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Summary

@ K : number field of degree m < oo, A, it : non-zero elements of K
@ S : finite set of places of K containing all co ones

©Q s=CardS, Us: the S-unitsin K

@ The S-unit equation :

Ax+py =1 in unknowns x,y € Us (1)
Our main result : (1) has solutions at most
(3.1 +68mlog m(1.5)™)45°.
@ The result due to J. -H. Evertse in 1984 : (1) has solutions at most
3 x 7mrE,

@ Explicit Padé approximation for Binomial function + Loher-Masser bound
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Solutions of the S-unit equation

Theorem (Siegel-Mahler)

The S-unit equation
AXx+py =1

has only finitely many solutions in x,y € Us.

RENEILS

@ Finiteness follows by Thue-Siegel-Roth theorem + p-adic version by Mahler
(1932), Parry (1950).

@ The 2 variables' case: Linear forms in logarithms : Effective bounds and
explicit estimates by Gy6ry-Yu, J. -H. Evertse, Bombieri-Gubler,
Bugeaud-Gyéry. Confer excellent books by Evertse-Gyory.

© More than 3 variables' case, linear forms in logs give no upper bound for
height of solutions.
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The number of the solutions in 2 variables’ case

Theorem (J. -H. Evertse (1984))

Ax+py =1

has solutions at most
3 x 7™,

RENEILS

| A

@ The bound should depend on s (since s > 3 we may omit m).

@ Quantitative Roth + Padé for cubic fct + Counting for bounded height
@ Folklore conjecture (Bombieri, 2000) > exp (51*5)

Remark
Evertse indeed established a better bound (p. 583 of the article)

(2 +5. <2e24/49) m) 49°. (2)

o’
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1st ingredient : Explicit Padé approximation

Define Padé approximants at z = 0 (although we perform ours at o).
Definition (Padé Approximants of Type I)
For fi(z),...,fm(z) € K[[z]], 0 < m1,...,nm € Z, FP1(2),...,Pm(z) € K|z]
satisfying (i) (ii) (iii). These polynomials (P1(z),...,Pm(z)) € K|z] are called
weight (n1,...,ny) Padé approximants of Type |l atz=0 (N =n;+ -+ np).
(1) Pl(z)a s 7Pm(z) ;é 0 )
(i) degPi(z) < n; (1 <i<m),
(iii) ord,—o(P1(2)A(2) + - - + Pm(2)fm(2)) > N+ m — 1.
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1st ingredient : Explicit Padé approximation
Define Padé approximants at z = 0 (although we perform ours at o).
Definition (Padé Approximants of Type I)
For fi(z),...,fm(2z) € K[[2]]. 0 < m1,...,nm € Z, TP1(2),...,Pm(z) € K[z]
satisfying (i) (ii) (iii). These polynomials (P1(z),...,Pm(z)) € K|z] are called
weight (n,...,ny) Padé approximants of Type |l atz=0 (N =n;+ -+ np).
(i) Pi(2),...,Pm(z) £0 ,
(ii) degPi(z) < n; (1 <i<m),
(iii) ord,—o(P1(2)fi(2) + -+ + Pm(2)fm(2)) > N+ m — 1.
Definition (Padé Approximants of Type II)
For the f(z) above, the polynomials (P1(z), ..., Pm(2)) satisfying (iv) (v) (vi)
are called weight (ny, ..., ny,) Padé approximants of Type Il at z = 0.
(iv) P1(2),...,Pm(z) £0,
(v) degPi(z) < N—n;i (1 <i<m),
(vi) ordo(Pi(2)f(2) ~ PAA(2) = N+1 (1< i <j<m).

Polynomials P(z) exist by linear algebra, but it is difficult to have in explicit form.
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Explicit Padé approximation for Hypergeometric Function

For k € Z>g, let (x)x = x(x + 1)(x +2)--- (x+ k —1),(x)o = 1.
We suppose a, b, c € Q, ¢ ¢ Z<g throughout the talk.

Definition (Gauss Hypergeometric Function)

P (%) =L

k=0

@ The function converges in |z| < 1, z € C.
(when a € Z<q or b € Z<y, the function is just a polynomial)
@ The function satisfies a linear differential equation of the shape

z(1—z)F" —((a+b+1)z—c)F —abF =0

@ The function f(z) = % (1 — 1) _ Z (—w)k 1

z k! zkt1
k=0
is binomial function with exponent w, a hypergeometric fct in the next slide.
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Generalized Hypergeometric Function

Suppose 2 < r € Z and
a:(al,...,a,)G(Q\Zgo)’,b:(bl,..., r— 1) (Q\Z<o)

Definition (Generalized Hypergeometric Function)

aip, az, -, ar
F )
rfr—1

blv"'7br—1

—~ (b1)k - (br—1)k k!

z) _ i (a)k(a2)k - (ar)k 2"

@ ,F,_1 converges in |z| < 1 and is a G-function for a;, bj € Q (Siegel).

