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Background and Previous Work



Monogenicity/Monogeneity

One of the primary interests of number theory is understanding the roots

of monic polynomials in Z[x ]. When and how can the roots of one

polynomial be expressed by the roots of another polynomial?

Let K/Q be a number field of degree n with ring of integers OK . We say

K is monogenic or OK admits a power integral basis if OK = Z[α] for

some α ∈ K . More explicitly, {1, α, . . . , αn−1} is an Z-basis for the

Z-module OK . In this case we call α a monogenerator.
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Our First Friends

Take Q(
√
d) with d square-free. The ring of integers of Q(

√
d) is

Z
[
1+
√
d

2

]
if d ≡ 1 mod 4 and Z[

√
d ] otherwise. In both cases Q(

√
d) is

monogenic.

Let ζn be a primitive nth root of unity and consider the nth cyclotomic

field Q(ζn). It is a bit more difficult than in the quadratic case, but one

can show that the ring of integers of Q(ζn) is Z[ζn].

The maximal real subfield of the nth cyclotomic field is Q(ζn + ζ−1n ).

These number fields are also monogenic with ζn + ζ−1n = 2 cos(2π/n)

providing a generator.
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An Example With Westlund and Wieferich

Proposition
Let p be an odd prime and suppose xp + yp = zp is a non-trivial solution

to the Fermat equation. Suppose that p - xyz (the “first case” of

Fermat’s last theorem). Then, p
√

2 is not a monogenerator for Q( p
√

2)/Q.

Let p be a prime and a ∈ Z be squarefree. One can show

[Westlund, 1910] that p
√
a is a monogenerator if and only if p2 - ap − a.

[Wieferich, 1909] showed that if xp + yp = zp is a non-trivial solution to

the Fermat equation such that p - xyz , then p2 | 2p − 2.
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“All that glistens is not gold.”

Does this always happen? When one is learning (or

discovering) algebraic number theory, they might be tempted

to think every extension of Q is monogenic.

Modest doubt is called the beacon of the wise.

- William Shakespeare

Expectation is the root of all heartache.

- William Shakespeare
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Dedekind-Kummer Factorization

Theorem (Dedekind building on work of Kummer)

Let f (x) be a monic, irreducible polynomial in Z[x ] with α denoting a

root. If p ∈ Z is a prime that does not divide [OQ(α) : Z[α]], then the

factorization of p in OQ(α) mirrors the factorization of f (x) in Fp[x ].

That is,

f (x) ≡ f1(x)e1 · · · fr (x)er mod p and (p) = pe11 · · · p
er
r .

For example, consider Q(α) where α is a root of x3 − x2 − 2x − 8.

Dedekind computed the factorization (2) = p1p2p3.

Thus, if this field is monogenic, there is a cubic polynomial g(x) that

generates Q(α) and has three distinct linear factors in F2[x ]. In this case

we say 2 is a common index divisor.
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Previous Work

The question of which rings of integers are monogenic was posed to the

London Mathematical Society in the 1960’s by Helmut Hasse, so the

study of monogenicity is sometimes known as Hasse’s problem.

For an in-depth look at monogenicity with a focus on algorithms for

solving index form equations, see Gaál’s book [Gaál, 2019]. Evertse and

Győry’s book [Evertse and Győry, 2017] provides background with a

special focus on the relevant Diophantine equations.

For very recent English translations of the original pioneering works,

consult [Gouvêa and Webster, 2021a] and [Gouvêa and Webster, 2021b].
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Previous Work

The monogenicity of a given extension of Z is encoded by a Diophantine

equation called the index form equation. Győry made the initial

breakthrough regarding the resolution of index form equations and

related equations in the series of papers [Győry, 1973], [Győry, 1974],

[Győry, 1976], [Győry, 1978a], and [Győry, 1978b]. For inequivalent

monogenic generators one should also consult [Evertse and Győry, 1985],

[Bérczes et al., 2013], and the survey

In large part due to the group in Debrecen, there is a vast literature

involving relative monogenicity: [Győry, 1980], [Győry, 1981],

[Gaál, 2001], [Gaál and Pohst, 2000], [Gaál and Szabó, 2013],

[Gaál et al., 2016], [Gaál and Remete, 2019], and

[Gaál and Remete, 2019].
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Previous Work

Monogenicity has recently been viewed from the perspective of arithmetic

statistics: Bhargava, Shankar, and Wang [Bhargava et al., 2016] have

shown that the density of monic, irreducible polynomials in Z[x ] such

that a root is a monogenerator is 6
π2 = ζ(2)−1 ≈ 60.79%.

They also show the density of monic integer polynomials with square-free

discriminants (a sufficient condition for a root to be a monogenerator) is

∏
p

(
1− 1

p
+

(p − 1)2

p2(p + 1)

)
≈ 35.82%.
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Following the completion of the work I will be speaking about, we were

made aware of several bodies of related work on monogenicity in

geometric contexts, such as Stein manifolds [Duchamp and Hain, 1984],

[Stout, 1972], [Stutz, 1974] and Riemann surfaces [Prill, 1980]. The

question of the existence of monogenerators, referred to as “primitive

elements” was raised by Alling for Riemann surfaces [Alling, 1964] and

then for Stein manifolds by Röhrl [Röhrl, 1965].
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Construction



The Classical Index Form

Let K be a number field. If f ∈ Z[x ] is an irreducible monic polynomial

with a root α such that K = Q(α), then

Disc(f ) = Disc(K )
[
OK : Z[α]

]2
.

