Polynomials having only rational roots

L. Hajdu
University of Debrecen

Online seminar of the Number Theory Research Group

University of Debrecen

13 October 2023

Plan of the talk

- Introduction and motivation
- New results
- sharp bounds for the degree in terms of the height
- sharp bound for the degree if the coeffs are coprime to 6
- finiteness and full description for fixed degree if the coeffs are composed of a fixed finite set of primes
- Open problems

The new results presented are joint with R. Tijdeman and N. Varga.

Introduction and motivation

Polynomials in $\mathbb{Z}[x]$ with only rational roots are the simplest examples of decomposable polynomials and forms. Such polynomials play an important role in the theory of Diophantine equations. (See e.g. results of Evertse and Györy.)

There is also an extensive literature on polynomials with restricted coefficients, in particular, with coefficients belonging to one of the sets $\{-1,1\},\{0,1\}$ or $\{-1,0,1\}$. (See e.g. results concerning Littlewood polynomials and Newman polynomials.)

The set of polynomials $f(x) \in \mathbb{Z}[x]$ with all coefficients in $\{-1,0,1\}$, constant term non-zero and only rational roots is very restricted. The degree of f is at most 3 , an example is

$$
f(x)=x^{3}-x^{2}-x+1=(x-1)^{2}(x+1) .
$$

Sharp bounds for the degree in terms of the height

Theorem 1 (Tijdeman, Varga, H. (2023))

Let $f(x) \in \mathbb{Z}[x]$ be a polynomial of degree n with only non-zero rational roots and height bounded by $H \geq 2$. Then we have both

$$
\begin{equation*}
n \leq\left(\frac{2}{\log 2}+o(1)\right) \log H \quad(H \rightarrow \infty) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
n \leq \frac{5}{\log 2} \log H \tag{2}
\end{equation*}
$$

Further, the constants $2 / \log 2$ and $5 / \log 2$ in (1) and (2), respectively, are best possible.

Sharp bounds for the degree in terms of the height

Remarks. For any $f \in \mathbb{Z}[x]$ of degree n, the height of $g:=x^{m} f(x)$ is the same as that of f, while $\operatorname{deg}(g)=m+n$. So the assumption that the roots of f are non-zero is clearly necessary.

Several authors have considered upper bounds for the number r of real roots of $f(x) \in \mathbb{R}[x]$. (See e.g. results of Bloch and Pólya, E. Schmidt, Schur, Erdős and Turán, Littlewood and Offord, Borwein, Erdélyi and Kós.)

For example, a result of Schur implies for polynomials $f(x) \in \mathbb{Z}[x]$ with only real roots that

$$
n \leq(4+o(1)) \log H \quad(H \rightarrow \infty)
$$

Proof of Theorem 1

On the one hand, let $f(x)=\sum_{j=0}^{n} a_{j} x^{j}$. Then

$$
\begin{equation*}
|f(\mathrm{i})| \leq\left|\sum_{j \text { is even }}\right| a_{j}\left|+\mathrm{i} \sum_{j \text { is odd }}\right| a_{j}| | \leq \sqrt{\frac{1}{2} n^{2}+n+1} H . \tag{3}
\end{equation*}
$$

On the other hand, we may write $f(x)=\prod_{j=1}^{n}\left(q_{j} x-p_{j}\right)$ with $p_{j}, q_{j} \in \mathbb{Z}_{\neq 0}$ for all j. Then

$$
\begin{equation*}
|f(\mathrm{i})|=\left|\prod_{j=1}^{n}\left(q_{j} \mathrm{i}-p_{j}\right)\right|=\prod_{j=1}^{n} \sqrt{q_{j}^{2}+p_{j}^{2}} \geq(\sqrt{2})^{n} . \tag{4}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
n \log 2 \leq \log \left(\frac{1}{2} n^{2}+n+1\right)+2 \log H . \tag{5}
\end{equation*}
$$

From this (1) easily follows.

Proof of Theorem 1

For the height H of the polynomial $f(x)=\left(x^{2}-1\right)^{n / 2}$ with even $n \geq 2$ by Stirling's formula we have $\log H=(1+o(1)) n \log 2 / 2$. This shows that the constant $2 / \log 2$ in (1) is best possible.