Q@ ForxeQ with 0 < x <1, Lerch function (s € Z>1) is defined by
Sk+1

Z (k +x+ 1 (P0|y|0garithm when x = O)
X

_ z . E 1, x+1,---, x+1 5
T x+1)p T x 42, x 42
S-unit equation in two variables
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Linear Independence of Hypergeometric Values

Let K be a number field of any degree over Q. Let 2 < r € Z.

Theorem (Sinnou David, Makoto Kawashima & NHK, 2024)

Leta=(a1,...,a,) € (Q\ Z<o),b=(b1,...,b,—1) € (Q\ Z<o) !, where
ax¢Zsrandag+1—bj¢Z> (1<k<rl1<j<r-1).

Let o = (aq,...,am) € (K \ {0})™ with a; pairwise distinct.

For vy a place of K, B € K\ 0, define V,, = V,,(a,b,a, B) €R (precised later).

Assume V,, >0 = Then the rm+1 values (1<s<r—1,1<i<m)

al,...,ar & o
fF'1<b1...,b,_1 B)’ ’
E a+1,---,a +1 Q;
riret b1+17'”abr75+1abr75+17"'7br71 B
These r functions are all linearly independent /C(z) by Nesterenko (1995).
The theorem is valid (not only in G-function, but) in arithmetic Gevrey series.

and 1 are linearly independent /K.
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Vi, = Viu(a, b, o, B), a special definition precised

Being vo a place of K and u(x) = [] gprime g%/9"Y , for B € K\ 0, define
glden(x)

Vig = Vig(a, b, B) = log|Bly, + rmlog ||(cx, B)llw, - rmh(ex, B) - (rm + 1) log [lex],

_ (rm log(2) + r <Iog(rm +1) + rmlog <rmr;: 1)))

r

] . ' den(a;)den(b;)
> (Iogu(a/) +2log u(bj) + @(den(aj))tp(den(bj))> ‘

j=1

Assume V,, >0 = Then the rm+1 numbers (1 <s<r—-1,1<i<m)

al,...,ar Qi
rFr—1< E PR

by... b1
rFr

a+1,---,a +1
-t b1+17 ;br—s+17br—5+17"'7br—1
and 1 are linearly independent /K.

e V,, depends on K and V,, >0 means B large (such B Jinfinitely many).

e Note that V,, depends on K , and V,, > 0 means B large («;/B small).
e By observation on the rationality of values by F. Beukers, B must be large.
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Application to a binomial function

Put v, = 3771721 and v(x) = den(x) - [] g:prime ¢*/971) for x € Q.

glden(x)
For n € Zzo, Gy = GCD (va("§7) (1) va("4) (7573)) ockzn -
0<k’<n—1

Let p1 < p2 be the moduli of the roots 23 — 1+ 24/32 — 3 of the polynomial
P(X)=X?-2(28-1)X + 1.

Theorem (Anthony Poéls and M. Kawashima, 2023)

Let 8 € Q with || > 1. Put
A =3%2.den(B) - limsup G, /",
n—o0
Q=po-A, E=p,- AL

Assume E > 1. Then the irrationality exponent i of the irrational value
1 1 |
(1-1/B)3 ¢ Q satisfies u((1—1/8)3) <1+ Izigi_\);_

Due to the effective Poincaré-Perron Theorem (slide page 17).
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1st ingredient : explicit form of Padé polynomials

Binomial Cubic function is one kind of generalized hypergeometric fcts :

/3 oo
=1 (1-2) 7SO

k=0

Lemma (Poéls-Kawashima (2023))

Let Qu(z) = z":(_l)n_k (n + f -~ 1) <nn_4l/<3> .

k=0

n—1

Pa(z) = 3 (—1) 1 (’“; k) (n”_+11£3k)zk .

k=0

Then the pair of polynomials (Qn, P,) forms Padé approximation of Type Il, and
R.(z) = Qu(2)f(2) — P,(z) is a Padé approximation of f(z). Moreover,

Rie) =Rl R (T D ey @)
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Simpler form of (Q,, P,)

Define the polynomials A,(1 — z) = z"1Q,(1/z) and B,(1 — z) = z"P,(1/z).

