN+ P =", A+ B2 =, a8+ PP =B (3)

e Based upon z; < z, < z3, let (i,/, k) and (/, m, n) be
permutations of {1,2,3} such that

Xi <X < Xk, YIS Ym < Yn
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Main steps of the proof
he bound for z in equation (1)
inds for the solutions of the first two equations of (3)
ing the gap principle of Hu and Le

Method of the proof

Sketch of the proof of the main theorem

Method of the proof

e Assume that equation (1) has three solutions
(xt,yt,2t), t =1,2,3 with z; < z < z3, that is we have the
system

AN+ P =", A+ B2 =, a8+ PP =B (3)

e Based upon z; < z, < z3, let (i,/, k) and (/, m, n) be
permutations of {1,2,3} such that

Xi <X < Xks YI<Ym< Yn-

e Also, define non-negative integers d,, dy, d, and positive integers
82, 8x, 8y as follows:
d; := 2z — z1, dx = xj — X, dy = Ym — yI,

g = gcd(x,y2), g :=gcd(yj, ), & = gcd(Xm, Zm).
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Main steps of the proof
Impr the bound for z in equation (1)
Sharp nds for the solutions of the first two equations of (3)

Sketch of the proof of the main theorem Improving the gap principle of Hu and Le

Method of the proof

Method of the proof

e We distinguish between the following four cases:
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in equation (1)
Sharp bounds for the solutions of the first two equations of (3)

Sketch of the proof of the main theorem Improving the gap principle of Hu and Le

Method of the proof

Method of the proof

e We distinguish between the following four cases:

e Case 1. z; < zp and ¢ = max{a, b,c} < 5-107.
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the bound for z in equation (1)
nds for the solutions of the first two equations of (3)

Sketch of the proof of the main theorem Improving the gap principle of Hu and Le

Method of the proof

Method of the proof

e We distinguish between the following four cases:
e Case 1. z; < zp and ¢ = max{a, b,c} < 5-107.

e Case 2. z; < zp and ¢ # max{a, b,c} < 5-10%.

Istvan Pink Special type of unit equations in two unknowns



equation (1)
Sharp bounds for the solutior the first two equations of (3)

Sketch of the proof of the main theorem Improving the gap principle of Hu and Le

Method of the proof

Method of the proof

e We distinguish between the following four cases:
e Case 1. z; < zp and ¢ = max{a, b,c} < 5-107.
e Case 2. z; < zp and ¢ # max{a, b,c} < 5-10%.

e Case 3. z; = 2z and ¢ = max{a, b, c} < 1002,
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equation (1)
Sharp bounds for the solutior the first two equations of (3)

Sketch of the proof of the main theorem Improving the gap principle of Hu and Le

Method of the proof

Method of the proof

We distinguish between the following four cases:

e Case 1. z; < zp and ¢ = max{a, b,c} < 5-107.

Case 2. z1 < zp and ¢ # max{a, b,c} < 5-10%".

Case 3. z; = z and ¢ = max{a, b, c} < 1002,

Case 4. z; = zp and ¢ # max{a, b, c} < 1002,
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Main steps of the proof
Impr the bound for z in equation (1)
Sharp nds for the solutions of the first two equations of (3)

Sketch of the proof of the main theorem Improving the gap principle of Hu and Le

Method of the proof

Method of the proof

e Case 1. z; < zp and ¢ = max{a, b,c} < 5-10%.
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Sharp bounds for the solutions of the first two equations of (3)
. Improving the gap principle of Hu and Le
Sketch of the proof of the main theorem F = gap principle © ! <

Method of the proof

Method of the proof
e Case 1. z; < zp and ¢ = max{a, b,c} < 5-10%.

e W.l.o.g we may assume that ¢ > a > b.

Istvan Pink Special type of unit equations in two unknowns



equation (1)
Sharp bounds for the solutior the first two equations of (3)

. Improv the gap principle of Hu and Le
Sketch of the proof of the main theorem mproving the gap principie o ! <

Method of the proof

Method of the proof

e Case 1. z; < zp and ¢ = max{a, b,c} < 5-10%.
e W.l.o.g we may assume that ¢ > a > b.

e We have the following uniform lower bounds for a, b, c:

ap = max{11,2% + 1}, by =2% — 1, ¢ = max{18,3- 20 2% 4 2}.
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Main steps of the proof
he bound for z in equation (1)
inds for the solutions of the first two equations of (3)

