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Introduction

• Let a, b, c be fixed co-prime positive integers with
min{a, b, c} > 1.

• Consider equation
ax + by = cz (1)

in positive integer unknowns (x , y , z).

• Mahler (1933): equation (1) has finitely many solutions. This
result depends on p-adic analogue of the Diophantine
approximation method of Thue and Siegel and hence is ineffective.

• Gelfond (1940): the first effective finiteness result for the
solutions (x , y , z) of (1).
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Introduction

• Equation
ax + by = cz (1)

can be rewritten as
x1 + x2 = 1 (s)

where x1 = axc−z , x2 = byc−z .

• Equation (1) can be regarded as an (inhomogeneous) S-unit
equation in two unknowns over the rational field, where S consists
of the prime factors of abc.

• By a classical result of Győry (1979) on equation (s) over number
fields => equation (1) has at most finitely many effectively
computable solutions, that is max{x , y , z} ≤ Keff (a, b, c).

• Method: Baker’s theory of linear forms in complex and p-adic
logarithms of algebraic numbers.
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Introduction

• Let K be a number field and let α1, α2 ∈ K \ {0} be fixed.
Consider the S-unit equation

α1x1 + α2x2 = 1 in x1, x2 ∈ US . (s2)

Theorem (Evertse, 1984)

The number of solutions of (s2) is at most 3 · 7d+2s , where
d = [K : Q] and s is the cardinality of the set S.

• The S-unit equations α1x1 + α2x2 = 1 and β1x1 + β2x2 = 1 are
called S-equivalent if αi/βi ∈ US (i = 1, 2).

Theorem (Evertse, Győry, Stewart, Tijdeman, 1988)

Apart from finitely many S-equivalence classes equation (s2) has
at most two solutions.
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Bounds for the number of solutions of equation (1)

• In view of the above general results the number of solutions of
(1) can also be bounded.

• Denote by N(a, b, c) the number of solutions (x , y , z) of (1).

• Evertse’s result provides effective upper bound for N(a, b, c) of
(1) which depends on the bases a, b, c (in fact on ω(abc)).

• As a straightforward consequence of a refined result of Beukers
and Schlickewei (1996) on the number of solutions of binary S-unit
equations Hirata-Kohno proved the following:

Theorem (Hirata-Kohno, 2006)

N(a, b, c) ≤ 236.

• This is the first absolute upper bound for N(a, b, c).
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Some solutions of (1)

• The bound N(a, b, c) ≤ 236, although absolute, is far from the
real order of magnitude supported by examples.

3 + 5 = 23, 33 + 5 = 25, 3 + 53 = 27;

5 + 22 = 32, 52 + 2 = 33; 7 + 2 = 32, 72 + 25 = 34;

32 + 2 = 11, 3 + 23 = 11; 33 + 23 = 35, 3 + 25 = 35;

35 + 24 = 259, 3 + 28 = 259; 53 + 23 = 133, 5 + 27 = 133;

3 + 10 = 13, 37 + 10 = 133; 89 + 2 = 91, 89 + 213 = 912;

2 + 3 = 5, 24 + 32 = 52; 912 + 2 = 8283, 91 + 213 = 8283;

3 + 13 = 24, 35 + 13 = 28; 3 + 133 = 2200, 37 + 13 = 2200;

21 + (2k − 1)1 = (2k + 1)1, 2k+2 + (2k − 1)2 = (2k + 1)2, where k
is any integer with k ≥ 2.
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Some special cases of (1)

• If in (1) we have x = 1 then (1) becomes

cz − by = a. (2)

in positive integers a, b, c, z , y .

• If in (2) only a is fixed and (c, b, z , y) are unknown integers
exceeding unity then (2) is Pillai’s famous conjecture.

• It is well known by a result of Mihǎilescu (2004) that if a = 1
then the only solution of (2) is (c , b, z , y) = (3, 2, 2, 3). For a ≥ 2
the conjecture is still open.
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Some special cases of (1)

• Consider now equation

cz − by = a (2)

in the case where (a, b, c) are fixed positive integers and the
unknowns are (z , y).

