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Background and Previous Work



Monogenicity/Monogeneity

One of the primary interests of number theory is understanding the roots
of monic polynomials in Z[x]. When and how can the roots of one
polynomial be expressed by the roots of another polynomial?

Let K/Q be a number field of degree n with ring of integers Ok. We say
K is monogenic or Ok admits a power integral basis if Ox = Z[a] for
some a € K. More explicitly, {1,a,...,a""'} is an Z-basis for the
Z-module Ok. In this case we call o a monogenerator.



Our First Friends

Take Q(v/d) with d square-free. The ring of integers of Q(v/d) is
Z[4d] if d = 1 mod 4 and Z[v/d] otherwise. In both cases Q(v/d) is
monogenic.

Let ¢, be a primitive nt" root of unity and consider the n" cyclotomic
field Q(¢,). It is a bit more difficult than in the quadratic case, but one
can show that the ring of integers of Q(¢,) is Z[(,].

The maximal real subfield of the nt" cyclotomic field is Q(¢, + ¢, 1).
These number fields are also monogenic with ¢, + ¢, ! = 2cos(2m/n)
providing a generator.



An Example With Westlund and Wieferich

Proposition
Let p be an odd prime and suppose xP + yP = zP is a non-trivial solution

to the Fermat equation. Suppose that p t xyz (the “first case” of
Fermat's last theorem). Then, /2 is not a monogenerator for Q(¥/2)/Q.

Let p be a prime and a € Z be squarefree. One can show
[Westlund, 1910] that /a is a monogenerator if and only if p? { a? — a.

[Wieferich, 1909] showed that if xP 4 yP = zP is a non-trivial solution to
the Fermat equation such that p { xyz, then p? | 2P — 2.



“All that glistens is not gold.”

Does this always happen? When one is learning (or
discovering) algebraic number theory, they might be tempted
to think every extension of Q is monogenic.

Modest doubt is called the beacon of the wise.
- William Shakespeare

Expectation is the root of all heartache.
- William Shakespeare



Dedekind-Kummer Factorization

Theorem (Dedekind building on work of Kummer)

Let f(x) be a monic, irreducible polynomial in Z[x] with « denoting a
root. If p € Z is a prime that does not divide [Og(q) : Z[a]], then the
factorization of p in Og(a) mirrors the factorization of f(x) in Fy[x].
That is,

f(X) = fl(x)el ﬁ(x)er mod p and (P) _ p?--- e

For example, consider Q() where « is a root of x> — x? — 2x — 8.
Dedekind computed the factorization (2) = p1pops.

Thus, if this field is monogenic, there is a cubic polynomial g(x) that
generates Q(«) and has three distinct linear factors in Fy[x]. In this case
we say 2 is a common index divisor.



The question of which rings of integers are monogenic was posed to the
London Mathematical Society in the 1960's by Helmut Hasse, so the
study of monogenicity is sometimes known as Hasse's problem.

For an in-depth look at monogenicity with a focus on algorithms for
solving index form equations, see Gaal's book [Gadl, 2019]. Evertse and
Gyéry's book [Evertse and Gyéry, 2017] provides background with a
special focus on the relevant Diophantine equations.

For very recent English translations of the original pioneering works,
consult [Gouvéa and Webster, 2021a] and [Gouvéa and Webster, 2021b].



The monogenicity of a given extension of Z is encoded by a Diophantine
equation called the index form equation. Gyéry made the initial
breakthrough regarding the resolution of index form equations and
related equations in the series of papers [Gyéry, 1973], [Gy&ry, 1974],
[Gyéry, 1976], [Gydry, 1978a], and [Gydry, 1978b]. For inequivalent
monogenic generators one should also consult [Evertse and Gy6ry, 1985],
[Bérczes et al., 2013], and the survey

In large part due to the group in Debrecen, there is a vast literature
involving relative monogenicity: [Gy&ry, 1980], [Gyéry, 1981],

[Gaal, 2001], [Gaal and Pohst, 2000], [Gaal and Szabé, 2013],

[Gadl et al., 2016], [Gadl and Remete, 2019], and

[Gaal and Remete, 2019].



Monogenicity has recently been viewed from the perspective of arithmetic
statistics: Bhargava, Shankar, and Wang [Bhargava et al., 2016] have
shown that the density of monic, irreducible polynomials in Z[x] such
that a root is a monogenerator is & = ((2)~* ~ 60.79%.

