Reduction theory of integral polynomials with given discriminant, various applications, among others to monogenic number fields

(brief survey and some new joint results with Bhargava,

> Evertse, Remete and Swaminathan)

K. Györy
University of Debrecen

> Online Research Seminar "Number Theory"

24 November, 2023

Plan of the talk

I. Reduction of integral polynomials of degree ≤ 3 with given discriminant $\bmod G L_{2}(\mathbb{Z})$-equivalence, resp. \mathbb{Z}-equivalence

Theorems of Lagrange (1773) and Hermite (1851) in the quadratic and cubic cases
II. Hermite's attempt (1857) for extending the previous reduction results to the general case
III. Reduction theory of integral polynomials with given discriminant: the general case

General reduction Theorems for every degree $n \geq 3$, obtained by Birch and Merriman (1972) and independently, for monic polynomials and in effective form by Győry (1973).
IV. Consequences of Theorem of Györy (1973) for monogenic number fields

General effective finiteness theorems for monogenity and power integral bases of number fields.
V. Generalizations and further consequences/applications of Theorems of Birch and Merriman (1972), Györy (1973) and their explicit versions due to Györy (1974) and Evertse and Györy $(1991,2017)$.
VI. Algorithmic resolution of index form equations, application to (multiply) monogenic number fields

In number fields K of degree $n \leq 6$ and with not too large discriminant $\left|D_{K}\right|$, deciding the monogenity and computing all generators of power integral bases.
VII. Some other related results and open problems
I. Reduction of integral polynomials of degree ≤ 3 with given discriminant $\bmod G L_{2}(\mathbb{Z})$-equivalence, resp. \mathbb{Z}-equivalence
\mathbb{Z}-equivalence and $G L_{2}(\mathbb{Z})$-equivalence of integral polynomials
$G L_{2}(\mathbb{Z})$: multiplicative group of 2×2 integral matrices with determinant ± 1

- Two monic polynomials $f, f^{*} \in \mathbb{Z}[X]$ are called \mathbb{Z}-equivalent if $f^{*}(X)=f(X+a)$ for some $a \in \mathbb{Z}$;
- Two polynomials $f, f^{*} \in \mathbb{Z}[X]$ of degree $n \geq 2$ are called $G L_{2}(\mathbb{Z})$ -equivalent if there is $\left(\begin{array}{cc}b & a \\ d & c\end{array}\right) \in G L_{2}(\mathbb{Z})$ such that

$$
f^{*}(X)= \pm(d X+c)^{n} f\left(\frac{b X+a}{d X+c}\right)
$$

\Longrightarrow in both cases, f, f^{*} have the same discriminant
\mathbb{Z}-equivalence is much stronger, \mathbb{Z}-equivalent monic polynomials in $\mathbb{Z}[X]$ are clearly $G L_{2}(\mathbb{Z})$-equivalent with $\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right) \in G L_{2}(\mathbb{Z})$
similar interpretation in terms of binary forms

For $f \in \mathbb{Z}[X], H(f)$ denotes the height of f, i.e. the maximum absolute value of its coefficients

Reduction theory was initiated by Lagrange in terms of integral binary forms. He proved the following theorem in terms of binary forms. We present here an equivalent formulation for integral polynomials.

Lagrange (1773): For quadratic $f \in \mathbb{Z}[X]$ with discriminant $D \neq 0$, there exists $f^{*} \in \mathbb{Z}[X] G L_{2}(\mathbb{Z})$-equivalent to f such that $H\left(f^{*}\right) \leq c(D)$ with some effectively computable constant $c(D)$.

Equivalently
There are only finitely many $G L_{2}(\mathbb{Z})$-equivalence classes of quadratic polynomials in $\mathbb{Z}[X]$ with given non-zero discriminant + effective

Similar assertions for monic quadratic polynomials in $\mathbb{Z}[X]$ with \mathbb{Z}-equivalence

Gauss (1801): more precise result
Hermite (1851): There are only finitely many $G L_{2}(\mathbb{Z})$-equivalence classes of cubic polynomials in $\mathbb{Z}[X]$ with given non-zero discriminant

Delone (1930), Nagell (1930), independently: Up to \mathbb{Z}-equivalence, there are only finitely many irreducible cubic monic polynomials in $\mathbb{Z}[X]$ with given non-zero discriminant + ineffective

Problem: extend these results to the case of degree ≥ 3 resp. ≥ 4.
II. Hermite's attempt (1857) for extending the previous

reduction results to the general case

Hermite equivalence of decomposable forms

Consider decomposable forms of degree $n \geq 2$ in n variables

$$
F(\underline{X})=c \prod_{i=1}^{n}\left(\alpha_{i, 1} X_{1}+\cdots+\alpha_{i, n} X_{n}\right) \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right],
$$

where $c \in \mathbb{Q}^{\times}$and $\alpha_{i, j} \in \overline{\mathbb{Q}}$ for $i, j=1, \ldots, n$. The discriminant of F is given by

$$
D(F):=c^{2}\left(\operatorname{det}\left(\alpha_{i, j}\right)\right)^{2} .
$$

We have $D(F) \in \mathbb{Z}$.
Hermite attempted to extend his theorem (1851) on cubic polynomials to the case of arbitrary degree $n \geq 4$, but without success. Instead, he proved a theorem with a weaker equivalence, see Theorem A below.

