Number of the solutions of S-unit equation in two variables

Noriko Hirata-Kohno (joint work with Makoto Kawashima, Anthony Poëls and Yukiko Washio)

Nihon University, Tokyo

June 7, 2024

1/18

Summary

- **①** K: number field of degree $m < \infty$, λ , μ : non-zero elements of K
- $oldsymbol{\circ}$ S: finite set of places of K containing all ∞ ones
- The S-unit equation :

$$\lambda x + \mu y = 1$$
 in unknowns $x, y \in U_S$ (1)

Our main result: (1) has solutions at most

$$(3.1 + 68m \log m(1.5)^m)45^s$$
.

The result due to J. -H. Evertse in 1984 : (1) has solutions at most

$$3 \times 7^{m+2s}$$
.

Explicit Padé approximation for Binomial function + Loher-Masser bound

4 D > 4 A > 4 B > 4 B > B = 900

2/18

Solutions of the S-unit equation

Theorem (Siegel-Mahler)

The S-unit equation

$$\lambda x + \mu y = 1$$

has only finitely many solutions in $x, y \in U_S$.

Remark

- Finiteness follows by Thue-Siegel-Roth theorem + p-adic version by Mahler (1932), Parry (1950).
- The 2 variables' case: Linear forms in logarithms: Effective bounds and explicit estimates by Győry-Yu, J.-H. Evertse, Bombieri-Gubler, Bugeaud-Győry. Confer excellent books by Evertse-Győry.
- More than 3 variables' case, linear forms in logs give no upper bound for height of solutions.

The number of the solutions in 2 variables' case

Theorem (J. -H. Evertse (1984))

$$\lambda x + \mu y = 1$$

has solutions at most

$$3 \times 7^{m+2s}$$
.

Remark

- **①** The bound should depend on s (since $s \ge \frac{m}{2}$ we may omit m).
- $\textbf{ Quantitative Roth} + \ \mathsf{Pad\'e} \ \mathsf{for \ cubic \ fct} \ + \ \mathsf{Counting \ for \ bounded \ height}$
- **3** Folklore conjecture (Bombieri, 2000) $\gg \exp(s^{1-\varepsilon})$

Remark

Evertse indeed established a better bound (p. 583 of the article)

$$\left(2+5\cdot\left(2e^{24/49}\right)^m\right)\cdot 49^s.$$

1st ingredient : Explicit Padé approximation

Define Padé approximants at z = 0 (although we perform ours at ∞).

Definition (Padé Approximants of Type I)

For $f_1(z), \ldots, f_m(z) \in K[[z]]$, $0 \le n_1, \ldots, n_m \in \mathbb{Z}$, $\exists \mathcal{P}_1(z), \ldots, \mathcal{P}_m(z) \in K[z]$ satisfying (i) (ii) (iii). These polynomials $(\mathcal{P}_1(z), \ldots, \mathcal{P}_m(z)) \in K[z]$ are called weight (n_1, \ldots, n_m) Padé approximants of Type I at z = 0 $(N = n_1 + \cdots + n_m)$.

- (i) $\mathcal{P}_1(z),\ldots,\mathcal{P}_m(z)\not\equiv 0$,
- (ii) $\deg \mathcal{P}_i(z) \leq n_i \ (1 \leq i \leq m)$,
- (iii) $\operatorname{ord}_{z=0}(\mathcal{P}_1(z)f_1(z)+\cdots+\mathcal{P}_m(z)f_m(z)) \geq N+m-1.$

1st ingredient : Explicit Padé approximation

Define Padé approximants at z = 0 (although we perform ours at ∞).

Definition (Padé Approximants of Type I)

For $f_1(z), \ldots, f_m(z) \in K[[z]], 0 \le n_1, \ldots, n_m \in \mathbb{Z}, \exists \mathcal{P}_1(z), \ldots, \mathcal{P}_m(z) \in K[z]$ satisfying (i) (ii) (iii). These polynomials $(\mathcal{P}_1(z), \ldots, \mathcal{P}_m(z)) \in K[z]$ are called weight (n_1, \ldots, n_m) Padé approximants of Type I at z = 0 $(N = n_1 + \cdots + n_m)$.

- (i) $\mathcal{P}_1(z),\ldots,\mathcal{P}_m(z)\not\equiv 0$,
- (ii) $\deg \mathcal{P}_i(z) \leq n_i \ (1 \leq i \leq m)$,
- (iii) $\operatorname{ord}_{z=0}(\mathcal{P}_1(z)f_1(z)+\cdots+\mathcal{P}_m(z)f_m(z)) \geq N+m-1.$

Definition (Padé Approximants of Type II)

For the f(z) above, the polynomials $(\mathcal{P}_1(z), \dots, \mathcal{P}_m(z))$ satisfying (iv) (v) (vi) are called weight (n_1, \dots, n_m) Padé approximants of Type II at z = 0.