Sketch of the proof of the main theorem ing the gap principle of Hu and Le

Method of the proof

Method of the proof

e Case 1. z; < zp and ¢ = max{a, b,c} < 5-10%.
e W.l.o.g we may assume that ¢ > a > b.

e We have the following uniform lower bounds for a, b, c:

ap = max{11,2% + 1}, by =2% — 1, ¢ = max{18,3- 20 2% 4 2}.

e By applying our improved " Gap principle 1" to (3) with
¢ =max{a,b,c} and z; < z, we get

N2 |
% < min{ZO‘ﬁzl (&) B¢ 22} - nH(c;c,c), (11)
g log(c—1)z

where g’ = ged(c%, &) and d, = zp — z.
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Main steps of the proof
Impr the bound for z in equation (1)
Sharp nds for the solutions of the first two equations of (3)

Sketch of the proof of the main theorem Improving the gap principle of Hu and Le

Method of the proof

Method of the proof

e For go = 1 we use inequality (11) with g» = 1.
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equation (1)
Sharp bounds for the solutior the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Method of the proof

e For go = 1 we use inequality (11) with g» = 1.

e For 2 < g» < 11 by combining some known results on ternary
equations of the signature (x, y2, z2) with the first sharp bounds
for max;=1.2{xi, yi, zi} presented in the third subsection we get a
sharpening of (11) and we use it.
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Main steps of the proof
he bound for z in equation (1)
inds for the solutions of the first two equations of (3)
ing the gap principle of Hu and Le
Method of the proof

Sketch of the proof of the main theorem

Method of the proof

e For go = 1 we use inequality (11) with g» = 1.

e For 2 < g» < 11 by combining some known results on ternary
equations of the signature (x, y2, z2) with the first sharp bounds
for max;=1.2{xi, yi, zi} presented in the third subsection we get a
sharpening of (11) and we use it.

o If g > 11 we use the following general inequality

| | 1
% < mind —2< p0—ha e 1. ZH(c;c,c).  (12)
og ag log(c — 1) z;

valid for each g» which is a consequence of (11).
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Method of the proof
Method of the proof
e Put M. :=5-10%.
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M steps of the proof
Impr g the bound for z in equation (1)
Sharp bounds for the solutions of the first equations of (3)

. Impr g th ciple of Hu and Le
Sketch of the proof of the main theorem mproving th P principie ot Hu and Le

Method of the proof
e Put M. :=5-10%.

Method of the proof

e Since z <230 and ¢y < ¢ < M, (12) implies small absolute
upper bound for d, (d; <9).
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of the proof
the bound for z in equation (1)
nds for the solutions of the first two equations of (3)

Sketch of the proof of the main theorem Improving the gap principle of Hu and Le

Method of the proof
e Put M. :=5-10%.

Method of the proof

e Since z <230 and ¢y < ¢ < M, (12) implies small absolute
upper bound for d, (d; <9).

e 3 < |logM./log2] and 2 < a < |log M./ log2].
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Main steps of the proof
he bound for z in equation (1)
inds for the solutions of the first two equations of (3)

Sketch of the proof of the main theorem ing the gap principle of Hu and Le

Method of the proof
e Put M. :=5-10%.

Method of the proof

e Since z <230 and ¢y < ¢ < M, (12) implies small absolute
upper bound for d, (d; <9).

e 3 < |logM./log2] and 2 < a < |log M./ log2].

e Since zp = z; + d, and d, is bounded we use the elementary
result presented in the third subsection to derive for each given
B,a, M. and g> a sharp upper bound for z; < U; and also for
7 < Ur + d,.
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>f the proof
the bound f in equation (1)
inds for the solutions of the first two equations of (3)

Sketch of the proof of the main theorem Improving the gap principle of Hu and Le

Method of the proof
e Put M. :=5-10%.

Method of the proof

e Since z <230 and ¢y < ¢ < M, (12) implies small absolute
upper bound for d, (d; <9).

e 3 < |logM./log2] and 2 < a < |log M./ log2].

e Since zp = z; + d, and d, is bounded we use the elementary
result presented in the third subsection to derive for each given
B,a, M. and g> a sharp upper bound for z; < U; and also for
7 < Ur + d,.

e For each given (g», d;, 3, @, z1, z2) we use inequalities (11) or
(12) with ¢ < M, to obtain a new improved bound for c.
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>f the proof
the bound f in equation (1)
inds for the solutions of the first two equations of (3)

Sketch of the proof of the main theorem Improving the gap principle of Hu and Le

Method of the proof
e Put M. :=5-10%.