Two decomposable forms F, F^{*} as above are called $G L_{n}(\mathbb{Z})$-equivalent if

$$
F^{*}(\underline{X})= \pm F(U \underline{X}) \text { for some } U \in G L_{n}(\mathbb{Z})
$$

(where $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)^{T}$ is a column vector)
Two $G L_{n}(\mathbb{Z})$-equivalent decomposable forms have the same discriminant.

Theorem (Hermite, 1850)

Let $n \geq 2, D \neq 0$. Then, the decomposable forms in $\mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ of degree n and discriminant D lie in finitely many $G L_{n}(\mathbb{Z})$-equivalence classes.

Hermite equivalence of polynomials and Hermite's

finiteness theorem

Let $f(X)=c\left(X-\alpha_{1}\right) \cdots\left(X-\alpha_{n}\right) \in \mathbb{Z}[X]$ with $c \in \mathbb{Z} \backslash\{0\}, \alpha_{1}, \ldots, \alpha_{n} \in$ $\overline{\mathbb{Q}}$. Then the discriminant of $f: D(f)=c^{2 n-2} \prod_{1 \leq i<j \leq n}\left(\alpha_{i}-\alpha_{j}\right)^{2} \in \mathbb{Z}$.

To f we associate the decomposable form

$$
[f](\underline{X}):=c^{n-1} \prod_{i=1}^{n}\left(X_{1}+\alpha_{i} X_{2}+\cdots+\alpha_{i}^{n-1} X_{n}\right) \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right] .
$$

We have $D(f)=D([f])$ (Vandermonde).

Hermite (1857): Two polynomials $f, f^{*} \in \mathbb{Z}[X]$ of degree n are called Hermite equivalent if the associated decomposable forms $[f]$ and $\left[f^{*}\right]$ are $G L_{n}(\mathbb{Z})$-equivalent, i.e.,

$$
\left[f^{*}\right](\underline{X})= \pm[f](U \underline{X}) \text { for some } U \in G L_{n}(\mathbb{Z})
$$

\Longrightarrow Hermite equivalent polynomials in $\mathbb{Z}[X]$ have the same discriminant.
Hermite's theorem on decomposable forms and the above fact imply the following finiteness theorem on polynomials:

Theorem A (Hermite, 1857)

Let $n \geq 2, D \neq 0$. Then the polynomials $f \in \mathbb{Z}[X]$ of degree n and of discriminant D lie in finitely many Hermite equivalence classes.

+ ineffective

Comparison of Hermite equivalence with $G L_{2}(\mathbb{Z})$-equivalence

and \mathbb{Z}-equivalence

In BEGyRS (2023), we have integrated Hermite's long-forgotten notion of equivalence and his finiteness theorem, corrected a faulty reference to Hermite's result in Narkiewicz book "The story of algebraic numbers in the first half of the 20th century", Springer, 2018, and compared Hermite's theorem with the most significant results of this area; see the next section.

Surprisingly, Theorem A of Hermite was not mentioned in the literature until Narkiewicz (2018) book quoted above, where $G L_{2}(\mathbb{Z})$-equivalence, resp. \mathbb{Z}-equivalence and Hermite equivalence were mixed up. In part, this fact motivated the paper BEGyRS (2023) to provide a thorough treatment of the notion of Hermite equivalence, and compare Hermite equivalence with $G L_{2}(\mathbb{Z})$-equivalence resp. \mathbb{Z}-equivalence of integral polynomials.

For polynomials of degree 2 and 3 , Hermite equivalence and $G L_{2}(\mathbb{Z})$ equivalence, resp. \mathbb{Z}-equivalence coincide.

In our paper BEGyRS (2023) we proved the following.

Theorem 1 (BEGyRS, 2023)

If $f, f^{*} \in \mathbb{Z}[X]$ are $G L_{2}$-equivalent, resp. \mathbb{Z}-equivalent, then they are Hermite equivalent.

Theorem 2 (BEGyRS, 2023)

For every $n \geq 4$ there are infinitely many pairs $\left(f, f^{*}\right)$ of irreducible primitive polynomials in $\mathbb{Z}[X]$ with degree n such that f, f^{*} are Hermite equivalent but $G L_{2}(\mathbb{Z})$-inequivalent, resp. \mathbb{Z}-inequivalent in the monic case.

Corollary (BEGyRS, 2023)
$G L_{2}(\mathbb{Z})$-equivalence, resp. \mathbb{Z}-equivalence are stronger than Hermite equivalence.

This means that Hermite's Theorem \mathbf{A} is much weaker than the most significant results of this area, presented below. In a subsequent talk, L. Remete will speak in detail about the proofs of Theorems 1 and 2.
III. Reduction theory of integral polynomials with given

discriminant: the general case

Significant breakthrough in the 1970's

In BEGyRS (2023), we write: "Hermite's original objective - proving that there are only finitely many $G L_{2}(\mathbb{Z})$-equivalence, resp. \mathbb{Z}-equivalence classes of integral polynomials of given degree and given non-zero discriminant - was finally achieved more than a century later by Birch and Merriman (1972) and independently,for monic polynomials, in a more precise and effective form by Győry (1973)."

Theorem B (Birch and Merriman, 1972)

Let $n \geq 2, D \neq 0$. There are only finitely many $G L_{2}(\mathbb{Z})$-equivalence classes of polynomials in $\mathbb{Z}[X]$ with degree n and discriminant D.