• After some classical results of Pillai (1940’s), Bennett proved the
following definitive result:

Theorem (Bennett, 2001)

If a, b, c are positive integers with min{c , b} > 1 then equation (2)
has at most two solutions in positive integers (z , y).
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Some special cases of (1)

• The proof of Bennett uses lower bounds for linear forms in
logarithms of two algebraic numbers together with a ‘gap principle’
based upon some nice congruence arguments which gives rise to a
large gap among three hypothetical solutions.

• This result is essentially sharp in the sense that there are a
number of examples where there are two solutions to equation (2).

• It should be also remarked that the non-coprimality case, i.e.
gcd(c , b) > 1 is handled just by a short elementary observation.
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Some results of Scott and Styer on equation (1)

• For a, b, c fixed co-prime positive integers with min{a, b, c} > 1
consider equation

ax + by = cz (1)

in positive integer unknowns (x , y , z).

Theorem (Scott, 1993)

If c = 2 then equation (1) has at most one solution except for
(taking a < b): (a, b, c) = (3, 5, 2) which has exactly three
solutions and (a, b, c) = (3, 13, 2) which has exactly two solutions.
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Some results of Scott and Styer on equation (1)

Theorem (Scott and Styer, 2006)

If c is odd then equation (1) has at most two solutions.

• The method of the proof is elementary and uses the theory of
quadratic fields.

• Note that this method works only for c odd.

• Therefore for c even other method is needed.
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Some results of Hu and Le on equation (1)

Theorem (Hu and Le, 2018)

If max{a, b, c} > 5 · 1027 then equation (1) has at most three
solutions.

Theorem (Hu and Le, 2019)

If max{a, b, c} > 1062 then equation (1) has at most two solutions.

• Elementary methods including congruences modulo powers of a
single base number together with the theory of continued fractions
show that there is a large gap among three hypothetical solutions.

• Then the combination of this gap principle with Baker’s method
implies that (1) has at most two solutions whenever max{a, b, c} is
sufficiently large.
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Main result

• For a, b, c fixed co-prime positive integers with min{a, b, c} > 1
consider equation

ax + by = cz (1)

in positive integer unknowns (x , y , z).

Theorem (Miyazaki and Pink, 202?)

Equation (1) has at most two solutions except when
(a, b, c) = (3, 5, 2) or (5, 3, 2) which exactly gives three solutions.

• The exceptional case comes from the identities
3 + 5 = 23; 33 + 5 = 25 and 3 + 53 = 27
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Main result

ax + by = cz (1)

• Our result is essentially sharp and definitive in the sense that
there are infinitely many examples allowing equation (1) to have
two solutions.

• 21 + (2k − 1)1 = (2k + 1)1, 2k+2 + (2k − 1)2 = (2k + 1)2, where
k is any integer with k ≥ 2.
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Method of the proof

Main steps of the proof

• The proof of our theorem proceeds under the assumption that
max{a, b, c} < 1062 and c is even, and there are four main steps.

• Step 1 Improving the upper bounds for the unknowns x , y , z of
(1) in terms of a, b, c . For this we apply very carefully the theory
of linear forms in two 2-adic logarithms. As a consequence, we
obtain improved upper bounds for the unknowns x , y , z , which are
logarithmic in terms of a, b, c .

• Assume that equation (1) has three solutions
(xt , yt , zt), t = 1, 2, 3 with z1 ≤ z2 ≤ z3, that is we have the
system

ax1 + by1 = cz1 , ax2 + by2 = cz2 , ax3 + by3 = cz3 . (3)
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Main steps of the proof

• Step 2 Under assumption (3) the second step is to find sharp
upper bounds for all the exponential unknowns of the first two
equations in (3). Namely, we obtain sharp upper bounds for
max{z1, z2} and max{x1, y1, x2, y2}.