Anfl— 2)— i (n +£1/3> (:_-14{38) (1-2)",

Then, we have

£=0

n

B(1—7) — Z (n _54/3> (n:—_lf)(l )

£=0

We prove all the statements by the Chu-Vandermonde identity : a simple
argument related to binomials.
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Better bounds for A,(z), B,(z) by simpler forms

The length L(P) of P is the sum of the moduli of its coefficients. Define
_ K Qy] [Kv:R]
Plo=p= m i vlp Ixl = o) ™ if viso, H,(8)=max{L,|8],},

1/m if v archimedean real,
s(v):=< 2/m if v archimedean complex,
0 if v non-archimedean.

Lemma
Let z € C. Then we have

max (|An(2)],Bn(2)|) < 4" max(1,|z])" (n>1),

L(An(2)) + L(Ba(2) < 47/2 (n>2).

Lemma

Let v be an archimedean place and oo € K. For n > 1 we have

max (|An(a®)y, |Ba(e®)],) < 4™MH, (a)*".

v
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2nd ingredient : the Loher-Masser bound

We use the next result due to T. Loher & D. Masser, a uniform bound as below.

Lemma (Loher and Masser, 2004)

Let 0 # 0 be an algebraic number, not necessarily in K. Let ¢ > 1 be a constant.
Let m = [K : Q] > 2. Then the number of z € K \ {0} with H(0z) < c is at most

68 mlog m - c*".

Theorem (Poéls, Kawashima, Washio & Hirata-Kohno, 2023 (1JNT))

The number of the solutions (x,y) € U2 is at most
(3.1 + 68 mlog m- (1.5)™) -45°

which is smaller than Evertse’ precise bound (2) for m > 6, s > 1. Precisely, the
number of the solutions of the unit equation (1) is at most, for m > 2 and s > 1,

min{(2.81864 - (46.8312)° + min (5 - (3.22803)" 47, 68 mlog m -(1.37597)" -47°

(3.06759 - (44.9866)° + min(5 - (3.36406)" -45°, 68 mlog m -(1.41436)" -45° ).
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More application of the explicit Padé approximation

Let 8 be algebraic of degree d over Q with |3] > 1 and K = Q(). Define
0=[K:Q]/[Kw : R] for Koo =R if K C R and K, = C otherwise. For each
conjugate map oy (1 < k < d)/Q , suppose P(X) = X? —2(204(8) —1)X +1 has
the roots whose moduli are distinct with the notation p1(o«(8)) < p2(ok(5)). Let

A = den(p) - exp (den(x)/p(den(x))) - v(x), (¢ is Euler's fct, v(x) is in slide 11),
Q= A Thcksa(p2(0x(8). E=p2(8)/1(8) = (m2(8))".

Theorem (R. Muroi, Y. Washio and NHK, 2024)

1 log @
Let x € QNJ0,1). PUt/\_Sidng

function f(z) = (14 x)®1(x,1/z) = (1 4+ x)>_ 1/((/( +x+1)- z"“).

Whenever A > 0, then f(8) = (1 + x)®1(x,1/8) ¢ K, and its effective
K-approximation measure satisfies

. Consider the shifted logarithmic

1

H(F(B).K) < 5.

By effective Poincaré-Perron (slide p. 17). This refines previous measures.
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What is effective Poincaré-Perron Theorem?

Let sj(n), 1 <j </, be functions from n € Z>q to C with sy(n) # 0 for all n. Let
£-th order linear difference equation with unknown functions x(n) on n € Zx:

x(n+£)+si(n)x(n+£€—1)+--- + sy(n)x(n) =0 (5)

where the limit t; := lim,_, sj(n) exists in C for each 1 < j < ¢. Let us write the

characteristic equation
M4 =+ 4+t =0, (6)

and denote by A; the roots of the equation (6).

The next theorem is useful to have asymptotic behavior of the function x(n).

Theorem (Perron’s 2nd theorem, effectively proven by M. Pituk, 2002)

The equation (5) has either ¢ linearly independent solutions xy(n), ..., x;(n), or
x(n) = 0 for all large n, and in the former case, for each 1 < j < ¢, we have:

1
limsup = log |x;(n)| = log |Aj].
n—oo N
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Thank you very much for your cordial invitation.
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