Proof, partly based on the finiteness of the number of solutions of unit equations + some ineffective arguments \Longrightarrow ineffective

For monic polynomials, the corresponding result with \mathbb{Z}-equivalence was proved independently by Györy (1973) in an effective form.

Theorem C (Györy, 1973)

Let $f \in \mathbb{Z}[X]$ be a monic polynomial of degree $n \geq 3$ with discriminant $D \neq 0$. There is an $f^{*} \in \mathbb{Z}[X]$, \mathbb{Z}-equivalent to f, such that $H\left(f^{*}\right) \leq$ $c_{1}(n, D)$ and $n \leq c_{2}(D)$, where c_{1}, c_{2} are effectively computable positive numbers depending only on n, D, resp. on D.

Apart from the ineffectivity of Theorem B, Theorems B and C are generalizations for $n>3$ of the theorems of Lagrange (1773), case $\underline{n=2}$, and Hermite (1851), case $\underline{n=3}$.

Corollary (Győry, 1973)

Let $D \neq 0$. There are only finitely many \mathbb{Z}-equivalence classes of monic polynomials in $\mathbb{Z}[X]$ with discriminant D, and a full set of representatives of these classes can be effectively determined.

Note that here the degree of the monic polynomials under consideration is not fixed.

Theorem C confirmed a conjecture of Nagell $(1967,68)$ in an effective form. Further, it made effective and significantly generalized the theorems of Delone (1930) and Nagell (1930) obtained in the cubic case.

Explicit versions of Theorems B and C

First effective version of Theorem B (Birch and Merriman): Evertse and Győry (1991) in a quantitative form. In 2017, improved and completely explicit version:

Theorem B' (Evertse and Györy (2017))

Let $f \in \mathbb{Z}[X]$ be a polynomial of degree $n \geq 2$ and discriminant $D \neq 0$. Then f is $G L_{2}(\mathbb{Z})$-equivalent to a polynomial $f^{*} \in \mathbb{Z}[X]$ for which

$$
\begin{equation*}
H\left(f^{*}\right) \leq \exp \left\{\left(4^{2} n^{3}\right)^{25 n^{2}} \cdot|D|^{5 n-3}\right\} \tag{1}
\end{equation*}
$$

Further (Győry, 1974):

$$
n \leq 3+2 \log |D| / \log 3 .
$$

First explicit version of Theorem C: Győry (1974). Improved version:

Theorem C' (Evertse and Györy, 2017)

Let $f \in \mathbb{Z}[X]$ be a monic polynomial of degree $n \geq 2$ and discriminant $D \neq 0$. Then f is \mathbb{Z}-equivalent to a polynomial $f^{*} \in \mathbb{Z}[X]$ for which

$$
\begin{equation*}
H\left(f^{*}\right) \leq \exp \left\{n^{20} 8^{n^{2}+19}\left(|D|(\log |D|)^{n}\right)^{n-1}\right\} \tag{2}
\end{equation*}
$$

Further (Györy, 1974):

$$
n \leq 2+2 \log |D| / \log 3
$$

Clearly, Theorems B, \underline{B}^{\prime}, and in the monic case Theorems C, C^{\prime} are much more precise and deeper than Theorem A of Hermite.

The exponential feature of the bounds in (1) and (2) is a consequence of the use of Baker's method. It is likely that the bounds in (1) and (2) can be replaced by some polynomial expressions in terms of $|D|$; cf. Conjecture 15.1 and Theorem 15.1.1 in Evertse and Györy, Discriminant Equations in Diophantine Number Theory, Cambridge, 2017.

Method of proof of Theorems C and C'

General approach for effective/algorithmic/computational versions
Main steps of the proof of Theorem C:

1) $n \leq c_{1}(D)$, explicit, elementary; fix n.
2) The proof can be reduced to the case of irreducible polynomials. Then $f \in \mathbb{Z}[X]$ irreducible, monic with discriminant $D \neq 0$ and distinct zeros $\alpha_{1}, \ldots, \alpha_{n}$. L splitting field of $f \Longrightarrow[L: \mathbb{Q}] \leq n!,\left|D_{L}\right| \leq c_{2}(D)$, explicit.
3)

$$
\begin{array}{r}
\prod_{1 \leq i<j \leq n}\left(\alpha_{i}-\alpha_{j}\right)^{2}=D \Longrightarrow \alpha_{i / \mathbb{Q}}\left(\alpha_{i}-\alpha_{j}\right) \mid \leq c_{3}(D) \text { explicit } \\
\Longrightarrow \alpha_{j}=\delta_{i j} \varepsilon_{i j}, \varepsilon_{i j} \text { unit, } H\left(\delta_{i j}\right) \leq c_{4}(D) \text { explicit } \tag{4}
\end{array}
$$

graph: vertices $\alpha_{i}-\alpha_{j}$, edges $\left[\alpha_{i}-\alpha_{j}, \alpha_{j}-\alpha_{k}\right.$], connected
5) (4) \Longrightarrow "connected" system of unit equations

$$
\begin{equation*}
\delta_{i j k} \varepsilon_{i j k}+\tau_{i j k} \nu_{i j k}=1, \tag{5}
\end{equation*}
$$

$\delta_{i j k}, \tau_{i j k}$ with explicitly bounded heights, $\varepsilon_{i j k}, \nu_{i j k}$ unknown units in L.

