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Bell numbers

Bn: number of partitions of {1, . . . , n}
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r -Bell numbers

L. Carlitz (1980), I. Mező (2011)

r -partition: a partition of {1, . . . , n + r} where 1, . . . , r belong to
distinct blocks

Bn,r : number of r -partitions of {1, . . . , n + r}

Bn,0 = Bn and Bn,1 = Bn+1
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Dowling numbers

M. Benoumhani (1996)

Dn,m: defined using Whitney numbers in connection with finite
groups of order m

Dn,1 = Bn+1
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s-associated Bell numbers

E. A. Enneking and J. C. Ahuja (1976), F. T. Howard (1977,
1980), V. H. Moll, J. L. Ramírez and D. Villamizar (2018), M.
Bóna and I. Mező (2016)

B≥s
n : number of those partitions of {1, . . . , n}, where each block

contains at least s elements

B≥1
n = Bn
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r -Dowling numbers

G.-S. Cheon and J.-H. Jung (2012), R. B. Corcino, C. B. Corcino
and R. Aldema (2006), E. Gyimesi and G. Nyul (2019)

Whitney coloured r -partition with m colours: an r -partition where

the smallest elements of the blocks are not coloured,
elements in distinguished blocks are not coloured,
the remaining elements are coloured with m colours.

Dn,m,r : number of Whitney coloured r -partitions of {1, . . . , n + r}
with m colours

Dn,1,r = Bn,r and Dn,m,1 = Dn,m
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s-associated r -Bell numbers

F. T. Howard (1984)

B≥s
n,r : number of those r -partitions of {1, . . . , n + r}, where each

non-distinguished block contains at least s elements

B≥1
n,r = Bn,r and B≥s

n,0 = B≥s
n
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s-associated r -Dowling numbers
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s-associated r -Dowling numbers

s-associated r -Dowling numbers

Denote by D≥s
n,m,r the total number of Whitney coloured r -partitions

of {1, . . . , n + r} with m colours, where each non-distinguished
block contains at least s elements.

D≥1
n,m,r = Dn,m,r and D≥s

n,1,r = B≥s
n,r
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The permutational variants

r -permutation: a permutation of {1, . . . , n + r} where 1, . . . , r
belong to distinct cycles

Whitney coloured r -permutation with m colours: an r -permutation
where

the smallest elements of the cycles are not coloured,
an element in a distinguished cycle is not coloured if there are
no smaller numbers on the arc from the distinguished element
to this element,
the remaining elements are coloured with m colours.

Eszter Gyimesi (joint work with Gábor Nyul) Associated r-Dowling numbers and some relatives



The permutational variants

An = n! (number of permutations of {1, . . . , n})
An,r = (r + 1)n (number of r -permutations of {1, . . . , n + r})
DAn,m = (2|m)n

A≥s
n : number of permutations of {1, . . . , n}, where each cycle

has length at least s
DAn,m,r = (r + 1|m)n (number of Whitney coloured
r -permutations of {1, . . . , n + r})
A≥s
n,r : number of those r -permutations of {1, . . . , n + r}, where

each non-distinguished cycle has length at least s

s-associated r -Dowling factorials

Denote by DA≥s
n,m,r the total number of Whitney coloured

r -permutations of {1, . . . , n + r} with m colours, where each
non-distinguished cycle contains at least s elements.
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Partitions into ordered blocks

Whitney–Lah coloured r -partition with m colours: an r -partition
into ordered blocks where

the smallest elements of the ordered blocks are not coloured,
an element in a distinguished ordered block is not coloured if
there are no smaller numbers between the distinguished
element and this element,
the remaining elements are coloured with m colours.
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Partitions into ordered blocks

Ln: number of partitions of {1, . . . , n} into ordered blocks
Ln,r : number of r -partitions of {1, . . . , n + r} into ordered
blocks
DLn,m

L≥s
n : number of those partitions of {1, . . . , n} into ordered

blocks, where each ordered block contains at least s elements
DLn,m,r : number of Whitney–Lah coloured r -partitions of the
set {1, . . . , n + r} with m colours
L≥s
n,r : number of those r -partitions of {1, . . . , n + r} into

ordered blocks, where each non-distinguished ordered block
contains at least s elements

s-associated r -Dowling–Lah numbers

Denote by DL≥s
n,m,r the total number of Whitney–Lah coloured

r -partitions of {1, . . . , n + r} with m colours, where each
non-distinguished ordered block contains at least s elements.
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r -compositional formula

Theorem
Let f1, f2, g : N0 → K be functions such that f2(0) = 0 and
g(0) = 1. Denote their exponential generating functions by
F1(x),F2(x) and G (x), respectively. Define the function
h : N0 → K as follows: h(0) = 1, and for n ≥ 1 let

h(n) =
∑

f1 (|Y1|) · · · f1 (|Yr |) f2 (|Z1|) · · · f2 (|Zk |) g(k),

where the sum is taken for all r -partitions
{Y1 ∪ {1}, . . . ,Yr ∪ {r},Z1, . . . ,Zk} of {1, . . . , n + r}. Then the
exponential generating function of h is