Method of the proof

e Since z <230 and ¢y < ¢ < M, (12) implies small absolute
upper bound for d, (d; <9).

e 3 < |logM./log2] and 2 < a < |log M./ log2].

e Since zp = z; + d, and d, is bounded we use the elementary
result presented in the third subsection to derive for each given
B,a, M. and g> a sharp upper bound for z; < U; and also for
7 < Ur + d,.

e For each given (g», d;, 3, @, z1, z2) we use inequalities (11) or
(12) with ¢ < M, to obtain a new improved bound for c.

e We iterate the above process.
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in equation (1)
Sharp bounds for the solutions of the first two equations of (3)

Improving the gap principle of Hu and L

Sketch of the proof of the main theorem Method of the proof

e As a result we find a list of finitely many possible tuples
(dz, B, , z2) with the corresponding upper bound for c.
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Main steps of the proof
Improving the bound for z in equation (1)
Sharp bounds for the solutions of the first two equations of (3)

Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

e As a result we find a list of finitely many possible tuples
(dz, B, , z2) with the corresponding upper bound for c.

)

Assume that d, >0, c¢* =0 mod 4, ¢ > max{a,b}.

Proposition (Sharp bounds

(i) Suppose that g» = 1. Then
[8,a,z,d,] <[10,18,19,4], ¢ < 1.5-10°.
(ii) Suppose that go > 1. Then

[8,a, 22, d,] <[10,19,23,4], ¢ < 3.4-10°.

(iii) Ifd, > 1 then c < 1000.
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in equation (1)
Sharp bounds for the solutions of the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Efficient sieve

e Consider the system formed by the first two equations of (3),
that is
AT+ P =P 92 P2 = R, (13)
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equation (1)
Sharp bounds for the solutior the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Efficient sieve

e Consider the system formed by the first two equations of (3),

that is
AT+ P =P 92 P2 = R, (13)

e Although the above Proposition provides sharp upper bounds for
71, 2> and middle-sized bounds for ¢ = max{a, b, ¢}, a direct
enumeration of the solutions of (13) (a kind of brute force search)
is impossible.
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Main steps of the proof
he bound for z in equation (1)
inds for the solutions of the first two equations of (3)
ing the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Efficient sieve

e Consider the system formed by the first two equations of (3),
that is
AT+ P =P 92 P2 = R, (13)

e Although the above Proposition provides sharp upper bounds for
71, 2> and middle-sized bounds for ¢ = max{a, b, ¢}, a direct
enumeration of the solutions of (13) (a kind of brute force search)
is impossible.

e Under the hypothesis of the above Proposition if ¢ < 1000 or
(z1,22) € {(1,2),(2,3)} => system (13) has no solutions.
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Main steps of the proof

Impr the bound for z in equation (1)

Sharp nds for the solutions of the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Efficient sieve

e We may suppose that ¢ > ¢; := max{1000, o}, d, =1, z > 4.
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equation (1)
Sharp bounds for the solutior the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Efficient sieve

e We may suppose that ¢ > ¢; := max{1000, o}, d, =1, z > 4.

e Elementary arguments together with the bounds presented in the
third subsection imply restrictions on x1, y1, z1, X2, ¥2, 2 (divisibility
conditions, some inequalities).
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equation (1)
Sharp bounds for the solutior the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Efficient sieve

e We may suppose that ¢ > ¢; := max{1000, o}, d, =1, z > 4.

e Elementary arguments together with the bounds presented in the
third subsection imply restrictions on x1, y1, z1, X2, ¥2, 2 (divisibility
conditions, some inequalities).

e In particular we may suppose that x3 < xz or y1 < y».
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Main steps of the proof

Improving the bound for z in equation (1)

Sharp bounds for the solutions of the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Efficient sieve

Under the hypothesis of Proposition (Sharp bounds), if system
(13) has a solution (x1,y1, z1, X2, Y2, 22), then

min{a*, b} > ¢, min{a®, b2} > 2.
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Main steps of the ¢

Improving the bound for z in equation (1)

Sharp bounds for the solutions of the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Efficient sieve

Under the hypothesis of Proposition (Sharp bounds), if system
(13) has a solution (x1,y1, z1, X2, Y2, 22), then

min{a*, b} > ¢, min{a®, b2} > 2.

e First, we illustrate the method to show that a* > c.
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Main steps of the proof

Improving the bound for z in equation (1)

Sharp bounds for the solutions of the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Efficient sieve

Under the hypothesis of Proposition (Sharp bounds), if system
(13) has a solution (x1,y1, z1, X2, Y2, 22), then

min{a*, b} > ¢, min{a®, b2} > 2.

e First, we illustrate the method to show that a* > c.

e Suppose on the contrary that a* < c.