Effective/explicit bound for the solutions

6) Represent $\varepsilon_{i j k}$

$$
\varepsilon_{i j k}=\zeta_{i j k} \rho_{1}^{a_{j j k}, 1} \cdots \rho_{r}^{a_{j k}, r}
$$

and similarly $\nu_{i j k}$, where $\zeta_{i j k}$ root of unity, $\rho_{1}, \ldots, \rho_{r}$ fundamental system of units with effectively/explicitly bounded heights in L with $r \leq n!-1$ (Dirichlet theorem)
7) Applying Baker's method to (5) \Longrightarrow effective/explicit bounds for $\left|a_{i j k, 1}\right|, \ldots,\left|a_{i j k, r}\right|$.
Remark: in Gy (1974), this was the first application of Baker's method to general unit equations of the form (5) with explicit bound.
8) using the connectedness of unit equations involved \Longrightarrow effective/explicit bound for the height of $\alpha_{i}-\alpha_{j}$ for every i, j;
9) adding the differences $\alpha_{i}-\alpha_{j}$ for $j=1, \ldots, n$, using the fact that $\alpha_{1}+$ $\cdots+\alpha_{n} \in \mathbb{Z}$, putting $\alpha_{1}+\cdots+\alpha_{n}=n a+a^{\prime}$ with $a, a^{\prime} \in \mathbb{Z}, 0 \leq a^{\prime}<n$, and writing $\alpha_{i}^{*}:=\alpha_{i}-a$ for $i=1, \ldots, n$, for $f^{*}(X):=\prod_{i=1}^{n}\left(X-\alpha_{i}^{*}\right)$ we have $f^{*}(X)=f(X+a) \in \mathbb{Z}[X]$ with effectively/explicitly bounded height.

IV. Consequences of Theorem of Györy (1973) for

monogenic number fields

Important breakthrough; general effective finiteness theorems for monogenity and power integral bases of number fields.
K number field, $n=[K: \mathbb{Q}]$, discriminant D_{K}, ring of integers \mathcal{O}_{K}; for $\alpha \in \mathcal{O}_{K}$, $f_{\alpha}(X) \in \mathbb{Z}[X]$ minimal (monic) polynomial of $\alpha \Longrightarrow$

$$
\begin{cases}D_{K / \mathbb{Q}}(\alpha) & :=D\left(f_{\alpha}\right) \text { discriminant of } \alpha \\ I(\alpha) & :=\left[\mathcal{O}_{K}: \mathbb{Z}[\alpha]\right] \text { index of } \alpha ; \underline{\text { we have }} \tag{7}\\ & D_{K / \mathbb{Q}}(\alpha)=I^{2}(\alpha) \cdot D_{K}\end{cases}
$$

Definition

- $\alpha, \alpha^{*} \in \mathcal{O}_{K}$ equivalent if $\alpha^{*}= \pm \alpha+a, a \in \mathbb{Z} \Rightarrow D_{K / \mathbb{Q}}(\alpha)=D_{K / \mathbb{Q}}\left(\alpha^{*}\right)$, $I(\alpha)=I\left(\alpha^{*}\right)$
- K monogenic if $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$ for some $\alpha \in \mathcal{O}_{K} \Leftrightarrow\left\{1, \alpha, \ldots, \alpha^{n-1}\right\}$ power integral basis in K
- K is called $k \geq 1$ times monogenic if $\mathcal{O}_{K}=\mathbb{Z}\left[\alpha_{1}\right]=\ldots=\mathbb{Z}\left[\alpha_{k}\right]$ for some pairwise inequivalent $\alpha_{1}, \ldots, \alpha_{k} \in \mathcal{O}_{K} ; k$ multiplicity of monogenity

Most important consequences of Theorem C (Györy, 1973): effective finiteness theorems in Gy (1973, 74, 76, 78a, 78b), i.e. in Part I-V of Gy (1973)
for algebraic integer $\alpha, D(\alpha):=D_{K / \mathbb{Q}}(\alpha)$, where $K=\mathbb{Q}(\alpha)$

Corollary 1 of Theorem C

Up to equivalence, there are only finitely many algebraic integers with given non-zero discriminant + effective (Part I; apply Theorem C with $D(\alpha)=D\left(f_{\alpha}\right), f_{\alpha}$ minimal (monic) polynomial of α)
in given number field K of degree n :

Corollary 2 of Theorem C

Up to equivalence, there are only finitely many $\alpha \in \mathcal{O}_{K}$ with given index I + effective and quantitative (Part III, apply Corollary 1 with $D_{K / \mathbb{Q}}(\alpha)=$ $I^{2} \cdot D_{K}$ for $\left.\alpha \in \mathcal{O}_{K}\right)$

Corollary 3 of Theorem C

Up to equivalence, there only finitely many $\alpha \in \mathcal{O}_{K}$ with $\mathcal{O}_{K}=\mathbb{Z}[\alpha] \Leftrightarrow$ $\left\{1, \alpha, \ldots, \alpha^{n-1}\right\}$ power integral basis + effective and quantitative (Part III, apply Corollary 2 with $I=1$)
breakthrough \Longrightarrow the first general effective algorithm for deciding the monogenity resp. multiplicity of monogenity of a number field and, up to equivalence, determining all power integral bases in $K+$ generalizations for orders (Part III) and for the relative case (Part IV); see below.