- (iv) $\mathcal{P}_1(z), \ldots, \mathcal{P}_m(z) \not\equiv 0$,
- (v) $\deg \mathcal{P}_i(z) \leq N n_i (1 \leq i \leq m)$,
- (vi) $\operatorname{ord}_{z=0}(\mathcal{P}_i(z)f_j(z) \mathcal{P}_j(z)f_i(z)) \ge N+1 \ (1 \le i < j \le m)$.

Polynomials $\mathcal{P}(z)$ exist by linear algebra, but it is difficult to have in explicit form.

Explicit Padé approximation for Hypergeometric Function

For $k \in \mathbb{Z}_{>0}$, let $(x)_k = x(x+1)(x+2)\cdots(x+k-1), (x)_0 = 1$. We suppose $a, b, c \in \mathbb{Q}$, $c \notin \mathbb{Z}_{\leq 0}$ throughout the talk.

Definition (Gauss Hypergeometric Function)

$$F = {}_{2}F_{1}\begin{pmatrix} a, & b \\ c & \end{pmatrix} = \sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}} \cdot \frac{z^{k}}{k!}$$

- The function converges in |z| < 1, $z \in \mathbb{C}$. (when $a \in \mathbb{Z}_{\leq 0}$ or $b \in \mathbb{Z}_{\leq 0}$, the function is just a polynomial)
- The function satisfies a linear differential equation of the shape

$$z(1-z)F'' - ((a+b+1)z-c)F' - abF = 0$$

• The function $f(z) = \frac{1}{z} \left(1 - \frac{1}{z} \right)^{\omega} = \sum_{k=0}^{\infty} \frac{(-\omega)_k}{k!} \frac{1}{z^{k+1}}$

is binomial function with exponent ω , a hypergeometric fct in the next slide.

Generalized Hypergeometric Function

Suppose $2 \le r \in \mathbb{Z}$ and $\boldsymbol{a} = (a_1, \dots, a_r) \in (\mathbb{Q} \setminus \mathbb{Z}_{\le 0})^r$, $\boldsymbol{b} = (b_1, \dots, b_{r-1}) \in (\mathbb{Q} \setminus \mathbb{Z}_{\le 0})^{r-1}$.

Definition (Generalized Hypergeometric Function)

$$_{r}F_{r-1}\begin{pmatrix} a_{1}, a_{2}, \cdots, a_{r} \\ b_{1}, \cdots, b_{r-1} \end{pmatrix} z = \sum_{k=0}^{\infty} \frac{(a_{1})_{k}(a_{2})_{k}\cdots(a_{r})_{k}}{(b_{1})_{k}\cdots(b_{r-1})_{k}} \cdot \frac{z^{k}}{k!}$$

- $lacktriangledown_r F_{r-1}$ converges in |z| < 1 and is a G-function for $a_i, b_j \in \mathbb{Q}$ (Siegel).
- **②** For $x \in \mathbb{Q}$ with $0 \le x < 1$, Lerch function $(s \in \mathbb{Z}_{\ge 1})$ is defined by $\Phi_s(x,z) = \sum_{k=0}^{\infty} \frac{z^{k+1}}{(k+x+1)^s} \quad \text{(polylogarithm when } x = 0\text{)}$ $= \frac{z}{(x+1)^s} \cdot {}_{s+1}F_s\left(\begin{matrix} 1, \, x+1, \, \cdots, \, x+1 \\ x+2, \, \cdots, \, x+2 \end{matrix} \ \middle| \ z \right)$

Linear Independence of Hypergeometric Values

Let K be a number field of any degree over \mathbb{Q} . Let $2 \leq r \in \mathbb{Z}$.

Theorem (Sinnou David, Makoto Kawashima & NHK, 2024)

Let
$$\mathbf{a} = (a_1, \dots, a_r) \in (\mathbb{Q} \setminus \mathbb{Z}_{\leq 0})^r$$
, $\mathbf{b} = (b_1, \dots, b_{r-1}) \in (\mathbb{Q} \setminus \mathbb{Z}_{\leq 0})^{r-1}$, where $a_k \notin \mathbb{Z}_{\geq 1}$ and $a_k + 1 - b_i \notin \mathbb{Z}_{\geq 1}$ $(1 \leq k \leq r, 1 \leq j \leq r - 1)$.

