Number of the solutions of S-unit equation in two variables

Noriko Hirata-Kohno
(joint work with Makoto Kawashima, Anthony Poëls and Yukiko Washio)

Nihon University, Tokyo
June 7, 2024

Summary

(1) K : number field of degree $m<\infty, \lambda, \mu$: non-zero elements of K
(2) S : finite set of places of K containing all ∞ ones
(3) $s=\operatorname{Card} S, U_{S}$: the S-units in K
(0) The S-unit equation:

$$
\begin{equation*}
\lambda x+\mu y=1 \text { in unknowns } x, y \in U_{S} \tag{1}
\end{equation*}
$$

Our main result: (1) has solutions at most

$$
\left(3.1+68 m \log m(1.5)^{m}\right) 45^{5} .
$$

(6) The result due to J. -H. Evertse in 1984: (1) has solutions at most

$$
3 \times 7^{m+2 s} .
$$

- Explicit Padé approximation for Binomial function + Loher-Masser bound

Solutions of the S-unit equation

Theorem (Siegel-Mahler)

The S-unit equation

$$
\lambda x+\mu y=1
$$

has only finitely many solutions in $x, y \in U_{S}$.

Remark

(1) Finiteness follows by Thue-Siegel-Roth theorem $+p$-adic version by Mahler (1932), Parry (1950).
(2) The 2 variables' case: Linear forms in logarithms : Effective bounds and explicit estimates by Györy-Yu, J. -H. Evertse, Bombieri-Gubler, Bugeaud-Györy. Confer excellent books by Evertse-Györy.

- More than 3 variables' case, linear forms in logs give no upper bound for height of solutions.

The number of the solutions in 2 variables' case

Theorem (J. -H. Evertse (1984))

$$
\lambda x+\mu y=1
$$

has solutions at most

$$
3 \times 7^{m+2 s} .
$$

Remark

(1) The bound should depend on s (since $s \geq \frac{m}{2}$ we may omit m).
(2) Quantitative Roth + Padé for cubic fct + Counting for bounded height
(3) Folklore conjecture (Bombieri, 2000) > $\exp \left(s^{1-\varepsilon}\right)$

Remark

Evertse indeed established a better bound (p. 583 of the article)

$$
\begin{equation*}
\left(2+5 \cdot\left(2 e^{24 / 49}\right)^{m}\right) \cdot 49^{5} . \tag{2}
\end{equation*}
$$

1st ingredient : Explicit Padé approximation

Define Padé approximants at $z=0$ (although we perform ours at ∞).

Definition (Padé Approximants of Type I)

For $f_{1}(z), \ldots, f_{m}(z) \in K[[z]], 0 \leq n_{1}, \ldots, n_{m} \in \mathbb{Z}, \exists \mathcal{P}_{1}(z), \ldots, \mathcal{P}_{m}(z) \in K[z]$ satisfying (i) (ii) (iii). These polynomials $\left(\mathcal{P}_{1}(z), \ldots, \mathcal{P}_{m}(z)\right) \in K[z]$ are called weight $\left(n_{1}, \ldots, n_{m}\right)$ Padé approximants of Type I at $z=0\left(N=n_{1}+\cdots+n_{m}\right)$.
(i) $\mathcal{P}_{1}(z), \ldots, \mathcal{P}_{m}(z) \not \equiv 0$,
(ii) $\operatorname{deg} \mathcal{P}_{i}(z) \leq n_{i}(1 \leq i \leq m)$,
(iii) $\operatorname{ord}_{z=0}\left(\mathcal{P}_{1}(z) f_{1}(z)+\cdots+\mathcal{P}_{m}(z) f_{m}(z)\right) \geq N+m-1$.

1st ingredient : Explicit Padé approximation

Define Padé approximants at $z=0$ (although we perform ours at ∞).