An important reformulation of Corollaries 2 and 3 in terms of index form equations

Hensel (1894): To every integral basis $\left\{1, \omega_{2}, \ldots, \omega_{n}\right\}$ of K there corresponds a form $I\left(X_{2}, \ldots, X_{n}\right)$ of degree $n(n-1) / 2$ in $n-1$ variables with coefficients in \mathbb{Z} such that for $\alpha \in \mathcal{O}_{K}$,

$$
\begin{equation*}
I(\alpha)=\left|I\left(x_{2}, \ldots, x_{n}\right)\right| \text { if } \alpha=x_{1}+x_{2} \omega_{2}+\cdots+x_{n} \omega_{n} \text { with } x_{1}, \ldots, x_{n} \in \mathbb{Z} \tag{8}
\end{equation*}
$$

$I\left(X_{2}, \ldots, X_{n}\right)$ is called an index form, and for given non-zero $I \in \mathbb{Z}$

$$
\begin{equation*}
I\left(x_{2}, \ldots, x_{n}\right)= \pm I \text { in } x_{2}, \ldots, x_{n} \in \mathbb{Z} \tag{9}
\end{equation*}
$$

an index form equation.

In view of (8), Corollary 2 is equivalent to

Corollary 4 of Theorem C

For given $I \in \mathbb{Z} \backslash\{0\}$ the index form equation (9) has only finitely many solutions, and they can be, at least in principle, effectively determined (Part III).

In particular, for $I=1$ we get the following equivalent reformulation of Corollary 3

Corollary 5 of Theorem C

The index form equation

$$
\begin{equation*}
I\left(x_{2}, \ldots, x_{n}\right)= \pm 1 \text { in } x_{2}, \ldots, x_{n} \in \mathbb{Z} \tag{10}
\end{equation*}
$$

has only finitely many solutions + effective and quantitative (Part III).
The best known bound for the solutions of (10):

$$
\begin{equation*}
\max _{2 \leq i \leq n}\left|x_{i}\right|<\exp \left\{10^{n^{2}}\left(\left|D_{K}\right|\left(\log \left|D_{K}\right|\right)^{n}\right)^{n-1}\right\}, \tag{11}
\end{equation*}
$$

see Evertse and Györy (2017).

Extension to the relative case: the ground field is a number field L with ring of integers \mathcal{O}_{L}.
Two monic polynomials $f, f^{*} \in \mathcal{O}_{L}[X]$ are called \mathcal{O}_{L}-equivalent if $f^{*}(X)=$ $f(X+a)$ for some $a \in \mathcal{O}_{L}$. Then $D\left(f^{*}\right)=D(f)$.
Győry (1978a): extension of Theorem C (Gy, 1973) to monic polynomials of given degree over \mathcal{O}_{L}; Part IV of Gy (1973).

Theorem D (Gy, 1978a)

Let $n \geq 3$ be an integer and $\delta \in \mathcal{O}_{L} \backslash\{0\}$. There are only finitely many \mathcal{O}_{L}-equivalence classes of monic polynomials $f \in \mathcal{O}_{L}[X]$ with degree n and discriminant δ, and a full set of representatives can be, at least in principle, effectively determined.

Problem 1: In contrast with Theorem C, is it necessary to assume in Theorem D that the degree of the polynomials is fixed?

Theorem D has similar consequences in the relative case as Theorem C $(\mathrm{Gy}, 1973)$ over \mathbb{Q}.

A finite relative extension K / L is called monogenic if $\mathcal{O}_{K}=\mathcal{O}_{L}[\alpha]$ for some $\alpha \in \mathcal{O}_{K}$. Then, if $n=[K \quad L],\left\{1, \alpha, \ldots, \alpha^{n-1}\right\}$ is a relative power integral basis of K over L. We say that $\alpha, \alpha^{*} \in \mathcal{O}_{K}$ are $\mathcal{O}_{L \text {-equivalent }}$ if $\alpha^{*}=a+\varepsilon \alpha$ for some $a \in \mathcal{O}_{L}$ and unit ε in L. If α is a generator of \mathcal{O}_{K} over \mathcal{O}_{L} then so is every $\alpha^{*} \mathcal{O}_{L}$-equivalent to α.

Corollary to Theorem D (Gy, 1978a)
There are only finitely many \mathcal{O}_{L}-equivalence classes of $\alpha \in \mathcal{O}_{K}$ with $\mathcal{O}_{K}=\mathcal{O}_{L}[\alpha]$, and a full set of representatives of such α can be, at least in principle, effectively determined.

This makes it possible, at least in principle to decide whether K is monogenic over L or not, and to determine all relative power integral bases of K over L.

Theorem D and its Corollary are proved in Györy (1978a) in a quantitative form.

Remark: we note that Theorem C, D and the above Corollary are quoted and treated in the monograph Evertse and Györy (2017).
V. Generalizations and further consequences/applications of Theorems of Birch and Merriman (1972), Györy (1973) and Evertse and Györy $(1991,2017)$

Generalization of Theorem B (Birch and Merriman, 1972) and Theorem B' (Evertse and Gy, 1991, 2017) for polynomials over rings of S-integers of a number field.