Here [OK : Z[α]] is the index of Z[α] inside OK . We see that this index is

1 if and only if α is a monogenerator. Thus we can define “the” index

form of OK/Z by

IndexOK/Z(α) =

√
Disc(f )

Disc(K )
.
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The Classical Index Form

More explicitly, let {β1, . . . , βn} be an integral basis for OK and let

{σ1, . . . , σn} be the set of embeddings of K ↪→ C. We have

Disc(K ) = det


σ1(β1) σ1(β2) · · · σ1(βn)

σ2(β1)
. . . σ2(βn)

...
. . .

...

σn(β1) · · · · · · σn(βn)


2

.

If M
β→α

is the appropriate change of (K -)basis matrix from {β1, . . . , βn}

to {1, α, α2, . . . , αn−1}, then

M
β→α


σ1(β1) σ1(β2) · · · σ1(βn)

σ2(β1)
. . . σ2(βn)

...
. . .

...

σn(β1) · · · · · · σn(βn)

 =


σ1(1) σ1(α) · · · σ1(αn−1)

σ2(1)
. . . σ2(αn−1)

...
. . .

...

σn(1) · · · · · · σn(αn−1)

 .
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The Classical Index Form

Taking determinants and squaring, we have

det

(
M
β→α

)2

Disc(K ) = Disc
(
1, α, . . . , αn−1) = Disc(f ).

Therefore, det

(
M
β→α

)2

= IndexOK/Z(α)2 is an equality in Z, so

det

(
M
β→α

)
= ±IndexOK/Z(α).

This is really putting the cart before the horse. See Theorem 5.19 of

https://kconrad.math.uconn.edu/blurbs/linmultialg/modulesoverPID.pdf for a

clear elementary proof.
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Starting to Think More Geometrically

Definition
α ∈ OK is a monogenerator for OK/Z if there is a commutative diagram

Z[t]

}}}}
OK Zoo

OO

where the diagonal ring homomorphism sending t 7→ α is surjective.
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Schemes

We continue our translation by applying Spec to get some schemes.

The essential points on schemes:

� If A is a commutative ring, SpecA is a geometric object (an “affine

scheme”) whose points are the prime ideals of A.

� A scheme in general is a geometric object built by taking a union of

affine schemes.

� A morphism π : SpecA→ SpecB is the same as a ring

homomorphism π] : B → A. We say that π is a closed immersion if

π] is surjective.
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A Geometric Definition

Definition
A monogenerator for OK/Z is a closed immersion

ι : SpecOK → SpecZ[t] so that

Spec Z x A 1

commutes.
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Monogenicity of Schemes

Definition
Let π : S ′ → S be a finite, locally free morphism of Noetherian schemes

of constant rank. We say that a monogenerator for S ′ → S is a diagram

A1
S

��
S ′

ι
>>

// S

where ι is a closed immersion.
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The Scheme of Monogenerators

Definition
Let π : S ′ → S be as in the last slide. We define the scheme of

monogenic generators MS′/S to be the S-scheme with the property that

for any S-scheme T ,

HomSch/S(T ,MS′/S) =


A1

T

��
S ′ ×S T

ι

;;

// T

 .

Theorem
MS′/S exists. Moreover, when S is affine, then so is MS′/S .
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The Scheme of Monogenerators

A special case

HomSch/S(SpecB,MOK/Z) =

{
monogenic generators for

B ⊗Z OK over B

}
Another special case

HomSch/S(SpecZ,MOK/Z) =

{
monogenic generators of OK

over Z.

}
Remark
We may also replace the scheme A1

T in the definition with Ak
T to study

generating k-tuples of elements.
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Examples



Dedekind’s Non-Monogenic Cubic

Let α denote a root of the polynomial x3 − x2 − 2x − 8 and consider the

field extension K = Q(α) over Q. Two generators are necessary to

generate OK/Z. We take B = {1, α+α
2

2 , α2} as our Z-basis for OK . We

consider the map Z[t]→ OK given by sending t to a generic element

a + bα+α
2

2 + cα2.

OK [a, b, c] Z[a, b, c][x ].
a+b α+α2

2 +cα2←−[x

oooo

Z[a, b, c]

88ff
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Dedekind’s Non-Monogenic Cubic

Let α denote a root of the polynomial x3 − x2 − 2x − 8 and consider the

field extension K = Q(α) over Q. Two generators are necessary to

generate OK/Z. We take B = {1, α+α
2

2 , α2} as our Z-basis for OK . We

consider the map Z[t]→ OK given by sending t to a generic element

a + bα+α
2

2 + cα2. The change of basis matrix taking B to{
1, a + bα+α

2

2 + cα2, (a + bα+α
2

2 + cα2)2
}

is

1 a a2 + 6b2 + 16bc + 8c2

0 b 2ab + 7b2 + 24bc + 20c2

0 c −2b2 + 2ac − 8bc − 7c2

 .
Taking the determinant, the index form associated to this basis is

−2b3 − 15b2c − 31bc2 − 20c3.