Let $\alpha = (\alpha_1, \ldots, \alpha_m) \in (K \setminus \{0\})^m$ with α_i pairwise distinct.

For v_0 a place of K, $B \in K \setminus 0$, define $V_{v_0} = V_{v_0}(\boldsymbol{a}, \boldsymbol{b}, \alpha, B) \in \mathbb{R}$ (precised later).

Assume $V_{v_0}>0 \implies$ Then the rm +1 values $(1 \le s \le r-1, 1 \le i \le m)$

$$_{r}F_{r-1}\begin{pmatrix} a_{1},\ldots,a_{r} & \frac{\alpha_{i}}{B} \\ b_{1}\ldots,b_{r-1} & \frac{\alpha_{i}}{B} \end{pmatrix},\cdots,$$

$$_{r}F_{r-1}\begin{pmatrix} a_1+1,\cdots,a_r+1\\b_1+1,\cdots,b_{r-s}+1,b_{r-s+1},\ldots,b_{r-1} & \overline{B} \end{pmatrix}$$

and 1 are linearly independent /K.

These r functions are all linearly independent $/\mathbb{C}(z)$ by Nesterenko (1995).

The theorem is valid (not only in G-function, but) in arithmetic Gevrey series.

$V_{\nu_0} = V_{\nu_0}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{\alpha}, B)$, a special definition precised

Being v_0 a place of K and $\mu(x) = \prod_{\substack{q: \text{prime} \\ q|den(x)}} q^{q/(q-1)}$, for $B \in K \setminus 0$, define

$$\begin{aligned} V_{v_0} &= V_{v_0}(\boldsymbol{a}, \boldsymbol{b}, \alpha, B) = \log |B|_{v_0} + rm \log \|(\alpha, B)\|_{v_0} - rm h(\alpha, B) - (rm + 1) \log \|\alpha\|_{v_0} \\ &- \left(rm \log(2) + r \left(\log(rm + 1) + rm \log \left(\frac{rm + 1}{rm}\right)\right)\right) \\ &- \sum_{i=1}^r \left(\log \mu(a_i) + 2 \log \mu(b_i) + \frac{\operatorname{den}(a_i) \operatorname{den}(b_i)}{\varphi(\operatorname{den}(a_i)) \varphi(\operatorname{den}(b_i))}\right) \end{aligned}.$$

Assume $V_{\nu_0} > 0 \implies$ Then the rm+1 numbers $(1 \le s \le r-1, 1 \le i \le m)$

$$_{r}F_{r-1}\begin{pmatrix} a_{1}, \dots, a_{r} & \frac{\alpha_{i}}{B} \end{pmatrix}, \dots,$$
 $_{r}F_{r-1}\begin{pmatrix} a_{1}+1, \dots, a_{r}+1 & \frac{\alpha_{i}}{B} \end{pmatrix}$

and 1 are linearly independent /K.

- V_{v_0} depends on K and $V_{v_0} > 0$ means B large (such B \exists infinitely many).
- Note that V_{v_0} depends on K, and $V_{v_0} > 0$ means B large $(\alpha_i/B \text{ small})$.
- By observation on the rationality of values by F. Beukers, B must be large.

Application to a binomial function

Put
$$\nu_n = 3^{n+\lceil n/2 \rceil}$$
 and $\nu(x) = \operatorname{den}(x) \cdot \prod_{\substack{q \mid \text{prime} \\ q \mid \text{den}(x)}} q^{1/(q-1)}$ for $x \in \mathbb{Q}$.

For
$$n \in \mathbb{Z}_{\geq 0}$$
, $G_n := GCD\left(\nu_n\binom{n+k-1}{k}\binom{n-4/3}{n-k}, \ \nu_n\binom{n+k'}{k'}\binom{n+1/3}{n-1-k'}\right)_{\substack{0 \leq k \leq n \\ 0 \leq k' \leq n-1}}$.

Let $\rho_1 \leq \rho_2$ be the moduli of the roots $2\beta - 1 \pm 2\sqrt{\beta^2 - \beta}$ of the polynomial $P(X) = X^2 - 2(2\beta - 1)X + 1$.

