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We say that a set B ⊆ Z forms a multiplicative basis of order h of
S if every element of S can be written as the product of h
members of B.

My original plan for this talk was to present non-trivial lower
bounds for the size of a multiplicative basis of order 2 in the set
{f (1), f (2), . . . , f (n)}, where f (x) ∈ Z[x ] is a polynomial.

However, it turned out that I recently proved some new results in
another topic...
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Part I

On Diophantine square tuples
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Diophantus: the rational num-

bers
1
16

,
33
16

,
17
4
, and

105
16

have the following property:
the product of any two of them
increased by 1 is the square of
a rational number.

Fermat: {1, 3, 8, 120}
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Euler:

{a, b, a+b+2r , 4r(r+a)(r+b)}

where ab + 1 = r2.
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These examples motivate the following definition:

Definition 1
A set A = {a1, a2, . . . , am} ⊂ Z+ is called a Diophantine m-tuple if
aiaj + 1 is a perfect square for all 1 ≤ i , j ≤ m.

Dujella: No Diophantine 6-tuple.

He, Togbé, and Ziegler: No Diophantine 5-tuple.
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Similar questions

Theorem A [Rivat-Sárközy-Stewart]. There exists an integer x0
such that if x0 < x ∈ N, A ⊂ {1, 2, 3, . . . , x} and for all a, a′ ∈ A,
the sum a+ a′ is a square, then

|A| < 37 log x .

Lagrange and Nicolas: found a 6-element set A satisfying this
property:

A = { − 15863902, 17798783, 21126338, 49064546, 82221218,
447422978}.
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Question: How can we estimate the size of sets where the
difference between any two elements is always a square?

We can assume the smallest element is 0.

Then all other elements are squares.

Definition 2 (Gy.)
A set A = {a2

1, a
2
2, . . . , a

2
m} ⊂ Z+ is called a Diophantine square

m-tuple if
∣∣∣a2

i − a2
j

∣∣∣ is a non-zero square for all 1 ≤ i < j ≤ m.
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Using computers to consider the interval [1, 30002], I found the
following triples of this type:

(1532, 1852, 6972) (2642, 5202, 11052) (2642, 5612, 11052)
(3062, 3702, 13942) (4482, 9522, 10732) (4592, 5552, 20912)
(4952, 9752, 10732) (5202, 5332, 9252) (5282, 10402, 22102)
(5282, 11222, 22102) (6122, 7402, 27882) (6442, 7252, 21652)
(6722, 6802, 6972) (7562, 7652, 9252) (8962, 19042, 21462)
(9522, 10732, 11052) (9752, 10732, 11052) (9902, 19502, 21462)
(10402, 10662, 18502) (10922, 21752, 26652) (13442, 13602, 13942)
(15122, 15302, 18502) (15402, 24312, 26652) (15602, 15992, 27752)
(19042, 21462, 22102) (19502, 21462, 22102) (20162, 20402, 20912)
(20402, 20672, 21652) (22682, 22952, 27752) (26882, 27202, 27882)

Among these 30 triples, there are 14 whose elements are coprimes.
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In the following, we give a table with n in the first column, the
number of Diophantine square triples in the interval [1, n2] in the
second column, the number of such Diophantine square triples
whose elements are coprime in the third column, and the proportion
of the number of these coprime Diophantine square triples and n1/2

in the fourth column (now for the triples (a2, b2, c2) ⊆ [1, n2] we
suppose a < b < c ≤ n).

n # D. s. triples # coprime D. s. triples proportion
200000 4626 232 0.5188
400000 9438 334 0.5281
600000 14306 422 0.5448
800000 19170 468 0.5232
1000000 24030 510 0.51
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Theorem 1
There are infinitely many Diophantine square triples (a2, b2, c2)
such that gcd(a, b, c) = 1.

Proof of Theorem 1.

One example: a1 = 153, b1 = 185, c1 = 697 (here all integers are
odd).