Reducing modulo 2, we find that b2c + bc2 = 1 has no solutions in Z/2Z.
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An Inseparable Extension of Function Fields

We investigate the analog of the integers in the function field extension

F3(α)[β]/(β3 − α) over F3(α). The base ring is F3[α] and the extension

ring is F3[α][x ]/(x3 − α) = F3[β], where β3 = α.

F3[a, b, c][β] F3[α][a, b, c][x ].
a+bβ+cβ2←−[x

oo

F3[α][a, b, c]

66gg

1← [ 1

a + bβ + cβ2 ← [ x

(a + bβ + cβ2)2 ← [ x2

corresponds to the change of basis matrix1 a a2 + 2bcα

0 b c2α + 2ab

0 c b2 + 2ac

 .
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An Inseparable Extension of Function Fields

From the previous slide, the base ring is F3[α] and the extension ring is

F3[α][x ]/(x3 − α) = F3[β], where β3 = α.

det

1 a a2 + 2bcα

0 b c2α + 2ab

0 c b2 + 2ac

 = b3 − c3α ∈ F3[α][a, b, c].

This is not geometrically reduced since it factors as (b − cβ)3. To find

the monogenerators of this extension, we set this expression equal to the

units of F3[α]. Since (F3[α])∗ = ±1, the only solutions are b = ±1,

c = 0. Thus

M1,F3[β]/F3[α](F3[α]) = {a± β : a ∈ F3[α]}.

We can see that, much like number rings, monogenicity imposes a

stronger restriction here than it does for the extension of fraction fields.
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So What’s the Point?

This translation makes immediately available the machinery and

organization provided by scheme theory:

� Monogenerators for OL over OK are in bijection with OK points of

MOL/OK
.

� MS′/S makes good sense for very many S ′ → S in a single

framework. For example S ′ might be the spectrum of an order, or

S ′ → S might be a covering of one curve by another.

� MOL/OK
is a sheaf with respect to the fpqc, fppf, étale, and Zariski

topologies, so searching for monogenerators can be done locally.

� We can consider twists of MOL/OK
by any groups that act on it and

interpret the meaning of their points.
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Twisted Monogenicity



Natural Actions on MS ′/S

Since

HomSch/S(T ,MS′/S) =


A1

T

��
S ′ ×S T

ι

;;

// T

 ,

we can act by Aut(A1
S/S) or Aut(S ′/S). For OL/OK , the first action

translates to

α 7→ mα + b

where m ∈ O∗K , b ∈ OK , and the second action translates to

α 7→ σ(α)

where σ ∈ Gal(L/K ).
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Twisted Monogenicity: Geometric Definition

Definition
We say L/K is twisted monogenic if SpecOL admits a closed immersion

into a line bundle L over SpecOK .
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An Algebraic Definition

Definition
We say that L/K is twisted monogenic if there is

1. a finite set {f1, . . . , fm} of relatively prime elements of OK

2. an element αi ∈ OK [f −1i ] for each i = 1, . . . ,m

so that

1. OL[f −1i ] = OK [f −1i , αi ] for each i = 1, . . . ,m

2. for each i , j ∈ {1, . . . ,m} there is aij ∈ (OK [f −1i , f −1j ])∗ and

bij ∈ OK [f −1i , f −1j ] so that

αi = aijαj + bij .
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An Example

Example
Let K = Q( n

√
pq) where p, q are distinct primes relatively prime to n.

Suppose further that (n) =
∏

i p
ei
i with pi = (θi ) principal. For example,

n = 3, p = 5, and q = 23 work.

Then the integers of L = K
(

n
√
q
∏

i θi
)

are twisted monogenic over OK :

� Choose p and q as our relatively prime elements.

� Choose αp = n
√
pn−1

∏
i θi and αq = n

√
q
∏

i θi .

This works because:

� αp is a monogenerator for OL[p−1]/OK [p−1] and αq is a

monogenerator for OL[q−1]/OK [q−1] by a check with Dedekind’s

criterion for relative extensions;

� αq =
n
√
pq
p · αp.

Hanson Smith A Moduli Space of Monogenerators



An Example

Example continued
When n = 3, p = 5, q = 23, a check with Sage shows that OL/OK is

twisted monogenic but not monogenic.

Some of these are monogenic though!
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Twisted Monogenicity and the Class Group

Theorem
If L/K is twisted monogenic and K has trivial class group, then L/K is

monogenic.

Theorem
K has trivial class group if and only if every twisted monogenic extension

of K is monogenic.

Theorem
If L/K is a twisted monogenic extension of degree n with line bundle L,

then the Steinitz class of OL over OK is the n(n−1)
2 -th power of the class

of L.
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Thank You!
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donné. II.

Publ. Math. Debrecen, 21:125–144.
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Győry, K. (1978a).
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Győry, K. (1978b).
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Corps de nombres algébriques d’anneau d’entiers monogène.
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