Theorem (Anthony Poëls and M. Kawashima, 2023)

Let $\beta \in \mathbb{Q}$ with $|\beta| > 1$. Put

$$\begin{split} \Delta &= 3^{3/2} \cdot \operatorname{den}(\beta) \cdot \limsup_{n \to \infty} G_n^{-1/n}, \\ Q &= \rho_2 \cdot \Delta, \qquad E = \rho_2 \cdot \Delta^{-1}. \end{split}$$

Assume E > 1. Then the irrationality exponent μ of the irrational value $\log(Q)$

$$(1-1/\beta)^{\frac{1}{3}} \notin \mathbb{Q}$$
 satisfies $\mu((1-1/\beta)^{\frac{1}{3}}) \leq 1 + \frac{\log(Q)}{\log(E)}$.

Due to the effective Poincaré-Perron Theorem (slide page 17).

1st ingredient : explicit form of Padé polynomials

Binomial Cubic function is one kind of generalized hypergeometric fcts :

$$f(z) = \frac{1}{z} \left(1 - \frac{1}{z} \right)^{1/3} = \sum_{k=0}^{\infty} \frac{(-1/3)_k}{k!} \frac{1}{z^{k+1}} \in (1/z) \cdot \mathbb{Q}[[1/z]].$$

Lemma (Poëls-Kawashima (2023))

Let
$$Q_n(z) = \sum_{k=0}^n (-1)^{n-k} \binom{n+k-1}{k} \binom{n-4/3}{n-k} z^k$$
,

$$P_n(z) = \sum_{k=0}^{n-1} (-1)^{n-1-k} \binom{n+k}{k} \binom{n+1/3}{n-1-k} z^k$$
.

Then the pair of polynomials (Q_n, P_n) forms Padé approximation of Type II, and $R_n(z) = Q_n(z)f(z) - P_n(z)$ is a Padé approximation of f(z). Moreover,

$$R_n(z) = \frac{(4/3)_n(-1/3)_n}{(2n)!z^{n+1}} \cdot {}_2F_1\left({n+1, n-1/3 \atop 2n+1} \mid \frac{1}{z}\right) \in (1/z^{n+1}). \tag{3}$$

Simpler form of (Q_n, P_n)

Proposition

Define the polynomials $A_n(1-z)=z^{n-1}Q_n(1/z)$ and $B_n(1-z)=z^nP_n(1/z)$. Then, we have

$$A_n(1-z) = \sum_{\ell=0}^{n-1} \binom{n+1/3}{\ell} \binom{n-4/3}{n-1-\ell} (1-z)^{\ell},$$

$$B_n(1-z) = \sum_{\ell=0}^{n} \binom{n-4/3}{\ell} \binom{n+1/3}{n-\ell} (1-z)^{\ell}.$$

We prove all the statements by the Chu-Vandermonde identity : a simple argument related to binomials.

Better bounds for $A_n(z)$, $B_n(z)$ by simpler forms

The length L(P) of P is the sum of the moduli of its coefficients. Define

$$\begin{split} |p|_v &= p^{-\frac{[\mathcal{K}_v:\mathbb{Q}_p]}{m}} \text{ if } v|p \ , \ |x|_v = |\sigma_v(x)|^{\frac{[\mathcal{K}_v:\mathbb{R}]}{m}} \text{ if } v|\infty, \ \ \mathrm{H}_v(\beta) = \max\{1, |\beta|_v\} \,, \\ s(v) &:= \left\{ \begin{array}{ll} 1/m & \text{if } v \text{ archimedean real }, \\ 2/m & \text{if } v \text{ archimedean complex }, \\ 0 & \text{if } v \text{ non-archimedean }. \end{array} \right. \end{split}$$

Lemma

Let $z \in \mathbb{C}$. Then we have

$$\max (|A_n(z)|, |B_n(z)|) \le 4^n \max(1, |z|)^n \quad (n \ge 1),$$

 $L(A_n(z)) + L(B_n(z)) < 4^n/2 \quad (n > 2).$

Lemma

Let v be an archimedean place and $\alpha \in K$. For n > 1 we have

$$\max(|A_n(\alpha^3)|_{\nu}, |B_n(\alpha^3)|_{\nu}) \le 4^{ns(\nu)} H_{\nu}(\alpha)^{3n}.$$

2nd ingredient: the Loher-Masser bound

We use the next result due to T. Loher & D. Masser, a uniform bound as below.

Lemma (Loher and Masser, 2004)

Let $\theta \neq 0$ be an algebraic number, not necessarily in K. Let $c \geq 1$ be a constant. Let $m = [K : \mathbb{Q}] \ge 2$. Then the number of $z \in K \setminus \{0\}$ with $H(\theta z) \le c$ is at most

$$68 \, m \log m \cdot c^{2m}$$
.