Definition (Padé Approximants of Type I)

For $f_{1}(z), \ldots, f_{m}(z) \in K[[z]], 0 \leq n_{1}, \ldots, n_{m} \in \mathbb{Z}, \exists \mathcal{P}_{1}(z), \ldots, \mathcal{P}_{m}(z) \in K[z]$ satisfying (i) (ii) (iii). These polynomials $\left(\mathcal{P}_{1}(z), \ldots, \mathcal{P}_{m}(z)\right) \in K[z]$ are called weight $\left(n_{1}, \ldots, n_{m}\right)$ Padé approximants of Type I at $z=0\left(N=n_{1}+\cdots+n_{m}\right)$.
(i) $\mathcal{P}_{1}(z), \ldots, \mathcal{P}_{m}(z) \neq 0$,
(ii) $\operatorname{deg} \mathcal{P}_{i}(z) \leq n_{i}(1 \leq i \leq m)$,
(iii) $\operatorname{ord}_{z=0}\left(\mathcal{P}_{1}(z) f_{1}(z)+\cdots+\mathcal{P}_{m}(z) f_{m}(z)\right) \geq N+m-1$.

Definition (Padé Approximants of Type II)

For the $f(z)$ above, the polynomials $\left(\mathcal{P}_{1}(z), \ldots, \mathcal{P}_{m}(z)\right)$ satisfying (iv) (v) (vi) are called weight $\left(n_{1}, \ldots, n_{m}\right)$ Padé approximants of Type II at $z=0$.

$$
\begin{aligned}
& \text { (iv) } \mathcal{P}_{1}(z), \ldots, \mathcal{P}_{m}(z) \not \equiv 0 \\
& \text { (v) } \operatorname{deg} \mathcal{P}_{i}(z) \leq N-n_{i}(1 \leq i \leq m) \\
& \text { (vi) } \operatorname{ord}_{z=0}\left(\mathcal{P}_{i}(z) f_{j}(z)-\mathcal{P}_{j}(z) f_{i}(z)\right) \geq N+1(1 \leq i<j \leq m)
\end{aligned}
$$

Polynomials $\mathcal{P}(z)$ exist by linear algebra, but it is difficult to have in explicit form.

Explicit Padé approximation for Hypergeometric Function

For $k \in \mathbb{Z}_{\geq 0}$, let $(x)_{k}=x(x+1)(x+2) \cdots(x+k-1),(x)_{0}=1$.
We suppose $a, b, c \in \mathbb{Q}, c \notin \mathbb{Z}_{\leq 0}$ throughout the talk.

Definition (Gauss Hypergeometric Function)

$$
F={ }_{2} F_{1}\left(\begin{array}{c|c}
a, b & z \\
c & z
\end{array}\right)=\sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}} \cdot \frac{z^{k}}{k!}
$$

(1) The function converges in $|z|<1, z \in \mathbb{C}$.
(when $a \in \mathbb{Z}_{\leq 0}$ or $b \in \mathbb{Z}_{\leq 0}$, the function is just a polynomial)
(2) The function satisfies a linear differential equation of the shape

$$
z(1-z) F^{\prime \prime}-((a+b+1) z-c) F^{\prime}-a b F=0
$$

(- The function $f(z)=\frac{1}{z}\left(1-\frac{1}{z}\right)^{\omega}=\sum_{k=0}^{\infty} \frac{(-\omega)_{k}}{k!} \frac{1}{z^{k+1}}$
is binomial function with exponent ω, a hypergeometric fct in the next slide.

Generalized Hypergeometric Function

Suppose $2 \leq r \in \mathbb{Z}$ and
$\boldsymbol{a}=\left(a_{1}, \ldots, a_{r}\right) \in\left(\mathbb{Q} \backslash \mathbb{Z}_{\leq 0}\right)^{r}, \boldsymbol{b}=\left(b_{1}, \ldots, b_{r-1}\right) \in\left(\mathbb{Q} \backslash \mathbb{Z}_{\leq 0}\right)^{r-1}$.