If yy <z, then ¢ > a1 =% — b1 > ¢ — b > 2171 50
z1 < 2, which is absurd as z; > 3.
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equation (1)
Sharp bounds for the solutior the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Efficient sieve

Thus y1 > z1. On the other hand, from 1st equation, observe that

a c

z21/2 /2 _
0<c b1 _CZ1/2_|-by1/2<c21/2<

Thus
(/3] = S c < e i= |(14 DV2)A

Since y1 > z, it happens very often that ¢, > c3 for given b, y;
and z;.
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of the proof
the bound for z in equation (1)
Sharp bounds for the solutions of the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Efficient sieve

e By Proposition (Sharp bounds), we have a list of all possible
tuples («, 8, z1, cy), where ¢, is the corresponding upper bound for
c.
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Main steps of the proof
he bound for z in equation (1)
inds for the solutions of the first two equations of (3)

N ing the gap principle of Hu and Le
Sketch of the proof of the main theorem Method of the proof

Efficient sieve

e By Proposition (Sharp bounds), we have a list of all possible
tuples («, 8, z1, cy), where ¢, is the corresponding upper bound for
c.

e For each such tuple and for each possible tuple

(b7 C, X1, Y1, X2, )/2) SatiSfying

lo
z1<y1 <

log bo ZIJ hosh SLCUZI/lev

log b
I I
x1 < ogc21 ; X2 < ogc22
log ag log ag
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Main steps of the proof

Impr the bound for z in equation (1)

Sharp nds for the solutions of the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Efficient sieve

with zp = z; + 1, we check that equation
(c® — P12 = (¢ — p2)

does not hold.
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Sharp bounds for the solutions of the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Efficient sieve

with zp = z; + 1, we check that equation
(c® — P12 = (¢ — p2)
does not hold.

e Thus the inequality 8 > ¢ holds.
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equation (1)
Sharp bounds for the solutior the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Efficient sieve

with zp = z; + 1, we check that equation

(c® — P12 = (¢ — p2)
does not hold.
e Thus the inequality 8 > ¢ holds.

e The remaining inequalities can be shown exactly in the same way
by changing the roles of a, b and z, z, respectively.
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of the proof

the bound for z in equation (1)

nds for the solutions of the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Efficient sieve

Under the hypothesis of Proposition (Sharp bounds), if system
(13) has a solution (Xl,yl,Zl,X2,y2,22), then x1 > xo.
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of the proof

the bound for z in equation (1)

nds for the solutions of the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Efficient sieve

Under the hypothesis of Proposition (Sharp bounds), if system
(13) has a solution (Xl,yl,Zl,X2,y2,22), then x1 > xo.

e Suppose that x; < x».

Istvan Pink Special type of unit equations in two unknowns



Main steps of the ¢

Impr g the bound for z in equation (1)

Sharp bounds for the solutior the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Efficient sieve

Under the hypothesis of Proposition (Sharp bounds), if system
(13) has a solution (Xl,yl,Zl,X2,y2,22), then x1 > xo.

e Suppose that x; < x».

e The case where y; < y» can be ruled out by (13) and the
previous lemma.
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Sketch of the proof of the main theorem Method of the proof

Efficient sieve

e Second, consider the case where y; > y». System (13) with
2o = z1 + 1 implies

1

Y122 iz
g bPA <a < (L o/b?)R/teR) pen,
(1+1/a4)"
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Sharp bounds for the solutior the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Efficient sieve

e Second, consider the case where y; > y». System (13) with
2o = z1 + 1 implies
1

Y122 iz
g bPA <a < (L o/b?)R/teR) pen,
(1+1/a4)"

e Since b < a < ¢, and ¢ < b”? by the previous Lemma, it follows
that

1 122

Y122
% bea < a< (141/c)2/0e7)  poa (14)
(1+1/a)7
where a; = max{ap, b + 2} and ¢ = max{c, b + 2}.
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Sharp bounds for the solutions of the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Efficient sieve

e Proposition (Sharp bounds) provides us with a list of possible
tuples clist := (5, «, z2, c4)
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equation (1)
Sharp bounds for the solutior the first two equations of (3)

. Improving the gap principle of Hu and Le
Sketch of the proof of the main theorem Method of the proof