• This is done elementarily by basically comparing the 2-adic
valuations of both sides of each of the three equations occurring in
(3).
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Main steps of the proof

• Step 3 Improving the gap principle of Hu and Le.

• Under assumption (3) the main idea to improve the gap principle
of Hu and Le is to consider two congruences ‘simultaneously’ by
using modulus of each powers of the base numbers.

• Under assumption (3) we worked out the above three steps and
combined them with several other number theoretical methods
(e.g. ternary equations of various signatures) to obtain sharp upper
bounds for all letters a, b, c, x1, y1, z1, x2, y2, z2 occurring in the
first two equations of (3).
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Main steps of the proof

• Step 4 Finally, in each of the above cases we check whether the
first two equations of system (3) hold or not.

• At this point it is worth noting that although the derived general
bounds for all letters in the first two equations of (3) are relatively
sharp, a direct enumeration of the solutions impossible.

• Therefore, we worked very carefully and found efficient methods
for solving the system

ax1 + by1 = cz1 , ax2 + by2 = cz2 . (4)

in a reasonable computational time.
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Technical assumptions in (1)

• By some earlier results on (1) we may assume w.l.o.g that


none of a, b, c is a power, a, b, c are pairwise coprime;

a ≡ −1 (mod 4) or b ≡ −1 (mod 4);

max{a, b} ≥ 11, 18 ≤ max{a, b, c} ≤ 1062;

2 | c, c > 2.

(∗)

• Put α = min
{
ν2(a

2 − 1)− 1, ν2(b
2 − 1)− 1

}
, β = ν2(c).
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Improved bound for z in (1)

Since c is even and z > 1, it follows from equation (1) that
ax + by ≡ 0 (mod 4). Therefore, one of the following cases holds.

a ≡ 1, b ≡ −1 (mod 4), 2 ∤ y ;
a ≡ −1, b ≡ 1 (mod 4), 2 ∤ x ;
a ≡ b ≡ −1 (mod 4), x ̸≡ y (mod 2).

(5)

Put Λ = ax + by . Since Λ = cz , we have

z =
1

β
· ν2(Λ). (6)

• A careful application of a result of Bugeaud on Λ yields a
non-trivial upper bound for ν2(Λ).
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Improved bound for z in (1)

Lemma 1 Assume that max{a, b} ≥ 9. Put
α = min

{
ν2(a

2 − 1)− 1, ν2(b
2 − 1)− 1

}
, β = ν2(c). Let

(x , y , z) be a solution of equation (1) with z > 1. Then

z < Hα,β,m2(c ; a, b) := max
{
c1, c2 log

2
∗(c3 log c)

}
(log a) log b,

where

(c1, c2, c3) =


(
1803.3m2

β , 23.865m2
β , 143.75(m2+1)

β

)
, if α = 2,(

2705m3
αβ ,

156.39m3

(
1+ log vα

vα−1

)2
α3β

, 646.9(m3+1)
α2β

)
, if α ≥ 3

with vα = 3α log 2− log(3α log 2), and

m2 =

{
log 8

logmin{a,b} , if min{a, b} ≤ 7,

1, if min{a, b} > 7,
m3 =

log 2α

log(2α − 1)
.
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Improved bound for z in (1)

Corollary

Assume that max{a, b} ≥ 9 and put M = max{a, b, c}. Let
(x , y , z) be a solution of equation (1) with z > 1. Then

max{x , y , z} < max
{
1804 log2M, 46 log2M log2∗(416 logM)

}

• The bound in the paper of Hu and Le (2019) paper was

max{x , y , z} < 6500 log3M.
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Sharp bounds for the solutions of the first two equations of
(3)

• The key ingredient is the following elementary lemma.

Lemma

Let (x , y , z) = (X ,Y ,Z ), (X ′,Y ′,Z ′) be two solutions of equation
(1). Then XY ′ ̸= X ′Y , and

β ·min{Z ,Z ′} ≤ α+ ν2(XY
′ − X ′Y ).