Next, we construct infinitely many Diophantine square triples
(ai , bi , ci ) by a simple recursion.
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Assume that for some i ∈ N the Diophantine square triple ai , bi , ci
is already given. Then if ai + bi + ci is odd, then let

ai+1 =
∣∣a2

i + b2
i − c2

i

∣∣
bi+1 =

∣∣a2
i − b2

i + c2
i

∣∣
ci+1 =

∣∣−a2
i + b2

i + c2
i

∣∣ . (1)

Then

b2
i+1 − a2

i+1 = (a2
i − b2

i + c2
i )

2 − (a2
i + b2

i − c2
i )

2

= 4a2
i (c

2
i − b2

i ).

Since (ai , bi , ci ) is a Diophantine square triple, c2
i − b2

i is a square,
thus b2

i+1 − a2
i+1 is a square. Similarly, c2

i+1 − a2
i+1, c

2
i+1 − b2

i+1 are
also squares.

It is not very difficult to show that gcd(ai+1, bi+1, ci+1) = 1 and
ci →∞ as i →∞.

Thus, (ai+1, bi+1, ci+1) is a Diophantine square tuple, whose
elements are coprime, and their maximum element tends to infinity
as i →∞. This completes the proof of the theorem. 12 / 52



We remark that a similar recursion can be given if ai + bi + ci is
even, namely, let now

ai+1 =
1
2

∣∣a2
i + b2

i − c2
i

∣∣
bi+1 =

1
2

∣∣a2
i − b2

i + c2
i

∣∣
ci+1 =

1
2

∣∣−a2
i + b2

i + c2
i

∣∣ . (2)

Clearly, ai , bi , ci ∈ N.

Problem 1
Does exist a parametric system of equations that describes all
Diophantine square triples?

Related to the proof of Theorem 1, the following easier question
also arises:
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Problem 2
Is there a finite set of coprime Diophantine square triples from
which all coprime Diophantine square triples can be obtained using
only recursions (1) and (2)? Or will this statement only hold if it
includes further recursions?

First, I conjectured that there is no Diophantine square triple
(a2, b2, c2) whose elements are pairwise coprime.

This conjecture later turned out to be false when I ran a Python
program and found only one such Diophantine square triple in the
[1, 1012] interval, namely the triple

(409202, 414492, 426012).

Related to this, we ask the following:

Problem 3
Do there exist infinitely many Diophantine square triples whose
elements are pairwise coprime?
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Another important question is that what upper bound can be given
for the size of Diophantine square tuples.

By computer search, I found that there is no Diophantine square
quadruple in the interval [1, 1012]. Thus, I conjecture the following:

Conjecture 1
There exists a positive integer n such that there is no Diophantine
square n-tuple.

Perhaps this conjecure holds in an even sharper version:

Conjecture 2
There is no Diophantine square quadruple.

I have not been able to prove these conjectures.
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Thus, instead I will prove a result which can be considered as a
partial result in this direction: I will estimate the size of the
Diophantine square tuples in terms of the largest element of the set.

Theorem 2
For every ε > 0, there exists an integer x0 = x0(ε) such that if
x0 < x , x ∈ N, A ⊂ {1, 2, 3, . . . , x}, and for all a, a′ ∈ A, a > a′,
the difference a− a′ is a square, then

|A| < (1+ ε) log x .

The proof of this theorem is very similar to the proof of Theorem A.
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The main tools are the following:

Lemma 1 (Gallagher’s larger sieve)
Suppose that m, n ∈ N, A ⊂ {m + 1,m + 2, . . . ,m + n} and
B ⊂ N is a finite set such that its elements are pairwise coprime.
For all b ∈ B, denote the number of residue classes mod b that
intersect A by ν(b). Then

|A| ≤

∑
b∈B

log b − log n

∑
b∈B

log b

ν(b)
− log n

, (3)

provided that the denominator is positive.

Lemma 2 (Hanson-Petridis)
Let p be a prime. If C ⊂ Zp is a set such that for all a, a′ ∈ C,
a 6= a′ the difference a− a′ is quadratic residue modulo p, then

|C| ≤
√

p/2+ 1.
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Probably, Conjecture 1 is a very difficult problem, but perhaps one
can make it easier by allowing only certain special subsets.

Proposition 1
There is no Diophantine square triple containing only squares of
primes.

The next question is whether we can replace the squares of primes
with other sets, for which the answer is less clear. The Fibonacci
sequence is a good example of this.