They also show the density of monic integer polynomials with square-free
discriminants (a sufficient condition for a root to be a monogenerator) is

1 (p—1)2>
1- =427 ) ~3582%.
H( p pP(p+1) ’

p



Following the completion of the work | will be speaking about, we were
made aware of several bodies of related work on monogenicity in
geometric contexts, such as Stein manifolds [Duchamp and Hain, 1984],
[Stout, 1972], [Stutz, 1974] and Riemann surfaces [Prill, 1980]. The
question of the existence of monogenerators, referred to as “primitive
elements” was raised by Alling for Riemann surfaces [Alling, 1964] and
then for Stein manifolds by Rohrl [Rohrl, 1965].



Construction



The Classical Index Form

Let K be a number field. If f € Z[x] is an irreducible monic polynomial
with a root a such that K = Q(«), then

Disc(f) = Disc(K)[Ox : Z[a]]*.

Here [Ok : Z[a]] is the index of Z[«] inside Ok. We see that this index is
1 if and only if @ is a monogenerator. Thus we can define “the” index
form of Ok /Z by

Disc(f)

Disc(K)

Indexo, /z(a) =



The Classical Index Form

More explicitly, let {81, ...,5,} be an integral basis for Ok and let
{o1,...,0,} be the set of embeddings of K — C. We have

a1(B) o1(B) - (8]
Disc(K) = det 72(f1) 72(fn)
0-”(/81) O'n(ﬁn)
If M is the appropriate change of (K-)basis matrix from {f31,...,5,}

B—a
to {1,a,a?,...,a" "1}, then

o1(f1) o01(B2) -+ 01(Bn) o1(1) oi(a) -+ oi(a™?)

M 0’2(.61) | 0'2(.6,,) _ 0’2.(1) | 0'2((1.”_1)

B—a : . :
Un(ﬂl) Un(ﬁn) Un(]-) Un(a”—l)



The Classical Index Form

Taking determinants and squaring, we have

det < M )2 Disc(K) = Disc (1, a,...,a""") = Disc(f).

B—a

2
Therefore, det ( M ) = Indexo, /z()? is an equality in Z, so

B—a

B—a

det( M > = *Indexo, /z().

This is really putting the cart before the horse. See Theorem 5.19 of
for a

clear elementary proof.


https://kconrad.math.uconn.edu/blurbs/linmultialg/modulesoverPID.pdf

Starting to Think More Geometrically

Definition
a € Ok is a monogenerator for Ok /Z if there is a commutative diagram

Z][t]

i

Z

Ok

where the diagonal ring homomorphism sending t — « is surjective.



We continue our translation by applying Spec to get some schemes.

The essential points on schemes:
e If Ais a commutative ring, SpecA is a geometric object (an “affine
scheme”) whose points are the prime ideals of A.

e A scheme in general is a geometric object built by taking a union of
affine schemes.

e A morphism 7 : SpecA — SpecB is the same as a ring
homomorphism 7% : B — A. We say that 7 is a closed immersion if

7 is surjective.



A Geometric Definition

Definition
A monogenerator for Ok /Z is a closed immersion
L : SpecOk — SpecZ[t] so that

SpecZ x Al

O — e

Spec Ok SpecZ

commutes.



Monogenicity of Schemes

Definition
Let m: S’ — S be a finite, locally free morphism of Noetherian schemes

of constant rank. We say that a monogenerator for S’ — S is a diagram

where ¢ is a closed immersion.
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The Scheme of Monogenerators

Definition
Let 7 : S’ — S be as in the last slide. We define the scheme of

monogenic generators 1Nls: /s to be the S-scheme with the property that
for any S-scheme T,

Homgep/s(T, M /s) = / l

Theorem
Mg/ /s exists. Moreover, when S is affine, then so is Mg s.



The Scheme of Monogenerators

A special case

monogenic  generators  for
Homgp/s(SpecB, Mo, /z) = { g g }

B ®7 Ok over B

Another special case

monogenic generators of O
Homgy, /s(SpecZ, Mo, /z) = { g g K}

over 7Z.

Remark
We may also replace the scheme AL in the definition with Aﬁ- to study

generating k-tuples of elements.



Examples




Dedekind’s Non-Monogenic Cubic

Let o denote a root of the polynomial x3 — x> — 2x — 8 and consider the
field extension K = Q(«) over Q. Two generators are necessary to
generate O /Z. We take B = {1, “Eaz ,a?} as our Z-basis for Ox. We
consider the map Z[t] — Ok given by sending t to a generic element
a+ b%ﬂz + co?.

Ok|a, b, c] Z|a, b, c][x].