To prove (2), observe that assuming (5/ $\log 2) \log H<n$ from (5) we obtain

$$
n \log 2<\log \left(\frac{1}{2} n^{2}+n+1\right)+\frac{2 n \log 2}{5}
$$

whence $n \leq 9$.
These cases can be checked relatively easily, and (2) holds. In particular, the polynomial

$$
(x-1)^{3}(x+1)^{2}=x^{5}-x^{4}-2 x^{3}+2 x^{2}+x-1
$$

shows that the constant $5 / \log 2$ in (2) is best possible.

Polynomials with coeffs coprime to 6

Theorem 2 (Tijdeman, Varga, H. (2023))

Every polynomial $f(x) \in \mathbb{Z}[x]$ with only rational roots of which no coefficient is divisible by 2 or 3 has degree at most 3 .

The example

$$
f(x)=x^{3}-x^{2}-x+1=(x-1)^{2}(x+1)
$$

shows that degree 3 is possible.

Background of the proof of Theorem 2

The proof is based upon the following two lemmas.

Lemma 1 (Fine (1947))

Let n be a positive integer such that all the coefficients of $(x+1)^{n}$ are odd. Then n is of the shape $2^{\alpha}-1$ with some $\alpha \in \mathbb{Z}_{\geq 0}$.

Lemma 2 (Tijdeman, Varga, H. (2023))

Let a, b be non-negative integers. Put $n:=a+b$. If none of the coefficients of $(x-1)^{a}(x+1)^{b}$ is divisible by 3 , then n is of the shape $3^{\beta}-1,2 \cdot 3^{\beta}-1,3^{\gamma}+3^{\delta}-1$ or $2 \cdot 3^{\gamma}+3^{\delta}-1$ with $\beta \geq 0, \gamma>\delta \geq 0$.

Remark. For all the mentioned values in Lemma 2 there are polynomials without coefficients divisible by 3.

Sketch of the proof of Lemma 2

We call a pair of non-negative integers (a, b) good if none of the coefficients of $f_{(a, b)}(x):=(x-1)^{a}(x+1)^{b}$ is divisible by 3 ; otherwise we say that (a, b) is bad.

Observe that this property is symmetric in a and b in view of the substitution $x \rightarrow-x$.

We distinguish between the residue classes of a and b modulo 3 .
CASE $a \equiv \varepsilon(\bmod 3), b \equiv 0(\bmod 3), \varepsilon \in\{0,1\}$. Letting $a=3 u+\varepsilon$, $b=3 v$ we get that

$$
f_{(a, b)}(x) \equiv\left(x^{3}-1\right)^{u}\left(x^{3}+1\right)^{v}(x-1)^{\varepsilon} \quad(\bmod 3) .
$$

Hence (a, b) is good if and only if $u=v=0$, i.e. $n=0$ or 1 .

Sketch of the proof of Lemma 2

CASE $a \equiv 2(\bmod 3), b \equiv 1(\bmod 3)$. Letting $a=3 u+2, b=3 v+1$ we get

$$
\begin{equation*}
f_{(a, b)}(x) \equiv\left(x^{3}-1\right)^{u}\left(x^{3}+1\right)^{v}\left(x^{3}-x^{2}-x+1\right) \quad(\bmod 3) \tag{6}
\end{equation*}
$$

So if (u, v) is bad, then (a, b) is bad, too.

Assume that (u, v) is good. Then we may write

$$
\begin{equation*}
\left(x^{3}-1\right)^{u}\left(x^{3}+1\right)^{v}=\sum_{i=0}^{u+v} c_{i} x^{3 i} \tag{7}
\end{equation*}
$$

with $3 \nmid c_{i}(i=0, \ldots, u+v)$; in particular, $c_{u+v}=1$.

Then, combining (6) and (7), we obtain that (a, b) is good if and only if none of the integers

$$
c_{u+v}, c_{u+v}+c_{u+v-1}, \ldots, c_{1}+c_{0}, c_{0}
$$

is divisible by 3 .

Sketch of the proof of Lemma 2

Since $c_{u+v}=1$, this gives $c_{i} \equiv 1(\bmod 3)(i=0, \ldots, u+v)$.