Efficient sieve

e Proposition (Sharp bounds) provides us with a list of possible
tuples clist := (5, «, z2, c4)

e For each element in clist we use the previous Lemmas to sieve
considerably the possible solutions [x1, y1, z1, X2, y2, Z2] of system

(13).
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Main steps of the proof
he bound for z in equation (1)
inds for the solutions of the first two equations of (3)

N ing the gap principle of Hu and Le
Sketch of the proof of the main theorem Method of the proof

Efficient sieve

e Proposition (Sharp bounds) provides us with a list of possible
tuples clist := (5, «, z2, c4)

e For each element in clist we use the previous Lemmas to sieve

considerably the possible solutions [x1, y1, z1, X2, y2, Z2] of system
(13).

e This way we obtain a list named /ist1 having elements of the form

[OéaﬁaXL)/l,Zl’XLYL 22, Cy, bmax]7

bmax is defined as

Bmax 1= min{cu, LCuzl/XlJ, LCuZl/nJ7 LCUZ2/X2J, LC”Zz/sz }
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Sketch of the proof of the main theorem Method of the proof

Efficient sieve

In order to create list2 composed of all possible tuples
[a, b, x1, y1, Z1, X2, 2, Z2] we proceed as follows.
begin
for each element of /istl do
Tb = [(bo — Sb)/2a~|
for b:=Tp -2+ s, to bmax by 2% do

_ Y122
Amin ‘= max{al, ’7(1 + 1/31(1) 1/x . bxzzl—‘}

m
amax 1= min{ &, [€, 2/, |,/ | (14 1/e)2/0e%) st |}
Ta = [(amin — 52)/27]
for a:=T,-2%+ s, to amax by 2% do

test whether equation (& + b1)2 = (a*2 + b"?)% holds
or not
put the result [a, b, x1,y1, 21, X2, ¥2,22] into the list2

Istvan Pink Special type of unit equations in two unknowns




s the I)ound for z in eqmtmn (1)
quations of (3)
Impnownf} the gap princ |p|9 of Hu md Le

Sketch of the proof of the main theorem Method of the proof

Efficient sieve

e As a conclusion, we get that under the assumption x; < x» no
solution to equation

(aXI + by1)Z2 — (aXZ + by2)21

is found.
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Sharp bounds for the solutior the first two equations of (3)
Improving the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Efficient sieve

e As a conclusion, we get that under the assumption x; < x» no
solution to equation

(aXI + by1)Z2 — (aXZ + by2)21

is found.

e Thus we obtain that under the hypothesis of Proposition (Sharp
bounds) => x; > xp.
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he bound for z in equation (1)
inds for the solutions of the first two equations of (3)
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Sketch of the proof of the main theorem Method of the proof

Efficient sieve

e As a conclusion, we get that under the assumption x; < x» no
solution to equation

(aXI + by1)Z2 — (aXZ + by2)21

is found.

e Thus we obtain that under the hypothesis of Proposition (Sharp
bounds) => x; > xp.

e In a completely similar way we also get that under the hypothesis
of Proposition (Sharp bounds) y1 > y».
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Main steps of the proof
he bound for z in equation (1)
inds for the solutions of the first two equations of (3)
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Sketch of the proof of the main theorem Method of the proof

Efficient sieve

e As a conclusion, we get that under the assumption x; < x» no
solution to equation

(aXI + by1)Z2 — (aXZ + by2)21

is found.

e Thus we obtain that under the hypothesis of Proposition (Sharp
bounds) => x; > xp.

e In a completely similar way we also get that under the hypothesis
of Proposition (Sharp bounds) y1 > y».

e These contradict the fact that system (13) can have solutions
only with x; < xp or y1 < y».
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Main steps of the proof
he bound for z in equation (1)
inds for the solutions of the first two equations of (3)
ing the gap principle of Hu and Le

Sketch of the proof of the main theorem Method of the proof

Efficient sieve

e As a conclusion, we get that under the assumption x; < x» no
solution to equation

(aXI + by1)Z2 — (aXZ + by2)21

is found.

e Thus we obtain that under the hypothesis of Proposition (Sharp
bounds) => x; > xp.

e In a completely similar way we also get that under the hypothesis
of Proposition (Sharp bounds) y1 > y».

e These contradict the fact that system (13) can have solutions
only with x; < xp or y1 < y».

e The total computational time was 25 hours on a usual laptop.
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Sketch of the proof of the main theorem Method of the proof

Thank you for your attention!
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