Online Number Theory Seminar

24 February 2023. - 17:00-17:50

Florian Luca: Y-coordinates of Pell equations in binary recurrences

Let $d>1$ be an integer which not a square and $\left(X_{n}, Y_{n}\right)$ be the nth solution of the Pell equation $X^{2}-d Y^{2}= \pm 1$. Given an interesting set of positive integers U, we ask how many positive integer solutions n can the equation $Y_{n} \in U$ have. Under mild assumptions on U (for example, when $1 \in U$ and U contains infinitely many even integers), the equation $Y_{n} \in U$ has two solutions n for infinitely many d. We show that this is best possible whenever U is the set of values of a binary recurrent sequence $\left\{u_{m}\right\}_{m \geq 1}$ with real roots and d is large enough (with respect to U). We also treat the cases when U is one of the sets $\left\{2^{n}-1: n \geq 1\right\},\left\{F_{n}: n \geq 1\right\}$ and $\left\{L_{n}: n \geq 1\right\}$, where F_{n} and L_{n} are the nth Fibonacci and Lucas numbers. For example, $Y_{n}=2^{m}-1$ has at most two positive integer solutions (n, m) for all d and each of the equations $Y_{n}=F_{m}$ or $Y_{n}=L_{m}$ has exactly two solutions (n, m) except for $d=2$, in which case it has exactly three solutions both when Fibonacci or Lucas numbers are involved. The proofs use linear forms in logarithms.