Theorem 3 (Gy.)
There is no Diophantine square triple consisting of squares of
Fibonacci numbers.

Related to Theorem 3, we mention that Fujita and Luca proved
that there are no Diophantine quadruples of Fibonacci numbers in
the sense of the original definition (aa′ + 1’s are always squares).
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Proof of Theorem 1.

The main lemma is the following:

Proof of Theorem 3. The following lemma is true for Fibonacci
numbers:

Lemma 3 (Gy)
If 0 < m < n, m ≡ n (mod 2) and F 2

n − F 2
m is a square, then

(Fm,Fn) = (F5,F7) = (5, 13).

The case gcd(m, n) = 1 was proved by Bicknell-Johnson in 1979.

Let us see the proof of the general case:

Proof of Lemma 3. The following identity is due to Ruggles:
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Lemma 4
If 0 < m ≤ n and 0 < m ≡ n (mod 2), then

F 2
n − F 2

m = Fn+mFn−m (4)

It is known that

gcd(Fa,Fb) = Fgcd(a,b).

By this, if d def
= gcd(n −m, n +m), then

gcd(Fn+m,Fn−m) = Fd ,

and by (4), we get

F 2
n − F 2

m

F 2
d

=
Fn+m

Fd
· Fn−m

Fd
.

Here
Fn+m

Fd
and

Fn−m
Fd

are coprime, and their product is a square,

so both of them are squares.
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McDaniel and Ribenboim proved the following:

Lemma 5 (McDaniel, Ribenboim)

Assume u, v and y are positive integers such that
Fv
Fu

= y2. Then,

either u = v or (v , u) ∈ {(12, 1), (12, 2), (2, 1), (6, 3)}.

Now
Fn+m

Fd
is a square and d = gcd(n +m, n −m) < n +m, thus

(n +m, d) ∈ {(12, 1), (12, 2), (2, 1), (6, 3)}.

Then
n,m < n +m ≤ 12.

Using a Python program, it is easy to check that among the first 12
Fibonacci numbers, there are two pairs for which F 2

n − F 2
m is a

square, namely

(F2,F5) = (3, 5) and (F5,F7) = (5, 13).

This completes the proof of Lemma 3.
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Theorem 4 (Bugeaud, Gy.)

If n ≥ 3 and A ⊆ Z, then at most
|A|2

4
pairs (a, a′) exist such that

a > a′ and a− a′ is an nth power.
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Conjecture 3
There exists a constant ε > 0 such that for all A ⊆ Z, there exist

at most (1− ε) |A|
2

2
pairs (a, a′) for which a− a′ is a square.

If there is no Diophantine square quadruple, this conjecture is a
simple consequence of Turán’s theorem.

Using graph theory I proved that if we consider only the squares of
Fibonacci numbers, this conjecture is true and can be improved.

Theorem 5 (Gy.)
If A ⊆ Z, then at most |A|3/2 + |A| pairs (a, a′) exist such that
a− a′ is a square of a (positive) Fibonacci number.
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Part II

On multiplicative basis of finite sets

Joint work with Katalin Fried
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Introduction

For a set S ⊆ Z we denote by S(n) the cardinality of the set
S ∩ [1, 2, . . . , n].

We say that a set B ⊆ Z forms a multiplicative basis of order h of
S if every element of S can be written as the product of h
members of B.

While the study of additive bases is an intensively studied topic in
additive number theory, much less attention is devoted to
multiplicative bases.

First multiplicative basis of [n] def
= [1, 2, . . . , n] were studied. It is

easy to see that every multiplicative basis of [n] contains the prime
numbers up to n.

On the other hand in 2011 Chan prove that there is a multiplicative
basis with less than π(n) + c(h + 1)2 n2/(h+1)

log2 n
elements.
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This upper bound has been recently sharpened by a factor h by
Pach and Sándor. Namely if Gh(n) denotes the size of the smallest
multiplicative basis of order h of [n] then

π(n) + 0.5h
n2/(h+1)

log2 n
≤ Gh(n) ≤ π(n) + 150.4h

n2/(h+1)

log2 n
.

Slightly related problems were studied by Erdős. Next a few
definitions follow.
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Definition 1
In general for a set S we denote by Gh(S) the size of the smallest
multiplicative basis of order h. A basis B of order h is a minimal
basis of order h of S if |B| = |Gh(S)|. We call B a giant basis of
order h of S if |B| ≥ |{1} ∪ S|.