Theorem (Poëls, Kawashima, Washio & Hirata-Kohno, 2023 (IJNT))

The number of the solutions $(x, y) \in U_s^2$ is at most

$$(3.1 + 68 \, m \log m \cdot (1.5)^m) \cdot 45^s$$

which is smaller than Evertse' precise bound (2) for $m \ge 6$, $s \ge 1$. Precisely, the number of the solutions of the unit equation (1) is at most, for $m \ge 2$ and $s \ge 1$,

$$\min \left\{ \left(2.81864 \cdot \left(46.8312 \right)^s + \min \left(5 \cdot \left(3.22803 \right)^m \cdot 47^s, 68 \ m \log m \cdot \left(1.37597 \right)^m \cdot 47^s \right), \right. \right.$$

 $(3.06759 \cdot (44.9866)^s + \min(5 \cdot (3.36406)^m \cdot 45^s, 68 \, m \log m \cdot (1.41436)^m \cdot 45^s)$. N. Hirata-Kohno (Nihon Univ., Tokyo) S-unit equation in two variables

More application of the explicit Padé approximation

Let β be algebraic of degree d over $\mathbb Q$ with $|\beta|>1$ and $K=\mathbb Q(\beta)$. Define $\delta=[K:\mathbb Q]/[K_\infty:\mathbb R]$ for $K_\infty=\mathbb R$ if $K\subset\mathbb R$ and $K_\infty=\mathbb C$ otherwise. For each conjugate map σ_k $(1\leq k\leq d)/\mathbb Q$, suppose $P(X)=X^2-2(2\sigma_k(\beta)-1)X+1$ has the roots whose moduli are distinct with the notation $\rho_1(\sigma_k(\beta))<\rho_2(\sigma_k(\beta))$. Let

$$\Delta = \operatorname{den}(\beta) \cdot \exp\left(\operatorname{den}(\mathbf{x})/\varphi(\operatorname{den}(\mathbf{x}))\right) \cdot \nu(x), \ (\varphi \text{ is Euler's fct, } \nu(x) \text{ is in slide 11}),$$

$$Q = \Delta \cdot \prod_{1 \le k \le d} \left(\rho_2(\sigma_k(\beta))\right), \quad E = \rho_2(\beta)/\rho_1(\beta) = \left(\rho_2(\beta)\right)^2.$$

Theorem (R. Muroi, Y. Washio and NHK, 2024)

Let
$$x \in \mathbb{Q} \cap [0,1)$$
. Put $\lambda = \frac{1}{\delta} - \frac{\log Q}{d \log E}$. Consider the shifted logarithmic function $f(z) = (1+x)\Phi_1(x,1/z) = (1+x)\sum_{k=0}^{\infty} 1/\left((k+x+1)\cdot z^{k+1}\right)$.

Whenever $\lambda > 0$, then $f(\beta) = (1+x)\Phi_1(x,1/\beta) \notin K$, and its effective K-approximation measure satisfies

$$\mu(f(\beta),K) \leq \frac{1}{\lambda}.$$

16 / 18

By effective Poincaré-Perron (slide p. 17). This refines previous measures.

What is effective Poincaré-Perron Theorem?

Definition

Let $s_j(n),\ 1\leq j\leq \ell$, be functions from $n\in\mathbb{Z}_{\geq 0}$ to \mathbb{C} with $s_\ell(n)\neq 0$ for all n. Let ℓ -th order linear difference equation with unknown functions x(n) on $n\in\mathbb{Z}_{\geq 0}$:

$$x(n+\ell) + s_1(n)x(n+\ell-1) + \cdots + s_{\ell}(n)x(n) = 0$$
 (5)

where the limit $t_j := \lim_{n \to \infty} s_j(n)$ exists in $\mathbb C$ for each $1 \le j \le \ell$. Let us write the characteristic equation

$$\lambda^{\ell} + t_1 \lambda^{\ell-1} + \dots + t_{\ell} = 0, \tag{6}$$

and denote by λ_j the roots of the equation (6).

The next theorem is useful to have asymptotic behavior of the function x(n).

Theorem (Perron's 2nd theorem, effectively proven by M. Pituk, 2002)

The equation (5) has either ℓ linearly independent solutions $x_1(n), \ldots, x_{\ell}(n)$, or x(n) = 0 for all large n, and in the former case, for each $1 \le j \le \ell$, we have:

$$\limsup_{n\to\infty}\frac{1}{n}\log|x_j(n)|=\log|\lambda_j|.$$

Thank you very much for your cordial invitation.

18 / 18