Consequences/applications of Theorem B' (Evertse and Gy, 1991, 2017) to:

- Thue equations, Thue-Mahler equations (Stewart, Evertse and Gy, Evertse, Thunder, Akhtari);
- explicit upper bounds for the minimal non-zero values of binary forms at integral points (Evertse and Gy);
- GL2-equivalence classes of algebraic numbers with given discriminant (Evertse and Gy);
- root separation of integral polynomials (Evertse);
- effective version of Shafarevich' conjecture/Faltings' theorem for hyperelliptic curves (von Känel);
- rational monogenizations of orders in a number field (Evertse)

Generalizations of Theorem C (Gy, 1973) and its Corollaries 1-5

- \mathcal{O}_{K} replaced by any order \mathcal{O} in K (Gy, Part III, IV); see below.
- D resp. I replaced by $\mathbf{p}_{1}^{\mathbf{z}_{1}} \cdots \mathbf{p}_{\mathrm{s}}^{\mathbf{z}_{\mathbf{s}}}, p_{i}$ given primes, $\mathbf{z}_{\mathbf{i}} \geq \mathbf{0}$ also unknowns (Gy, Part V; Trelina);
- discriminant form equations (Gy, Part III, Gy-Papp, Gy, Evertse-Gy);
- relative case, S-integers (Gy, Part IV; Gy-Papp, Gy, Evertse-Gy);
- more general decomposable form equations (Gy-Papp, Gy, Evertse-Gy);
- "inhomogeneous" case (Gaál);
- analogous results over function fields (Gaál, Gy, Shlapentokh);
- Recently, étale algebras (Evertse-Gy);
case of finitely generated ground domains (Evertse-Gy)

Further applications of Theorem C (Gy, 1973), its Corollaries 1-5 and their generalizations

- Diophantine equations; Thue, Mordell, elliptic, superelliptic, discriminant form, of discriminant type (in alphabetical order: Bérczes, Brindza, Evertse, Gy, Haristoy, Papp, Pink, Pintér, Trelina);
- minimal index in number fields (Gy);
- irreducible polynomials (Gy);
- arithmetic properties of discriminants and indices of elements of $\mathcal{O}_{K}(\mathrm{~Gy})$;
- canonical number systems in number fields (Kovács, Pethő, and recently Evertse, Gy, Pethő, Thuswaldner);

Problem 2: extend the effective theory and its consequences above to the case of finitely generated groundrings over \mathbb{Z}
main difficulty: Dirichlet unit theorem generalized for finitely generated domains over \mathbb{Z} should be made effective

VI. Algorithmic resolution of index form equations, application to (multiply) monogenic number fields

K number field of degree $n \geq 3, \mathcal{O}_{K}$ ring of integers, $I\left(X_{2}, \ldots, X_{n}\right)$ an index form over K

$$
\begin{equation*}
I\left(x_{2}, \ldots, x_{n}\right)= \pm 1 \text { in } x_{2}, \ldots, x_{n} \in \mathbb{Z} \tag{10}
\end{equation*}
$$

(11) exponential bound for $\max _{i}\left|x_{i}\right|$ too large for practical use

If $\left|D_{K}\right|$ is not too large, there are methods for solving (10) in concrete cases \Leftrightarrow for computing all generators of power integral bases in K, up to degree $\mathbf{n} \leq \mathbf{6}$ in general, and for many special higher degree fields up to about degree $15 \Rightarrow$ for deciding how many times K is monogenic. Breakthrough in the 1990's, practical algorithms, computational results and tables.
For $\mathbf{n}=\mathbf{3}, 4,(10) \Longrightarrow$ Thue equations of degree ≤ 4, efficient algorithm;
$\mathbf{n}=\mathbf{3},(10) \Longrightarrow$ cubic Thue quation (Gaál, Schulte 1989);
$\mathbf{n}=\mathbf{4},(10) \Longrightarrow$ one cubic and some quartic Thue equations (Gaál,
Pethő, Pohst, 1991-96), many very interesting results

Refined version of the general approach combined with reduction and enumeration algorithms

In general, for $\mathbf{n} \geq \mathbf{5}$, a refined version of the general approach involving unit equations is needed. Since

$$
(10) \Longleftrightarrow D_{K / \mathbb{Q}}(\alpha)=D_{K} \Longleftrightarrow D\left(f_{\alpha}\right)=D_{K} \text { in } \alpha \in \mathcal{O}_{K}
$$

with minimal polynomial $f_{\alpha} \in \mathbb{Z}[X]$, in case of concrete equations (10), the basic idea of the proof of Theorem \mathbf{C} must be combined with some reduction and enumeration algorithms.

Refined version of the general method: reduction to unit equations but in considerably smaller subfields in the normal closure L of K. Then the number r of unknown exponents $a_{i j k}$ in the unit equation (5) with $\varepsilon_{i j k}=\zeta_{i j k} \rho_{1}^{a_{i j k, 1}} \cdots \rho_{r}^{a_{i j k}, r}$ is much smaller, $\leq n(n-1) / 2-1$ instead of $r \leq n!-1$; cf. Gy $(1998,2000)$, see also Gaál and Gy (1999), Evertse and Gy (2017). Then, in concrete cases bound the exponents $\left|a_{i j k}\right|$ by Baker's method.