Hence we obtain, on replacing x^{3} by x_{1} in (7), that every coefficient of $\left(x_{1}-1\right)^{u}\left(x_{1}+1\right)^{v}$ is $1(\bmod 3)$.

This is equivalent with

$$
\left(x_{1}-1\right)^{u+1}\left(x_{1}+1\right)^{v} \equiv x_{1}^{u+v+1}-1 \quad(\bmod 3)
$$

This holds precisely for $(u, v)=\left(3^{\ell}-1,0\right),\left(3^{\ell}-1,3^{\ell}\right)(\ell \geq 0)$.

Background of the proof of Theorem 2

We may assume that f is monic.

Since the roots of f are odd, Lemma 1 shows that $n+1$ is a power of 2 .

Further, since the roots of f are not divisible by 3 , by Lemma 2 we get that $n+1$ is of the shape $3^{\beta}, 2 \cdot 3^{\beta}, 3^{\gamma}+3^{\delta}$ or $2 \cdot 3^{\gamma}+3^{\delta}$.

The combination is possible only for $n=0,1,3$.

Polynomials with coeffs having only prime factors coming from a fixed finite set

Theorem 3 (Tijdeman, Varga, H. (2023))

Let S be a finite set of primes with $|S|=s$ and n a positive integer.
There exists an explicitly computable constant $C=C(n, s)$ depending only on n and s and sets T_{1}, T_{2} with $\max \left(\left|T_{1}\right|,\left|T_{2}\right|\right) \leq C$ of n-tuples of S-units and ($n-1$)/2-tuples of S-units for n odd, respectively, such that if $f(x)$ is an S-polynomial of degree n having only rational roots $q_{1}, \ldots q_{n}$, then q_{1}, \ldots, q_{n} satisfy one of the conditions (i) or (ii):
(i) $\left(q_{1}, \ldots, q_{n}\right)=u\left(r_{1}, \ldots, r_{n}\right)$ with some $\left(r_{1}, \ldots, r_{n}\right) \in T_{1}$ and S-unit u,
(ii) $n=2 t+1$ is odd, and re-indexing q_{1}, \ldots, q_{n} if necessary, we have $q_{1}=u$ and $\left(q_{2}, \ldots, q_{n}\right)=v\left(r_{1},-r_{1}, \ldots, r_{t},-r_{t}\right)$ with some $\left(r_{1}, \ldots, r_{t}\right) \in T_{2}$ and S-units u, v.

Further, the possibilities (i) and (ii) cannot be excluded.

Background of the proof of Theorem 3

We use the theory of S-unit equations. Let S be a finite set of primes, b_{1}, \ldots, b_{m} non-zero rationals, and consider the equation

$$
\begin{equation*}
b_{1} x_{1}+\cdots+b_{m} x_{m}=0 \text { in S-units } x_{1}, \ldots, x_{m} \tag{8}
\end{equation*}
$$

A solution $\left(y_{1}, \ldots, y_{m}\right)$ of (8) is called non-degenerate if

$$
\sum_{i \in I} b_{i} y_{i} \neq 0 \text { for each non-empty subset } I \text { of }\{1, \ldots, m\}
$$

Two solutions $\left(y_{1}, \ldots, y_{m}\right)$ and $\left(z_{1}, \ldots, z_{m}\right)$ are called proportional, if there is an S-unit u such that $\left(z_{1}, \ldots, z_{m}\right)=u\left(y_{1}, \ldots, y_{m}\right)$.

Lemma 3 (Amoroso and Viada (2009))

Equation (8) has at most $(8 m-8)^{4(m-1)^{4}(m+s)}$ non-degenerate, non-proportional solutions, where $s=|S|$.

Sketch of the proof of Theorem 3

Write $f(x)=\sum_{j=0}^{n} a_{j} x^{j}$, having only rational roots q_{1}, \ldots, q_{n}.
By our assumption, $a_{0}, a_{1}, \ldots, a_{n}$ are integral S-units.
We have

$$
A_{j}=\sigma_{j}\left(q_{1}, \ldots, q_{n}\right) \quad(1 \leq j \leq n)
$$

where $A_{j}=(-1)^{j} a_{n-j} / a_{n}$ and σ_{j} is the j-th elementary symmetric polynomial (of degree j) of q_{1}, \ldots, q_{n}.