• As a consequence we get
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Sharp bounds for the solutions of the first two equations of
(3)

Lemma

Assume that equation (1) has three solutions
(xt , yt , zt), t = 1, 2, 3 with z1 ≤ z2 ≤ z3. Then

βzt ≤ α+ ν2(xtyt+1 − xt+1yt) (t = 1, 2); (7)

z3 < Hα,β,m2(c; a, b), (8)

respectively, where

Hα,β,m2(u; v ,w) := max
{
c1, c2 log

2
∗(c3 log u)

}
· log v · logw .
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Sharp bounds for the solutions of the first two equations of
(3)

• On combining (7) with (8) we obtain the following bounds for
the solutions of the first two equations of (3).

Lemma

We have z1 ≤ z2 ≤ 230 and max{x1, y1, x2, y2} < 4300.

• A direct application of the general Baker type bound gives only

max
i=1,2

{xi , yi , zi} < 1.14 · 108.
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Some notations

• For fixed a, b, c co-prime positive integers with min{a, b, c} > 1
equation

ax + by = cz (1)

in positive integer unknowns (x , y , z) can be rewritten as

AX + λBY = CZ , (7)

where λ ∈ {1,−1},
(A,B,C , λ) ∈ {(a, b, c , 1), (c , b, a,−1), (c , a, b,−1)} and
(X ,Y ,Z ) ∈ {(x , y , z), (z , y , x), (z , x , y)} is the corresponding
permutation of (x , y , z).
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Some notations

• Note that if (1) has a solution (x , y , z) is equivalent to saying
that (7) has the solution (X ,Y ,Z ).

• Thus for every
(A,B,C , λ) ∈ {(a, b, c , 1), (c , b, a,−1), (c , a, b,−1)} the number
of solutions of (1) and (7) are equal.

• We present our improved gap principle obtained for (7) and then
we apply it many times in our proof concerning (1).

• For our purpose, it suffices to consider equation (7) under the
following conditions (corresponding to (∗)):

none of A,B,C is a power;

2 | C , C > 2, max{A,B} ≥ 11, if λ = 1;

2 | A, A > 2, max{B,C} ≥ 11, if λ = −1.

(∗∗)
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Improved gap principle 1

Proposition (Gap principle 1)

Suppose that equation (7) has three solutions
(X ,Y ,Z ) = (Xr ,Yr ,Zr ) with r ∈ {1, 2, 3} such that
Z1 < Z2 ≤ Z3. and put G2 = gcd(X2,Y2). If C

Z1 > 2 then

CZ2−Z1 | G2 · (X2Y3 − X3Y2); (9)

Moreover, if either λ = 1, or λ = −1 with G2 > 1, then

CZ2−Z1 < K · tA,B · Z2

Z1
· |X2Y3 − X3Y2|, (10)

where tA,B := logmin{A,B}
logmax{A,B} and K ≤ G2

G2−1 .
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Remarks

• In the corresponding result of Hu and Le (2019) one has
CZ2−Z1 | Y2 · (X2Y3 − X3Y2) leading to

CZ2−Z1 ≤ Y2 · |X2Y3 − X3Y2|.

• In one hand we replaced the factor Y2 by G2 = gcd(X2,Y2).

• On the other hand, the constant K · tA,B · Z2
Z1

is close to 1 if G2

grows and Z2 − Z1 is small.

• If C = max{A,B,C} then our improved Baker type bound
provides a bound for |X2Y3 − X3Y2| is logarithmic in C =>
inequality (10) leads to an improved bound for CZ2−Z1 and hence
for C and Z2 − Z1, as well.

• In order to obtain bounds for C and Z2 − Z1 as sharp as possible,
we can iterate the use of inequality (10).
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Improved gap principle 2

Proposition (Gap principle 2)

Suppose that equation (7) for λ = 1 has three solutions
(X ,Y ,Z ) = (Xr ,Yr ,Zr ) with r ∈ {1, 2, 3} such that
Z1 = Z2 < Z3. Then one of the following inequalities holds.