The bounds in concrete cases are still too large. Hence reduction algorithm is needed, reducing the Baker's bound for $\left|a_{i j k}\right|$ in several steps if necessary by refined versions of the L^{3}-algorithm; cf. de Weger; Wildanger; Gaál and Pohst.

The last step is to apply enumeration algorithm, determining the small solutions under the reduced bound; cf. Wildanger; Gaál and Pohst; Bilu, Gaál and Gy.

Combining the refined version with reduction and enumeration algorithms, for $\mathbf{n}=\mathbf{5}, \mathbf{6}$ Gaál and Györy (1999), resp. Bilu, Gaál and Győry (2004) \Longrightarrow algorithms for determining all power integral bases \Longrightarrow checking the monogenity and the multiplicity of the monogenity of K.

The use of the refined version of the general approach is particularly important in the enumeration algorithm.
To perform computations, algebraic number theory packages, a computer algebra system and in some cases a supercomputer were needed.

Examples: Resolution of index form equations (10), in the most difficult case when $K=\mathbb{Q}(\alpha)$, degree n, totally real, with Galois group $S_{n}, f \in$ $\mathbb{Z}[X]$ minimal polynomial of $\alpha \Longrightarrow$ all power integral bases \Longrightarrow multiplicity of the monogenity of K :
$\mathbf{n}=\mathbf{3}, f(X)=X^{3}-X^{2}-2 X+1, K 9$ times monogenic (Gaál, Schulte, 1989);
$\mathbf{n}=\mathbf{4}, f(X)=X^{4}-4 X^{2}-X+1, K 17$ times monogenic (Gaál, Pethö, Pohst, 1990's);
$\mathbf{n}=\mathbf{5}, f(X)=X^{5}-5 X^{3}+X^{2}+3 X-1, K 39$ times monogenic (Gaál, Gy, 1999); $\approx 8 \mathrm{~h}$
$\mathbf{n}=\mathbf{6}, f(X)=X^{6}-5 X^{5}+2 X^{4}+18 X^{3}-11 X^{2}-19 X+1, K, 45$ times monogenic (Bilu, Gaál, Gy, 2004); hard computation
For $\mathbf{n} \geq \mathbf{7}$, the above algorithms do not work in general. Then the number of fundamental units, $\varrho_{1}, \ldots, \varrho_{r}$ involved can be too large to use the enumeration algorithm. Hence, for $n \geq 7$, further improvements would be needed.

VII. Some other related results and open problems

1. Monic polynomials with given discriminant over finitely generated domains

Further generalization: A integrally closed integral domain of characteristic 0 that is finitely generated over \mathbb{Z} (and may contain transcendental elements), and G a finite extension of the quotient field of A. Then monic $f, f^{*} \in A[X] A$-equivalent if $f^{*}(X)=f(X+a)$ with some $a \in A$ $\Longrightarrow D\left(f^{*}\right)=D(f)$.

Theorem (Gy, 1982)

Up to A-equivalence, there are only finitely many monic $f(X)$ in $A[X]$ with a given non-zero discriminant having all their zeros in $G+$ effective in Gy (1984) and Evertse and Gy (2017).

Problem 3. Is this statement true without fixing the splitting field G?
2. Index form equations, bounds for the solutions and for the number of solutions
K number field of degree $\mathbf{n} \geq 3, I\left(X_{2}, \ldots, X_{n}\right)$ an associated index form

$$
\begin{gather*}
I\left(x_{2}, \ldots, x_{n}\right)= \pm 1 \text { in } x_{i} \in \mathbb{Z} \Leftrightarrow \mathcal{O}_{K}=\mathbb{Z}[\alpha] \\
\alpha=x_{1}+x_{2} \omega_{2}+\cdots+x_{n} \omega_{n} \quad\left(x_{1} \in \mathbb{Z}\right) \tag{10}
\end{gather*}
$$

Problem 4. Improve the exponential upper bound (11) for the solutions.
Does there exist polynomial bound for the solutions?
For $\mathbf{3} \leq \mathbf{n} \leq \mathbf{6}$, there are practical algorithms for solving (10) in any number field of degree n with not too large discriminant.
Problem 5. For given $\mathbf{n} \geq \mathbf{7}$, give such an algorithm.
$M(n)$: for given $n \geq 3$, maximal number of solutions of equations (10);
$M(3) \leq 10$ (Bennett), $M(4) \leq 2760$ (Bhargava), for $n \geq 5$
$M(n) \leq 2^{4(n+5)(n-2)}$ (Evertse); for $3 \leq n \leq 6, M(n) \geq n^{2}$,
see above

Problem 6. (Gy, 2000). Is $M(n)$ polynomial or exponential in
terms of n ?
Extension of finiteness results on (10): number field case, Gy (1981), effective, finitely generated case, Gy (1982), ineffective
Problem 7. Make effective this result in the finitely generated case
3. Arithmetic characterization of monogenic and multiply monogenic number fields

Hasse's problem (1960's): give an arithmetic characterization of monogenic number fields
a very great number of important results for deciding the monogenity (or non-monogenity) of certain special classes of number fields, including cyclotomic, abelian, cyclic, pure, composite number fields, various types of quartic, sextic and multiquadratic fields, relative extensions, and parametric families of number fields defined by binomial and trinomial irreducible polynomials

Various approaches

- Infinite parametric families of fields, use of the index form approach;
- ideal theoretic approach, Dedekind's criterion;
- Montes algorithm, Newton polygons;
- Ore theorem;
- Gröbner bases approach;
- reduction to binomial Thue equations;
- irreducible monic polynomials with square-free discriminant;
- non-squarefree discriminant approach;

Remark: in many cases the monogenity can be, but its multiplicity cannot be determined by the method used.