In this talk we will study multiplicative basis of order 2 of the set
S(f (x), n)

def
= [f (1), f (2), . . . , f (n)] where f (x) ∈ Z[x ] is a

polynomial. (A related problem was studied by Hajdu and Sárközy,
namely they studied multiplicative decomposability of polynomial
sets.)

Clearly, if f (x) is of the form f (x) = x r then from Chan’s result,
Pach and Sándor’s following result immediately follows

Proposition 1

π(n) ≤ Gh(S(x
r , n)) ≤ π(n) + 150.4h

n2/(h+1)

log2 n
.
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So, for these polynomials f (x) = x r we know the exact order of
magnitude of Gh(S(f (x), n)).

Now we will study the case of other polynomials. First we study the
simplest case f (x) = x2 + 1.

One may conjecture that the set S(x2 + 1, n) has only giant bases,
but it turned out that this is not the case. There exists a basis with
slightly less elements than |{1} ∪ S(f (x), n)|.

On the other hand we will prove that every multiplicative basis of
S(x2 + 1, n) has at least as many elements as the number of prime
numbers of the form 4k + 1 between n and 2n. In other words:

Theorem 1 (Fried, Gy.)
For every ε > 0 there exists a constant n0 = n0(ε) such that for
n > n0 we have(

1
2
− ε
)

n

log n
≤ Gh(S(x

2 + 1, n)) ≤ n − n1/2 + (1+ ε)n1/4.
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There is a huge gap between the lower and upper bound. It is an
interesting question which one is closer to the truth.

Problem 1
Does there exist a constant ε1 > 0 such that

ε1n ≤ G2(S(x
2 + 1, n)) ≤ (1− ε1)n

is always true?

We will also study the case of general polynomials f (x). In this
case we will be able to prove the following:
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Theorem 2 (Fried, Gy.)
Let f (x) ∈ Z[x ] be a polynomial of degree r ≥ 2 and write f (x) as
a product of irreducible polynomials over Z[x ], say

f (x) = f1(x)f2(x) · · · fs(x), (1)

where s denotes the number of irreducible factors in (1). Then

n

(log n)s log r/ log 2 � G2(S(f (x), n)).

We remark that from Theorem 2 immediately follows the following:

Corollary 1
Let f (x) ∈ Z[x ] be a polynomial of degree r ≥ 2. Then

n

(log n)r log r/ log 2 � G2(S(f (x), n)).
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In case of the polynomial f (x) = x2 + 1, the lower bound in
Theorem 2 gives the same result as the one in Theorem 1.

As a general upper bound we are able to give the trivial bound
|{1} ∪ S(f (x), n)| ≤ n + 1. Related to the upper bound we ask the
following questions.

Problem 2
Is there any polynomial f (x) such that for every n the set
S(f (x), n) has only giant bases of order 2, in other words do we
have for every basis B of order 2 the following

|B| ≥ |{1} ∪ S(f (x), n)|?

Or, is there a general non-trivial upper bound for G2(S(f (x), n))?

Perhaps the lower bound in Theorem 2 can be sharpened. We also
ask the following:
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Problem 3
Is it possible to give a general better lower bound for
G2(S(f (x), n)) than the bound n

(log n)s log r/log2 in Theorem 2?

So far we have been studying multiplicative bases of
S(f (x), n) = {f (1), f (2), f (3), . . . , f (n)}.

Next we study the multiplicative bases of its subsets, i.e. sets of
the form

W def
= {f (a1), f (a2), f (a3), . . . , f (ak)}, (2)

where 1 ≤ a1 < a2 < · · · < ak ≤ n are integers.

If B is a multiplicative basis of order 2 of W, then each elements of
W can be written in the form bibj with bi , bj ∈ B, thus

|W| ≤ |B|2 ,
and so

|W|1/2 ≤ |B| . (3)
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In case of polynomials f (x) of degree 2, this problem is slightly
related to the study of Diophantine tuples.