CZ2/2 <
2

logmin{A,B}
Z3,

CZ2/2/Z2 < max
t∈{1,2}

{
|X3Z2 − XtZ3|, |Y3Z2 − YtZ3|

}
.

István Pink Special type of unit equations in two unknowns



Introduction
Brief summary of earlier results

Main result
Sketch of the proof of the main theorem

Main steps of the proof
Improving the bound for z in equation (1)
Sharp bounds for the solutions of the first two equations of (3)
Improving the gap principle of Hu and Le
Method of the proof

Method of the proof

• Assume that equation (1) has three solutions
(xt , yt , zt), t = 1, 2, 3 with z1 ≤ z2 ≤ z3, that is we have the
system

ax1 + by1 = cz1 , ax2 + by2 = cz2 , ax3 + by3 = cz3 . (3)

• Based upon z1 ≤ z2 ≤ z3, let (i , j , k) and (l ,m, n) be
permutations of {1, 2, 3} such that

xi ≤ xj ≤ xk , yl ≤ ym ≤ yn.

• Also, define non-negative integers dz , dx , dy and positive integers
g2, gx , gy as follows:

dz := z2 − z1, dx := xj − xi , dy := ym − yl ,

g2 := gcd(x2, y2), gx := gcd(yj , zj), gy := gcd(xm, zm).
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Method of the proof

• We distinguish between the following four cases:

• Case 1. z1 < z2 and c = max{a, b, c} < 5 · 1027.

• Case 2. z1 < z2 and c ̸= max{a, b, c} < 5 · 1027.

• Case 3. z1 = z2 and c = max{a, b, c} < 1062.

• Case 4. z1 = z2 and c ̸= max{a, b, c} < 1062.
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Method of the proof

• Case 1. z1 < z2 and c = max{a, b, c} < 5 · 1027.

• W.l.o.g we may assume that c > a > b.

• We have the following uniform lower bounds for a, b, c :

a0 = max{11, 2α + 1}, b0 = 2α − 1, c0 = max{18, 3 · 2β, 2α + 2}.

• By applying our improved ”Gap principle 1” to (3) with
c = max{a, b, c} and z1 < z2, we get

cdz < min

{
2α−βz1

(g2
′)2

g2
,

log c

log(c − 1)

z2
z1

}
· z2H(c ; c , c), (11)

where g2
′ = gcd(cdz , g2) and dz = z2 − z1.
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• We have the following uniform lower bounds for a, b, c :

a0 = max{11, 2α + 1}, b0 = 2α − 1, c0 = max{18, 3 · 2β, 2α + 2}.

• By applying our improved ”Gap principle 1” to (3) with
c = max{a, b, c} and z1 < z2, we get

cdz < min

{
2α−βz1

(g2
′)2

g2
,

log c

log(c − 1)

z2
z1

}
· z2H(c ; c , c), (11)

where g2
′ = gcd(cdz , g2) and dz = z2 − z1.
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Method of the proof

• For g2 = 1 we use inequality (11) with g2 = 1.

• For 2 ≤ g2 < 11 by combining some known results on ternary
equations of the signature (x2, y2, z2) with the first sharp bounds
for maxi=1,2{xi , yi , zi} presented in the third subsection we get a
sharpening of (11) and we use it.

• If g2 ≥ 11 we use the following general inequality

cdz < min

{
log c

log a0
2α−βz1 ,

log c

log(c − 1)

1

z1

}
· z22H(c ; c , c). (12)

valid for each g2 which is a consequence of (11).
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Method of the proof

• Put Mc := 5 · 1027.

• Since z2 ≤ 230 and c0 ≤ c ≤ Mc (12) implies small absolute
upper bound for dz (dz ≤ 9).

• β ≤ ⌊logMc/ log 2⌋ and 2 ≤ α ≤ ⌊logMc/ log 2⌋.

• Since z2 = z1 + dz and dz is bounded we use the elementary
result presented in the third subsection to derive for each given
β, α,Mc and g2 a sharp upper bound for z1 ≤ U1 and also for
z2 ≤ U1 + dz .