Problem 8. Give an arithmetic characterization of multiply monogenic number fields

Books, research papers

Books: Hensel (1908), Hasse (1963), Narkiewicz (1990), Evertse and Győry (2017), Gaál (2019) with many references.

Research papers, a great number of authors, including:
Ahmad, Archinard, Arnóczki, Bell, Bérczes, Bilu, Bozlee, Brenner, Brunotte, Cougnard, Delone, Dummit, Evertse, El Fadil, Faddeev, Gaál, Gassert, Gras, Guardia, Györy, Hameed, Hasse, Huard, Husnine, Jadrijevic, Jakhar, Járási, Jones, Katayama, Khan, Khanduja, Kim, Kisilevsky, Kovács, Lavallee, Liang, Merriman, Montes, Motoda, Nakahara, Nart, Nguyen, Nyul, Park, Pethő, Pohst, Ranieri, Remete, Robertson, Russel, Sangwan, Sekigawa, Shah, Simon, Smart, Smith, Spearman, Stange, Sultan, Tanoé, Thérond, Uehara, Wildanger, Williams, Yakkou, Ziegler,...

4. Distribution of monogenic number fields

K number field of degree n
for $\mathbf{n}=\mathbf{1}, \mathbf{2}, K$ monogenic;
for $\mathbf{n}=\mathbf{3}$, first example for non-monogenic number field: Dedekind (1878); for fixed $\mathbf{n} \geq \mathbf{3}$, infinitely many monogenic and infinitely many non-monogenic number fields of degree n; for $\mathbf{n}=\mathbf{3}, \mathbf{4}, \mathbf{6}$, tables of Gaál (2019): frequency of monogenic number fields of degree n is decreasing in tendency as $\left|D_{K}\right|$ increases.
$N_{n}(X)$: number of isomorphism classes of monogenic number fields K of degree n with $\left|D_{K}\right| \leq X$.

Theorem (Bhargava, Shankar and Wang, 2016, 202?):

$$
N_{n}(X) \gg X^{1 / 2+1 /(n-1)} .
$$

Bhargava and Yang (2022) guess that for some $c_{n}>0, N_{n}(X) / X^{(n+1) /(2 n-2)} \rightarrow$ c_{n} as $X \rightarrow \infty$.

5. Monogenic orders in number fields

K number field of degree $\geq 3, \mathcal{O}$ and order of K (i.e., a subring of K that as a \mathbb{Z}-module is free of rank $[K: \mathbb{Q}]) . \mathcal{O}$ is called monogenic if $\mathcal{O}=\mathbb{Z}[\alpha]$ with some $\alpha \in \mathcal{O}$, and three times monogenic if $\mathcal{O}=\mathbb{Z}\left[\alpha_{1}\right]=$ $\mathbb{Z}\left[\alpha_{2}\right]=\mathbb{Z}\left[\alpha_{3}\right]$ with pairwise \mathbb{Z}-inequivalent $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathcal{O}$.

Bérczes, Evertse and Győry (2013) proved that there are at most finitely many three times monogenic orders in K. Evertse will present in his lecture a more general result of this type for so-called rationally monogenic orders.

6. Canonical number systems in orders of a number field

As above, K number field of degree $\geq 3, \mathcal{O}$ an order in $K ; \alpha \in \mathcal{O}, \alpha \neq 0$ is called a basis of a canonical number system (or CNS basis) for \mathcal{O} if every non-zero element of \mathcal{O} can be represented in the form

$$
a_{0}+a_{1} \alpha+\cdots+a_{m} \alpha^{m}
$$

with $m \geq 0, a_{i} \in\left\{0,1, \ldots\left|N_{K / \mathbb{Q}}(\alpha)\right|-1\right\}$ for $i=0, \ldots, m$ and $a_{m} \neq 0$.

CNS is a natural generalization of radix representations of rational integers to algebraic integers.
\mathcal{O} is called a CNS order if there exists a CNS in \mathcal{O}. CNS orders have been intensively investigated, see e.g. the survey papers Brunotte, Huszti, Pethő (2006) and Evertse, Györy, Pethő and Thuswaldner (2019).

Kovács (1981) proved that \mathcal{O} is a CNS order $\Longleftrightarrow \mathcal{O}$ is monogenic. If α is a CNS basis in $\mathcal{O} \Rightarrow \mathcal{O}=\mathbb{Z}[\alpha]$. Conversely, if $\mathcal{O}=\mathbb{Z}[\alpha]$ then there are infinitely many $\alpha^{\prime} \mathbb{Z}$-equivalent to α such that α^{\prime} is a CNS basis for \mathcal{O}. For a characterization of CNS bases in \mathcal{O}, see Kovács and Pethő (1991).

Consequence of generalization for orders (Gy, 1976) of Corollary 3 to Theorem C (Gy, 1973). Up to \mathbb{Z}-equivalence, there are only finitely many canonical number systems in \mathcal{O}, and all of them can be effectively determined.

Thank you for your attention!