We will study whether (3) is the best possible general lower bound?
Under some not too restrictive conditions on the ai ’s in W we will
prove |W|2/3 � |B|:

Theorem 3 (Fried, Gy.)
Let f (x) ∈ Z[x ] be a polynomial of degree degf ≥ 2 and
u, a1, a2, . . . , ak be positive integers such that

u ≤ a1 < a2 < · · · < ak < 2u. (4)

We define W by (2). If B is a multiplicative basis of order 2 of W
then

|W|2/3 � |B| . (5)

33 / 52



Remark 1
If f (x) is of the form
f (x) = x r + ar−3x

r−3 + · · ·+ ar−4x
r−4 + · · ·+ a0 (so the

coefficients of the terms x r−1 and x r−2 are 0), then Theorem 3 also
holds if in place of (4) only u ≤ a1 < a2 < · · · < ak < u2 holds.

Related to Theorem 3 we ask the following

Problem 4
Is it true that the lower bound (5) holds for arbitrary ai ’s, i.e. is
condition (4) indeed necessary in Theorem 3? In this general case
which lower bound can be given for |B|?

Remark 2
Let B be a multiplicative basis of order 2 of the set W defined in
Theorem 3. Probably, the lower bound (5) in case of certain
special polynomials might be sharpened to |W|3/4 � |B|. For more
details see the end of the proof of Theorem 3.

Finally we will say a few words about sets having only giant bases. 34 / 52



Definition
We call B a giant basis of order h of S if |B| ≥ |{1} ∪ S|.

Clearly the set I = [a2, a2 + 1, a2 + 2, . . . , a2 + a] has only giant
bases: Let B be a multiplicative basis of I of order 2. We split B
into two disjoint subsets, so B = B1 ∪ B2 where

B1
def
= {b ∈ B : b ≤ a}

B2
def
= {b ∈ B : b ≥ a+ 1}.

If bibj ∈ I and bi < bj , then bi ≤ a and bj ≥ a+ 1. Thus for
bibj ∈ I and bi < bj , we have bi ∈ B1 and bj ∈ B2.

For each b ∈ B2 there exists at most one element i of I for which
b | i since |I | = a+ 1 ≤ b. Thus

a+ 1 = |I | ≤ |B2| < |B| ,

from which the statement follows.

Our final problem is the following:
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Problem 5
Let I = [m + 1,m + 2, . . . ,m + n] and d ≥ 2 is an integer. For
which m and n’s does I have only giant bases?

Proof of Theorem 1

First we prove that for n > n0(ε) we have(
1
2
− ε
)

n

log n
≤ Gh(S(x

2 + 1, n)). (6)

Let B be a multiplicative basis of order h of S(x2 + 1, n). Let P
denote the following set

P def
= {p : p is a prime of form 4k + 1 and n < p < 2n}. (7)
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For every prime p ∈ P we assign the smallest positive integer
g = g(p) with

p | g(p)2 + 1.

Since for p ∈ P, p is a prime number of form 4k + 1, the
congruence

x2 ≡ −1 (mod p)

has two different solutions, and one of them is between 1 and
(p − 1)/2, thus

1 ≤ g(p) ≤ p − 1
2

< n. (8)

Since B is a multiplicative basis of S(x2 + 1, n) it is also a
multiplicative basis of its subsets, namely B is a multiplicative basis
of

S1
def
= {g(p)2 + 1 : p ∈ P}

since S1 ⊂ S(x2 + 1, n) by (8).
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For every p ∈ P, S1 contains a multiple of p since p | g(p)2 + 1.
Thus B contains a multiple of p, which we denote by h(p). Thus
h(p) ∈ B and p | h(p).

We will prove that for p, q ∈ P, p 6= q

h(p) = h(q)

is not possible. Contrary, suppose that p 6= q and h(p) = h(q).
Then

p | h(p), q | h(q).
Thus

pq | h(p) = h(q).

Since p, q ∈ P we have n + 1 ≤ p, q so

(n + 1)2 ≤ pq ≤ h(p) = h(q). (9)

But B is a multiplicative basis of S(x2 + 1, n) so its elements are
less or equal to n2 + 1, thus

h(p) = h(q) ≤ n2 + 1,

which contradicts (9).
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Thus the function h : P → B is injective, so

|P| ≤ |B| ,

which proves (6).