Definition (Generalized Hypergeometric Function)

$$
{ }_{r} F_{r-1}\left(\left.\begin{array}{c}
a_{1}, a_{2}, \cdots, a_{r} \\
b_{1}, \cdots, b_{r-1}
\end{array} \right\rvert\, z\right)=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k}\left(a_{2}\right)_{k} \cdots\left(a_{r}\right)_{k}}{\left(b_{1}\right)_{k} \cdots\left(b_{r-1}\right)_{k}} \cdot \frac{z^{k}}{k!}
$$

(1) ${ }_{r} F_{r-1}$ converges in $|z|<1$ and is a G-function for $a_{i}, b_{j} \in \mathbb{Q}$ (Siegel).
(2) For $x \in \mathbb{Q}$ with $0 \leq x<1$, Lerch function $\left(s \in \mathbb{Z}_{\geq 1}\right)$ is defined by

$$
\begin{aligned}
& \Phi_{s}(x, z)=\sum_{k=0}^{\infty} \frac{z^{k+1}}{(k+x+1)^{s}} \quad(\text { polylogarithm when } x=0) \\
& =\frac{z}{(x+1)^{s}} \cdot{ }_{s+1} F_{s}\left(\left.\begin{array}{c}
1, x+1, \cdots, x+1 \\
x+2, \cdots, x+2
\end{array} \right\rvert\, z\right)
\end{aligned}
$$

Linear Independence of Hypergeometric Values

Let K be a number field of any degree over \mathbb{Q}. Let $2 \leq r \in \mathbb{Z}$.

Theorem (Sinnou David, Makoto Kawashima \& NHK, 2024)

Let $\boldsymbol{a}=\left(a_{1}, \ldots, a_{r}\right) \in\left(\mathbb{Q} \backslash \mathbb{Z}_{\leq 0}\right)^{r}, \boldsymbol{b}=\left(b_{1}, \ldots, b_{r-1}\right) \in\left(\mathbb{Q} \backslash \mathbb{Z}_{\leq 0}\right)^{r-1}$, where $a_{k} \notin \mathbb{Z}_{\geq 1}$ and $a_{k}+1-b_{j} \notin \mathbb{Z}_{\geq 1} \quad(1 \leq k \leq r, 1 \leq j \leq r-1)$.
Let $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in(K \backslash\{0\})^{m}$ with α_{i} pairwise distinct.
For v_{0} a place of $K, B \in K \backslash 0$, define $V_{v_{0}}=V_{v_{0}}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{\alpha}, B) \in \mathbb{R}$ (precised later). Assume $V_{v_{0}}>0 \Longrightarrow$ Then the $r m+1$ values $(1 \leq s \leq r-1,1 \leq i \leq m)$ ${ }_{r} F_{r-1}\left(\begin{array}{c|c}a_{1}, \ldots, a_{r} & \frac{\alpha_{i}}{B} \\ b_{1} \ldots, b_{r-1} & B\end{array}\right.$,

$$
{ }_{r} F_{r-1}\left(\left.\begin{array}{c}
a_{1}+1, \cdots, a_{r}+1 \\
b_{1}+1, \cdots, b_{r-s}+1, b_{r-s+1}, \ldots, b_{r-1}
\end{array} \right\rvert\, \frac{\alpha_{i}}{B}\right)
$$

and 1 are linearly independent $/ K$.
These r functions are all linearly independent $/ \mathbb{C}(z)$ by Nesterenko (1995).
The theorem is valid (not only in G-function, but) in arithmetic Gevrey series.

$V_{v_{0}}=V_{v_{0}}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{\alpha}, B)$, a special definition precised

Being v_{0} a place of K and $\mu(x)=\prod_{q \text { qiprime }} q^{q /(q-1)}$, for $B \in K \backslash 0$, define
$V_{v_{0}}=V_{v_{0}}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{\alpha}, B)=\log |B|_{v_{0}}+r m \log \|(\boldsymbol{\alpha}, B)\|_{v_{0}}-r m h(\boldsymbol{\alpha}, B)-(r m+1) \log \|\boldsymbol{\alpha}\|_{v_{0}}$

$$
-\left(r m \log (2)+r\left(\log (r m+1)+r m \log \left(\frac{r m+1}{r m}\right)\right)\right)
$$

$$
-\sum_{j=1}^{r}\left(\log \mu\left(a_{j}\right)+2 \log \mu\left(b_{j}\right)+\frac{\operatorname{den}\left(a_{j}\right) \operatorname{den}\left(b_{j}\right)}{\varphi\left(\operatorname{den}\left(a_{j}\right)\right) \varphi\left(\operatorname{den}\left(b_{j}\right)\right)}\right)
$$