H(x) =
(
F1(x)

)r
G
(
F2(x)

)
.
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Exponential generating functions
Theorem
If r ≥ 0 and s,m ≥ 1, then

∞∑
n=0

D≥s
n,m,r

n!
xn = exp

(
rx +

exp(mx)− 1
m

)
exp

− 1
m

s−1∑
j=1

1
j!
(mx)j

,
∞∑
n=0

DA≥s
n,m,r

n!
xn = (1 −mx)−

r+1
m exp

− 1
m

s−1∑
j=1

1
j
(mx)j

,
∞∑
n=0

DL≥s
n,m,r

n!
xn

= (1 −mx)−
2r
m exp

(
1
m

(
1

1 −mx
− 1

))
exp

− 1
m

s−1∑
j=1

(mx)j

.
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Exponential generating functions

∞∑
n=0

D≥s
n,m,r

n!
xn = exp

(
rx +

exp(mx)− 1
m

)
exp

− 1
m

s−1∑
j=1

1
j!
(mx)j


Proof
If

f1(n) = 1, f2(n) =

{
0 if n ≤ s − 1
mn−1 if n ≥ s

, g(n) = 1,

then h(n) = D≥s
n,m,r . For these sequences, we have

F1(x) = exp(x),F2(x) =
1
m

exp(mx)−
s−1∑
j=0

1
j!
(mx)j

,G (x) = exp(x).

.
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Recurrences I.
Theorem
If r ≥ 0, s,m ≥ 1 and n ≥ s − 1, then

D≥s
n+1,m,r = rD≥s

n,m,r +
n−s+1∑
j=0

(
n

j

)
D≥s

j,m,rm
n−j ,

DA≥s
n+1,m,r = r

n∑
j=0

(
n

j

)
DA≥s

j,m,rm
n−j (n − j)!

+
n−s+1∑
j=0

(
n

j

)
DA≥s

j,m,rm
n−j (n − j)!,

DL≥s
n+1,m,r = 2r

n∑
j=0

(
n

j

)
DL≥s

j,m,rm
n−j (n − j)!

+
n−s+1∑
j=0

(
n

j

)
DL≥s

j,m,rm
n−j (n − j + 1)!.
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Recurrences II.

Theorem
If r ≥ 0, s,m ≥ 1 and n ≥ s − 1, then

DA≥s
n+1,m,r = (mn + r)DA≥s

n,m,r + (mn|m)s−1 DA≥s
n−s+1,m,r .

If r ≥ 0, s,m ≥ 1 and n ≥ s, then

DL≥s
n+1,m,r = (2mn + 2r)DL≥s

n,m,r + s (mn|m)s−1 DL≥s
n−s+1,m,r

−mn (mn −m + 2r)DL≥s
n−1,m,r − (s − 1) (mn|m)s DL≥s

n−s,m,r .
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Connections between s-associated r -Dowling and
s-associated r ′-Dowling type numbers

Theorem
If n ≥ 0, r ≥ r ′ ≥ 0 and s,m ≥ 1, then

D≥s
n,m,r =

n∑
j=0

(
n

j

)
D≥s
j ,m,r ′

(
r − r ′

)n−j
,

DA≥s
n,m,r =

n∑
j=0

(
n

j

)
DA≥s

j ,m,r ′
(
r − r ′|m

)n−j
,

DL≥s
n,m,r =

n∑
j=0

(
n

j

)
DL≥s

j ,m,r ′
(
2r − 2r ′|m

)n−j
.
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Dobiński type formulas

Theorem
If n, r ≥ 0 and s,m ≥ 1, then

D≥s
n,m,r = e−

1
m

∞∑
k=0

1
mkk!

∑
∗

n!

l!
(mk + r)l

s−1∏
j=1

1
ij !

(
−mj−1

j!

)ij

,

DA≥s
n,m,r =

∑
∗

n!

l!
(r + 1|m)l

s−1∏
j=1

1
ij !

(
−mj−1

j

)ij

,

DL≥s
n,m,r = e−

1
m

∞∑
k=0

1
mkk!

∑
∗

n!

l!
(mk + 2r |m)l

s−1∏
j=1

1
ij !

(
−mj−1)ij ,

where the sums indicated with a star symbol are taken over all
s-tuples (i1, i2, . . . , is−1, l) of nonnegative integers satisfying
i1 + 2i2 + · · ·+ (s − 1) is−1 + l = n.
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2-associated r -Dowling numbers and (r − 1)-Dowling
numbers

Corollary

If n ≥ 0 and r ,m ≥ 1, then D≥2
n,m,r = Dn,m,r−1.
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Thank you for your attention!
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