• For each given (g2, dz , β, α, z1, z2) we use inequalities (11) or
(12) with c ≤ Mc to obtain a new improved bound for c .

• We iterate the above process.
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• As a result we find a list of finitely many possible tuples
(dz , β, α, z2) with the corresponding upper bound for c.

Proposition (Sharp bounds)

Assume that dz > 0, cz1 ≡ 0 mod 4, c > max{a, b}.
(i) Suppose that g2 = 1. Then

[β, α, z2, dz ] ≤ [10, 18, 19, 4], c < 1.5 · 106.

(ii) Suppose that g2 > 1. Then

[β, α, z2, dz ] ≤ [10, 19, 23, 4], c < 3.4 · 106.

(iii) If dz > 1 then c < 1000.
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Efficient sieve

• Consider the system formed by the first two equations of (3),
that is

ax1 + by1 = cz1 ax2 + by2 = cz2 . (13)

• Although the above Proposition provides sharp upper bounds for
z1, z2 and middle-sized bounds for c = max{a, b, c}, a direct
enumeration of the solutions of (13) (a kind of brute force search)
is impossible.

• Under the hypothesis of the above Proposition if c < 1000 or
(z1, z2) ∈ {(1, 2), (2, 3)} => system (13) has no solutions.
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Efficient sieve

• We may suppose that c ≥ c1 := max{1000, c0}, dz = 1, z2 ≥ 4.

• Elementary arguments together with the bounds presented in the
third subsection imply restrictions on x1, y1, z1, x2, y2, z2 (divisibility
conditions, some inequalities).

• In particular we may suppose that x1 < x2 or y1 < y2.
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Efficient sieve

Lemma

Under the hypothesis of Proposition (Sharp bounds), if system
(13) has a solution (x1, y1, z1, x2, y2, z2), then

min{ax1 , by1} ≥ c , min{ax2 , by2} ≥ c2.

• First, we illustrate the method to show that ax1 ≥ c .

• Suppose on the contrary that ax1 < c .

If y1 ≤ z1, then c > ax1 = cz1 − by1 ≥ cz1 − bz1 > cz1−1, so
z1 < 2, which is absurd as z1 ≥ 3.
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Efficient sieve

Thus y1 > z1. On the other hand, from 1st equation, observe that

0 < cz1/2 − by1/2 =
ax1

cz1/2 + by1/2
<

c

cz1/2
< 1.

Thus
⌈by1/z1⌉ =: c2 ≤ c ≤ c3 :=

⌊
(1 + by1/2)2/z1

⌋
.

Since y1 > z1, it happens very often that c2 > c3 for given b, y1
and z1.
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Efficient sieve

• By Proposition (Sharp bounds), we have a list of all possible
tuples (α, β, z1, cu), where cu is the corresponding upper bound for
c .

• For each such tuple and for each possible tuple
(b, c , x1, y1, x2, y2) satisfying

z1 < y1 ≤
⌊
log cu
log b0

z1

⌋
, b0 ≤ b ≤

⌊
cu

z1/y1
⌋
,

max{c1, c2} ≤ c ≤ min{c3, cu}, y2 ≤
⌊
log c

log b
z2

⌋
,

x1 ≤
⌊
log c

log a0
z1

⌋
, x2 ≤

⌊
log c

log a0
z2

⌋
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Efficient sieve

with z2 = z1 + 1, we check that equation

(cz1 − by1)x2 = (cz2 − by2)x1

does not hold.

• Thus the inequality ax1 ≥ c holds.

• The remaining inequalities can be shown exactly in the same way
by changing the roles of a, b and z1, z2, respectively.
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Lemma

Under the hypothesis of Proposition (Sharp bounds), if system
(13) has a solution (x1, y1, z1, x2, y2, z2), then x1 ≥ x2.

• Suppose that x1 < x2.