Assume $V_{v_{0}}>0 \Longrightarrow$ Then the $r m+1$ numbers $(1 \leq s \leq r-1,1 \leq i \leq m)$ ${ }_{r} F_{r-1}\left(\begin{array}{c|c}a_{1}, \ldots, a_{r} & \frac{\alpha_{i}}{B} \\ b_{1} \ldots, b_{r-1} & B\end{array}\right.$,

$$
{ }_{r} F_{r-1}\left(\begin{array}{c|c}
a_{1}+1, \cdots, a_{r}+1 \\
b_{1}+1, \cdots, b_{r-s}+1, b_{r-s+1}, \ldots, b_{r-1} & \left.\frac{\alpha_{i}}{B}\right)
\end{array}\right.
$$

and 1 are linearly independent $/ K$.

- $V_{v_{0}}$ depends on K and $V_{v_{0}}>0$ means B large (such B Jinfinitely many).
- Note that $V_{v_{0}}$ depends on K, and $V_{v_{0}}>0$ means B large (α_{i} / B small).
- By observation on the rationality of values by F . Beukers, B must be large.

Application to a binomial function

Put $\nu_{n}=3^{n+\lceil n / 2\rceil}$ and $\nu(x)=\operatorname{den}(x) \cdot \prod_{q: \text { prime }} q^{1 /(q-1)}$ for $x \in \mathbb{Q}$. $q \mid \operatorname{den}(x)$
For $n \in \mathbb{Z}_{\geq 0}, G_{n}:=\operatorname{GCD}\left(\nu_{n}\binom{n+k-1}{k}\binom{n-4 / 3}{n-k}, \nu_{n}\binom{n+k^{\prime}}{k^{\prime}}\binom{n+1 / 3}{n-1-k^{\prime}}\right) \underset{\substack{0 \leq k \leq n \\ 0 \leq k^{\prime} \leq n-1}}{ }$.
Let $\rho_{1} \leq \rho_{2}$ be the moduli of the roots $2 \beta-1 \pm 2 \sqrt{\beta^{2}-\beta}$ of the polynomial $P(X)=X^{2}-2(2 \beta-1) X+1$.

Theorem (Anthony Poëls and M. Kawashima, 2023)

Let $\beta \in \mathbb{Q}$ with $|\beta|>1$. Put

$$
\begin{aligned}
& \Delta=3^{3 / 2} \cdot \operatorname{den}(\beta) \cdot \limsup _{n \rightarrow \infty} G_{n}^{-1 / n}, \\
& Q=\rho_{2} \cdot \Delta, \quad E=\rho_{2} \cdot \Delta^{-1} .
\end{aligned}
$$

Assume $E>1$. Then the irrationality exponent μ of the irrational value
$(1-1 / \beta)^{\frac{1}{3}} \notin \mathbb{Q}$ satisfies $\quad \mu\left((1-1 / \beta)^{\frac{1}{3}}\right) \leq 1+\frac{\log (Q)}{\log (E)}$.
Due to the effective Poincaré-Perron Theorem (slide page 17).

1st ingredient : explicit form of Padé polynomials

Binomial Cubic function is one kind of generalized hypergeometric fcts :

$$
f(z)=\frac{1}{z}\left(1-\frac{1}{z}\right)^{1 / 3}=\sum_{k=0}^{\infty} \frac{(-1 / 3)_{k}}{k!} \frac{1}{z^{k+1}} \in(1 / z) \cdot \mathbb{Q}[[1 / z]] .
$$

Lemma (Poëls-Kawashima (2023))

$$
\text { Let } \begin{aligned}
Q_{n}(z) & =\sum_{k=0}^{n}(-1)^{n-k}\binom{n+k-1}{k}\binom{n-4 / 3}{n-k} z^{k}, \\
P_{n}(z) & =\sum_{k=0}^{n-1}(-1)^{n-1-k}\binom{n+k}{k}\binom{n+1 / 3}{n-1-k} z^{k} .
\end{aligned}
$$