In order to prove

Gh(S(x
2 + 1, n)) ≤ n − n1/2 + (1+ ε)n1/4.

we will prove a slightly stronger upper bound, namely
Gh(S(x

2 + 1, n)) ≤ n − n1/2 + n1/4 + 2.

It is enough to construct a multiplicative basis B of order h of
S(x2 + 1, n) with

|B| ≤ n − n1/2 + n1/4 + 2.
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First observe that(
a2 + 1

) (
(a+ 1)2 + 1

)
=
(
a2 + a+ 1

)2
+ 1. (10)

Let

B def
= {x2+1 : 0 ≤ x ≤ n}\{

(
a2 + a+ 1

)2
+1 : n1/2+0.5 ≤ a2+a+1 ≤ n}.

In order to prove that B is a multiplicative basis of order h it is
enough to prove that for 1 ≤ x ≤ n the integer x2 + 1 can be
written as a product of h elements of B.

If x is not of the form a2 + a+ 1 where
n1/2 + 0.5 ≤ a2 + a+ 1 ≤ n, then it is clear that

x2 + 1 = b1b2b3 · · · bh (11)

where b1 = x2 + 1 ∈ B and b2 = b3 = · · · = bh = 1 ∈ B.
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If x = a2
1 + a1 + 1 for some integer a1 and

n1/2 + 0.5 ≤ a2
1 + a1 + 1 ≤ n, then by (10)

x2 + 1 =
(
a2
1 + a1 + 1

)2
+ 1 =

(
a2
1 + 1

) (
(a1 + 1)2 + 1

)
.

Thus
x2 + 1 = b1b2b3 · · · bh,

with b1 = a2
1 + 1, b2 = (a1 + 1)2 + 1, b3 = · · · = bh = 1.

Computing the number of elements of B we get

|B| ≤ n − n1/2 + n1/4 + 2,

which was to be proved.
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Theorem 2 (Fried, Gy.)
Let f (x) ∈ Z[x ] be a polynomial of degree r ≥ 2 and write f (x) as
a product of irreducible polynomials over Z[x ], say

f (x) = f1(x)f2(x) · · · fs(x), (12)

where s denotes the number of irreducible factors in (12). Then

n

(log n)s log r/ log 2 � G2(S(f (x), n)).

Proof of Theorem 2

Throughout the proof c1, c2, c3, . . . will denote constants
depending only on the polynomial f (x).

Let τ(a) denote the number of positive divisors of a positive integer
a. It is well-known that

n∑
a=1

τ(a) = n log n + O(n).
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In 1952 Erdős extended this result to polynomials, namely he
proved the following:

Lemma 1 (Erdős)
Let f (x) ∈ Z[x ] be an irreducible polynomial. There exist positive
integers c1 and c2 depending on f (x) such that for n ≥ 2 we have

c1n log n <
n∑

a=1

τ(f (a)) < c2n log n. (13)

Here we mention that Erdős gave an existence proof, and he could
not give bounds on the order of magnitude of the constants c1 and
c2 in Lemma 1.

Lapkova achieved some good bounds in the case of polynomials of
degree 2.

In order to prove Theorem 2 we will need only the upper bound in
(13).
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Let s denote the number of irreducible factors fj(x) in (1). Using
Erdős’s lemma we will prove the following:

Lemma 2
There exists a constant c3 depending only on the polynomial f (x)
such that for every integer n large enough we have that the set

F (f (x), n)
def
= {f (a) : n/4 ≤ a ≤ n and τ(f (a)) < c3(log n)

s}
(14)

has at least n/(4r) different elements.

The proof of the lemma uses Erdős’ upper bound (see (13)) and
Cauchy Schwarz’s inequality.

Next we prove the following:
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Lemma 3
Let B be a multiplicative basis of F (f (x), n) of order 2. Then

|B| � n

(log n)s log r/ log 2 .

From Lemma 3 we immediately get Theorem 2. If B is a
multiplicative basis of S(f (x), n) then it is also a multiplicative
basis of F (f (x), n) by F (f (x), n) ⊆ S(f (x), n).

Proof of Lemma 3

Define a graph G by the following: its vertices are the elements of
B. Two vertices v1, v2 are joined by an edge {v1, v2} if and only if

v1v2 ∈ F (f (x), n).