"\a“’aga? +C(127

Z|a, b, c]
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Dedekind’s Non-Monogenic Cubic

Let o denote a root of the polynomial x3 — x> — 2x — 8 and consider the
field extension K = Q(«) over Q. Two generators are necessary to
generate Ok /Z. We take B = {1, ‘“5“2 ,a?} as our Z-basis for Ox. We
consider the map Z[t] — Ok given by sending t to a generic element
a+ b%az + ca?. The change of basis matrix taking B to

{17 a+ b%"‘z +ca?, (a+ b%“z + ca2)2} is

1 a a%+6b%+ 16bc + 8¢2
0 b 2ab+T7b*+ 24bc + 20c?
0 ¢ —2b%*>+42ac—8bc—7c2

Taking the determinant, the index form associated to this basis is
—2b% — 15b%c — 31bc? — 203,
Reducing modulo 2, we find that b?>c 4+ bc? = 1 has no solutions in Z7/27.



An Inseparable Extension of Function Fields

We investigate the analog of the integers in the function field extension
F3()[B]/(8% — a) over F3(). The base ring is F3[a] and the extension
ring is F3[a][x]/(x® — a) = F3[B], where 33 = a.

IE‘3[‘97 ba C][B]\‘H—bﬁ+cﬁ2<—w/lm,a][a7 bv C][X]'
Fsla][a, b, c]
11

a+bB+ch?ix
(a+ bB + cf?)? 1 x?
corresponds to the change of basis matrix

1 a a2+ 2bca
0 b c2a+2ab
0 ¢ b®*+2ac



An Inseparable Extension of Function Fields

From the previous slide, the base ring is F3[a] and the extension ring is
F3[a][x]/(x® — a) = F3[B], where 83 = a.

1 a a2+ 2bca
det |0 b ca+2ab| =b®— a € Fsla][a, b, c].
0 ¢ b>+2ac

This is not geometrically reduced since it factors as (b — c¢3)3. To find
the monogenerators of this extension, we set this expression equal to the
units of Fs[«]. Since (F3[a])* = +1, the only solutions are b = +1,
c=0. Thus

m1’F3[51/F3[a](F3[a]) = {a SE /B rac F3[O¢]}.

We can see that, much like number rings, monogenicity imposes a
stronger restriction here than it does for the extension of fraction fields.



So What’s the Point?

This translation makes immediately available the machinery and
organization provided by scheme theory:
e Monogenerators for ©; over Ok are in bijection with Ok points of
Mo, joy -

e 15/ /s makes good sense for very many S’ — S in a single
framework. For example S’ might be the spectrum of an order, or
S’ — S might be a covering of one curve by another.

e Mo, o, is a sheaf with respect to the fpqc, fppf, étale, and Zariski
topologies, so searching for monogenerators can be done locally.

e We can consider twists of 1o, /0, by any groups that act on it and
interpret the meaning of their points.



Twisted Monogenicity




Natural Actions on 1ls//s

Since

Homgen/s( T, Msys) = / l :

S'xsT—>T

we can act by Aut(At/S) or Aut(S’/S). For O /Ok, the first action

translates to
ar— moa+b

where m € Ok, b € Ok, and the second action translates to
a— o(a)

where o € Gal(L/K).



Twisted Monogenicity: Geometric Definition

Definition
We say L/K is twisted monogenic if Spec©; admits a closed immersion
into a line bundle £ over SpecOk.

:X\_/_>/\/

SpecZy, SpecZk



An Algebraic Definition

Definition
We say that L/K is twisted monogenic if there is

1. afinite set {fy,..., f,} of relatively prime elements of O
2. an element o; € Ok[f, '] foreach i=1,...,m
so that

1. @L[ffl] = @K[ﬂfl,a;] foreachi=1,...,m

2. for each i,j € {1,..., m} there is a; € (Ox[f*, 7571])* and
bjj € Ok[f;, £71] so that

a;p = ajjoj + b,J



An Example

Example
Let K = Q(y/pq) where p, g are distinct primes relatively prime to n.

Suppose further that (n) =[], p{" with p; = (0;) principal. For example,
n=3,p=>5, and g = 23 work.

Then the integers of L = K (\"/qu 9,-) are twisted monogenic over O:

e Choose p and g as our relatively prime elements.

e Choose ap = v/p" L[], 0i and ag = /q]]; 0:.
This works because:
e «, is a monogenerator for O [p~!]/Ok[p~!] and a4 is a
monogenerator for O, [q71]/Ok[q~!] by a check with Dedekind's
criterion for relative extensions;

_ Upq

e (v, =
q p

- Qlp.



An Example

Example continued
When n=3,p =5, g = 23, a check with Sage shows that O, /O is

twisted monogenic but not monogenic.

Some of these are monogenic though!



Twisted Monogenicity and the Class Group

Theorem
If L/K is twisted monogenic and K has trivial class group, then L/K is

monogenic.

Theorem
K has trivial class group if and only if every twisted monogenic extension

of K is monogenic.

Theorem
If L/K is a twisted monogenic extension of degree n with line bundle L,

then the Steinitz class of O, over Ok is the W-th power of the class
of L.



Thank You!
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