Then the pair of polynomials $\left(Q_{n}, P_{n}\right)$ forms Padé approximation of Type II, and $R_{n}(z)=Q_{n}(z) f(z)-P_{n}(z)$ is a Padé approximation of $f(z)$. Moreover,

$$
R_{n}(z)=\frac{(4 / 3)_{n}(-1 / 3)_{n}}{(2 n)!z^{n+1}} \cdot{ }_{2} F_{1}\left(\begin{array}{c|c}
n+1, n-1 / 3 & \frac{1}{z} \tag{3}\\
2 n+1
\end{array}\right) \in\left(1 / z^{n+1}\right) .
$$

Simpler form of $\left(Q_{n}, P_{n}\right)$

Proposition

Define the polynomials $A_{n}(1-z)=z^{n-1} Q_{n}(1 / z)$ and $B_{n}(1-z)=z^{n} P_{n}(1 / z)$. Then, we have

$$
\begin{aligned}
& A_{n}(1-z)=\sum_{\ell=0}^{n-1}\binom{n+1 / 3}{\ell}\binom{n-4 / 3}{n-1-\ell}(1-z)^{\ell}, \\
& B_{n}(1-z)=\sum_{\ell=0}^{n}\binom{n-4 / 3}{\ell}\binom{n+1 / 3}{n-\ell}(1-z)^{\ell} .
\end{aligned}
$$

We prove all the statements by the Chu-Vandermonde identity : a simple argument related to binomials.

Better bounds for $A_{n}(z), B_{n}(z)$ by simpler forms

The length $L(P)$ of P is the sum of the moduli of its coefficients. Define

$$
\begin{aligned}
&|p|_{v}=p^{-\frac{\left[K_{v}: \mathbb{Q}_{p}\right]}{m}} \text { if } v\left|p,|x|_{v}=\left|\sigma_{v}(x)\right|^{\frac{\left[K_{v}: \mathbb{R}\right]}{m}} \text { if } v\right| \infty, \quad \mathrm{H}_{v}(\beta)=\max \left\{1,|\beta|_{v}\right\}, \\
& s(v):=\left\{\begin{array}{cll}
1 / m & \text { if } v & \text { archimedean real }, \\
2 / m & \text { if } v & \text { archimedean complex, } \\
0 & \text { if } v & \text { non-archimedean } .
\end{array}\right.
\end{aligned}
$$

Lemma

Let $z \in \mathbb{C}$. Then we have

$$
\begin{gathered}
\max \left(\left|A_{n}(z)\right|,\left|B_{n}(z)\right|\right) \leq 4^{n} \max (1,|z|)^{n} \quad(n \geq 1), \\
L\left(A_{n}(z)\right)+L\left(B_{n}(z)\right) \leq 4^{n} / 2 \quad(n \geq 2) .
\end{gathered}
$$

Lemma

Let v be an archimedean place and $\alpha \in K$. For $n \geq 1$ we have

$$
\max \left(\left|A_{n}\left(\alpha^{3}\right)\right|_{v},\left|B_{n}\left(\alpha^{3}\right)\right|_{v}\right) \leq 4^{n s(v)} \mathrm{H}_{v}(\alpha)^{3 n} .
$$

2nd ingredient : the Loher-Masser bound

We use the next result due to T . Loher \& D. Masser, a uniform bound as below.

Lemma (Loher and Masser, 2004)

Let $\theta \neq 0$ be an algebraic number, not necessarily in K. Let $c \geq 1$ be a constant. Let $m=[K: \mathbb{Q}] \geq 2$. Then the number of $z \in K \backslash\{0\}$ with $H(\theta z) \leq c$ is at most

$$
68 m \log m \cdot c^{2 m}
$$

Theorem (Poëls, Kawashima, Washio \& Hirata-Kohno, 2023 (IJNT))

The number of the solutions $(x, y) \in U_{S}^{2}$ is at most

$$
\left(3.1+68 m \log m \cdot(1.5)^{m}\right) \cdot 45^{s}
$$

which is smaller than Evertse' precise bound (2) for $m \geq 6, s \geq 1$. Precisely, the number of the solutions of the unit equation (1) is at most, for $m \geq 2$ and $s \geq 1$, $\min \left\{\left(2.81864 \cdot(46.8312)^{s}+\min \left(5 \cdot(3.22803)^{m} \cdot 47^{s}, 68 m \log m \cdot(1.37597)^{m} \cdot 47^{s}\right)\right.\right.$ $\left(3.06759 \cdot(44.9866)^{s}+\min \left(5 \cdot(3.36406)^{m} \cdot 45^{s}, 68 m \log m \cdot(1.41436)^{m} \cdot 45^{s}\right)\right\}$.

