Online Number Theory Seminar

7 June 2024. - 17:00-17:50
N. Hirata-Kohno: Number of the solutions of S-unit equation in two variables

This is a joint work with Makoto Kawashima, Anthony Poels and Yukiko Washio. We apply the explicit Pade approximation constructed for binomial functions by the second and the third authors, to give a new upper bound for the number of the solutions of the S-unit equation, that refines the bound due to J.-H. Evertse.
Let K be a number field of degree m and let a, b be non-zero elements of K. Consider a finite set S of places of K containing all the Archimedean ones. Denote by s its cardinality and by U_{S} the set of the S-units in K. In 1984, Evertse proved that the S-unit equation $a x+b y=1\left(x, y \in U_{S}\right)$ has at most $3 \times 7^{m+2 s}$ solutions.
We refine for any positive integers m, s showing that the equation $a x+b y=1$ has at most $\left(3.1+5(3.4)^{m}\right) \times 45^{s}$ solutions $(x, y) \in U_{S}^{2}$.
We use the result proven by Loher and Masser in 2004 to obtain a further improvement: $(3.1+$ $\left.68 m \log m(1.5)^{m}\right) 45^{s}$, which is smaller than the bound above when $m \geq 6$ and $s \geq 1$.