Using it for $j=1,2$ we get $q_{1}^{2}+\cdots+q_{n}^{2}=A_{1}^{2}-2 A_{2}$.
This shows that $\left(q_{1}^{2}, \ldots, q_{n}^{2}, A_{1}^{2}, A_{2}\right)$ yields a solution to the S-unit equation $x_{1}+\cdots+x_{n}-x_{n+1}+2 x_{n+2}=0$.

Sketch of the proof of Theorem 3

If $\left(q_{1}^{2}, \ldots, q_{n}^{2}, A_{1}^{2}, A_{2}\right)$ is a solution with no vanishing subsums, then by Lemma 3 we can write $q_{i}^{2}=u_{0} \ell_{i}(i=1, \ldots, n)$, where ($\left.\ell_{1}, \ldots, \ell_{n}\right)$ comes from a finite set of cardinality bounded in terms of n and s, and u_{0} is an S-unit.

Obviously, the squarefree parts of $\ell_{1}, \ldots, \ell_{n}$ are the same, say ℓ_{0}.
Thus letting $r_{i}^{2}=\ell_{i} / \ell_{0}(i=1, \ldots, n)$ and $u^{2}=u_{0} \ell_{0}$, we have $q_{i}= \pm u r_{i}$ ($i=1, \ldots, n$) and we are in case (i).

Hence we may assume that $\left(q_{1}^{2}, \ldots, q_{n}^{2}, A_{1}^{2}, A_{2}\right)$ contains a vanishing subsum.

This case, with further careful analysis and delicate considerations lead to the statement by Lemma 3.

Sketch of the proof of Theorem 3

Finally, we show that the possibilities (i) and (ii) cannot be excluded.
If r_{1}, \ldots, r_{n} is a set of rational roots of an S-polynomial of degree n, then clearly, the same is true for $u r_{1}, \ldots, u r_{n}$ for any S-unit u, showing the necessity of (i).

On the other hand, let $r_{1}^{2}, \ldots, r_{t}^{2}$ be the rational roots of the S-polynomial $\left(x-r_{1}^{2}\right) \cdots\left(x-r_{t}^{2}\right)$. Then in the polynomial $\left(x^{2}-r_{1}^{2}\right) \cdots\left(x^{2}-r_{t}^{2}\right)$, all the coefficients of the even powers of x are S-units (while the coefficients of the odd powers of x equal 0). Thus for any S-units u, v, all the coefficients of the polynomial

$$
(x+u)\left(x-v r_{1}\right)\left(x+v r_{1}\right) \cdots\left(x-v r_{t}\right)\left(x+v r_{t}\right)
$$

are S-units. This shows that (ii) cannot be excluded either.

Open problems

Problem 1. Is it true that for any primes p and q there exists an $n_{1}=n_{1}(p, q)$ such that every polynomial $f(x) \in \mathbb{Z}[x]$ with only rational roots of which no coefficient is divisible by p or q has degree at most n_{1} ?

Theorem 2 shows that the answer is 'yes' for the pair of primes $(p, q)=(2,3)$.

A weaker statement is a restriction to S-polynomials.
Problem 2. Is it true that for any finite set S of primes there exists an $n_{2}=n_{2}(S)$ such that every S-polynomial $f(x) \in \mathbb{Z}[x]$ with only rational roots has degree at most n_{2} ?

Theorem 2 yields an affirmative answer for sets S of primes with $2,3 \notin S$.

Open problems

The last problem is raised by Lemmas 1 and 2.
Problem 3. Is it true that for every prime p there exists a constant $c(p)$ such that if $f(x) \in \mathbb{Z}[x]$ has only rational roots and none of the coefficients of f is divisible by p, then $\operatorname{deg}(f)+1$ in its p-adic expansion has at most $c(p)$ non-zero digits? In particular, can one take $c(p)=p-1$?

Lemmas 1 and 2 show that the answer is 'yes' with $c(p)=p-1$ for $p=2,3$. Note that an affirmative answer to Problem 3 through a deep result of Stewart would yield positive answers to Problems 1 and 2, as well.

Thank you very much for your attention!