• The case where y1 < y2 can be ruled out by (13) and the
previous lemma.
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Efficient sieve

• Second, consider the case where y1 ≥ y2. System (13) with
z2 = z1 + 1 implies

1(
1 + 1/ax1

)1/x2 · b
y1z2
x2z1 < a < (1 + c/by2)z2/(x2z1) · b

y1z2
x2z1 .

• Since b < a < c , and c2 < by2 by the previous Lemma, it follows
that

1(
1 + 1/ax11

)1/x2 · b
y1z2
x2z1 < a < (1 + 1/c2)

z2/(x2z1) · b
y1z2
x2z1 , (14)

where a1 = max{a0, b + 2} and c2 = max{c1, b + 2}.

István Pink Special type of unit equations in two unknowns



Introduction
Brief summary of earlier results

Main result
Sketch of the proof of the main theorem

Main steps of the proof
Improving the bound for z in equation (1)
Sharp bounds for the solutions of the first two equations of (3)
Improving the gap principle of Hu and Le
Method of the proof

Efficient sieve

• Second, consider the case where y1 ≥ y2. System (13) with
z2 = z1 + 1 implies

1(
1 + 1/ax1

)1/x2 · b
y1z2
x2z1 < a < (1 + c/by2)z2/(x2z1) · b

y1z2
x2z1 .

• Since b < a < c , and c2 < by2 by the previous Lemma, it follows
that

1(
1 + 1/ax11

)1/x2 · b
y1z2
x2z1 < a < (1 + 1/c2)

z2/(x2z1) · b
y1z2
x2z1 , (14)

where a1 = max{a0, b + 2} and c2 = max{c1, b + 2}.

István Pink Special type of unit equations in two unknowns



Introduction
Brief summary of earlier results

Main result
Sketch of the proof of the main theorem

Main steps of the proof
Improving the bound for z in equation (1)
Sharp bounds for the solutions of the first two equations of (3)
Improving the gap principle of Hu and Le
Method of the proof

Efficient sieve

• Proposition (Sharp bounds) provides us with a list of possible
tuples clist := (β, α, z2, cu)

• For each element in clist we use the previous Lemmas to sieve
considerably the possible solutions [x1, y1, z1, x2, y2, z2] of system
(13).

• This way we obtain a list named list1 having elements of the form

[α, β, x1, y1, z1, x2, y2, z2, cu, bmax

]
,

bmax is defined as

bmax := min
{
cu, ⌊cuz1/x1⌋, ⌊cuz1/y1⌋, ⌊cuz2/x2⌋, ⌊cuz2/y2⌋

}
.
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Efficient sieve

In order to create list2 composed of all possible tuples
[a, b, x1, y1, z1, x2, y2, z2] we proceed as follows.

begin

for each element of list1 do

Tb := ⌈(b0 − sb)/2
α⌉

for b := Tb · 2α + sb to bmax by 2α do

amin := max
{
a1,
⌈(
1 + 1/ax11

)−1/x2 · b
y1z2
x2z1

⌉}
amax := min

{
cu, ⌊cuz1/x1⌋, ⌊cuz2/x2⌋,

⌊
(1 + 1/c2)

z2/(x2z1) · b
y1z2
x2z1

⌋}
Ta := ⌈(amin − sa)/2

α⌉
for a := Ta · 2α + sa to amax by 2α do

test whether equation (ax1 + by1)z2 = (ax2 + by2)z1 holds

or not

put the result [a, b, x1, y1, z1, x2, y2, z2] into the list2
end István Pink Special type of unit equations in two unknowns
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Efficient sieve

• As a conclusion, we get that under the assumption x1 < x2 no
solution to equation

(ax1 + by1)z2 = (ax2 + by2)z1

is found.

• Thus we obtain that under the hypothesis of Proposition (Sharp
bounds) => x1 ≥ x2.

• In a completely similar way we also get that under the hypothesis
of Proposition (Sharp bounds) y1 ≥ y2.

• These contradict the fact that system (13) can have solutions
only with x1 < x2 or y1 < y2.

• The total computational time was 25 hours on a usual laptop.
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Thank you for your attention!
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