Then for the number of vertices and edges of G we have

|V (G)| = |B| and |E (G)| ≥ |F (f (x), n)| > c6n. (15)
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It is easy to prove that there exists a constant c7 such that if
{v1, v2} is an edge of G, then

v1 > c7n or v2 > c7n. (16)

We split the set of vertices B into two disjoint sets:

B1 = {v ∈ B : v > c7n}
B2 = {v ∈ B : v ≤ c7n}

By (16) clearly for every edge e = {v1, v2} of G we have v1 ∈ B1 or
v2 ∈ B1. Thus if we denote by d(v) the degree of a vertex v ∈ B in
G then

|E (G)| ≤
∑
v∈B1

d(v). (17)

In Lemma 4 we give an estimate on the degree of a vertex of B1:
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Lemma 4
For v ∈ B1 we have

d(v)� (log n)s log r/ log 2

The proof of Lemma 4 is based on standard estimates for the
number of solutions of a congruence

f (x) ≡ 0 (mod m)

using the discriminant of f (x) and that for v ∈ B1 we have
τ(v)� (log n)s log r/ log 2.

From Lemma 4 we immediately get Lemma 3. From Lemma 4,
(15) and (17) follows

c6n < |E (G)| ≤
∑
v∈B1

d(v)�
∑
v∈B1

(log n)s log r/ log 2

� |B1| (log n)s log r/ log 2 � |B| (log n)s log r/ log 2
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thus
n

(log n)s log r/ log 2 � |B|

which proves Lemma 3. This completes the proof of Theorem 2.

Let us see our last theorem:

Theorem 3 (Fried, Gy.)
Let f (x) ∈ Z[x ] be a polynomial of degree degf ≥ 2 and
u, a1, a2, . . . , ak be positive integers such that

u ≤ a1 < a2 < · · · < ak < 2u. (18)

We define W by {f (a1), f (a2), . . . , f (ak)}. If B is a multiplicative
basis of order 2 of W then

|W|2/3 � |B| . (19)
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Proof of Theorem 3

We define the following graph G. Its vertices are the elements of B,
so V (G) = B. There is an edge between the vertices b1 ∈ B and
b2 ∈ B if and only if there exists an 1 ≤ i ≤ s such that

b1b2 = f (ai ).

We will denote this edge by {b1, b2}.

Since B is a multiplicative basis of order 2 of W, for the number of
the edges of G we have

|E (G)| ≥ |W| . (20)

We will color the edges of G by different colors where the number
of colors depends only on the polynomial f (x).
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Based on a technical lemma it is possible to prove that there exist
constants c1 and c2 such that if we color an edge {b1, b2} of G by
the first color if b1 ≤ c1 or b2 ≤ c1 and for i ≥ 2 we color the edge
{b1, b2} of G by the i-th color if

c i−2
2 u ≤ b1b2 < c i−1

2 u, (21)

then the graph G does not contain a cycle of length 4, where the
edges of the cycle are colored by the same i-th color for an i ≥ 2.

By the Kövári-Sós-Turán theorem we have that if a graph G has n
vertices and it does not contain a cycle of length 4, than it has at
most

1+ n +

[
1
2
n3/2

]
(22)

edges.

Since we have at most c4 different colors we have

|W| ≤ |E (G)| � |V (G)|3/2 = |B|3/2 ,

where the implied constant depend on the polynomial f (x) q.e.d.
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Probably, it can be proved that the subgraphs Gi of G formed by
the edges of G colored by the i-th color (where i ≥ 2) do not
contain the following graph θ3,3:

From this, using Faudree and Simonovits theorem in extremal
graph theory one may obtain the bound

|W| ≤
∑
i

E (Gi )� c1 |B|+
∑
i≥2

|V (Gi )|1+1/3 � |B|4/3 ,

from which
|B| � |W|3/4 (23)

follows.
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Here, we remark that the proof that these subgraphs of G do not
contain θ3,3 can be rather lengthly and complicated, and the
desired lower bound (23) is just slightly stronger than the one in
Theorem 3 and it is also far from the truth. Thus we did not work
out the details of the proof here.

Thank you for your attention!
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