More application of the explicit Padé approximation

Let β be algebraic of degree d over \mathbb{Q} with $|\beta|>1$ and $K=\mathbb{Q}(\beta)$. Define $\delta=[K: \mathbb{Q}] /\left[K_{\infty}: \mathbb{R}\right]$ for $K_{\infty}=\mathbb{R}$ if $K \subset \mathbb{R}$ and $K_{\infty}=\mathbb{C}$ otherwise. For each conjugate map $\sigma_{k}(1 \leq k \leq d) / \mathbb{Q}$, suppose $P(X)=X^{2}-2\left(2 \sigma_{k}(\beta)-1\right) X+1$ has the roots whose moduli are distinct with the notation $\rho_{1}\left(\sigma_{k}(\beta)\right)<\rho_{2}\left(\sigma_{k}(\beta)\right)$. Let
$\Delta=\operatorname{den}(\beta) \cdot \exp (\operatorname{den}(\mathrm{x}) / \varphi(\operatorname{den}(\mathrm{x}))) \cdot \nu(x),(\varphi$ is Euler's $\mathrm{fct}, \nu(x)$ is in slide 11), $Q=\Delta \cdot \prod_{1 \leq k \leq d}\left(\rho_{2}\left(\sigma_{k}(\beta)\right), \quad E=\rho_{2}(\beta) / \rho_{1}(\beta)=\left(\rho_{2}(\beta)\right)^{2}\right.$.

Theorem (R. Muroi, Y. Washio and NHK, 2024)

Let $x \in \mathbb{Q} \cap[0,1)$. Put $\lambda=\frac{1}{\delta}-\frac{\log Q}{d \log E}$. Consider the shifted logarithmic function $f(z)=(1+x) \Phi_{1}(x, 1 / z)=(1+x) \sum_{k=0}^{\infty} 1 /\left((k+x+1) \cdot z^{k+1}\right)$. Whenever $\lambda>0$, then $f(\beta)=(1+x) \Phi_{1}(x, 1 / \beta) \notin K$, and its effective K-approximation measure satisfies

$$
\mu(f(\beta), K) \leq \frac{1}{\lambda}
$$

By effective Poincaré-Perron (slide p. 17). This refines previous measures.

What is effective Poincaré-Perron Theorem?

Definition

Let $s_{j}(n), 1 \leq j \leq \ell$, be functions from $n \in \mathbb{Z}_{\geq 0}$ to \mathbb{C} with $s_{\ell}(n) \neq 0$ for all n. Let ℓ-th order linear difference equation with unknown functions $x(n)$ on $n \in \mathbb{Z}_{\geq 0}$:

$$
\begin{equation*}
x(n+\ell)+s_{1}(n) \times(n+\ell-1)+\cdots+s_{\ell}(n) \times(n)=0 \tag{5}
\end{equation*}
$$

where the limit $t_{j}:=\lim _{n \rightarrow \infty} s_{j}(n)$ exists in \mathbb{C} for each $1 \leq j \leq \ell$. Let us write the characteristic equation

$$
\begin{equation*}
\lambda^{\ell}+t_{1} \lambda^{\ell-1}+\cdots+t_{\ell}=0 \tag{6}
\end{equation*}
$$

and denote by λ_{j} the roots of the equation (6).
The next theorem is useful to have asymptotic behavior of the function $x(n)$.

Theorem (Perron's 2nd theorem, effectively proven by M. Pituk, 2002)

The equation (5) has either ℓ linearly independent solutions $x_{1}(n), \ldots, x_{\ell}(n)$, or $x(n)=0$ for all large n, and in the former case, for each $1 \leq j \leq \ell$, we have:

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log \left|x_{j}(n)\right|=\log \left|\lambda_{j}\right| .
$$

Thank you very much for your cordial invitation.

