Online Number Theory Seminar

8 December 2023. - 17:00-17:50

J-H. Evertse: Orders with few rational monogenizations

Recall that a monogenic order is an order of the shape $\mathbb{Z}[\alpha]$, where α is an algebraic integer. This is generalized to orders \mathbb{Z}_{α} for not necessarily integral algebraic numbers α as follows. For an algebraic number α of degree n, let \mathcal{M}_{α} be the \mathbb{Z}-module generated by $1, \alpha, \ldots, \alpha^{n-1}$; then $\mathbb{Z}_{\alpha}:=\left\{\xi \in \mathbb{Q}(\alpha): \xi \mathcal{M}_{\alpha} \subseteq \mathcal{M}_{\alpha}\right\}$ is the ring of scalars of \mathcal{M}_{α}. We call an order of the shape \mathbb{Z}_{α} rationally monogenic. If α is an algebraic integer, then $\mathbb{Z}_{\alpha}=\mathbb{Z}[\alpha]$ is monogenic. Rationally monogenic orders are special types of invariant orders of polynomials, which were introduced by Birch and Merriman (1972), Nakagawa (1989), and Simon (2001).
If α, β are two $\mathrm{GL}_{2}(\mathbb{Z})$-equivalent algebraic numbers, i.e., $\beta=(a \alpha+b) /(c \alpha+d)$ for some $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in$ $\mathrm{GL}_{2}(\mathbb{Z})$, then $\mathbb{Z}_{\alpha}=\mathbb{Z}_{\beta}$. Given an order \mathcal{O} of a number field, we call a $\mathrm{GL}_{2}(\mathbb{Z})$-equivalence class of α with $\mathbb{Z}_{\alpha}=\mathcal{O}$ a rational monogenization of \mathcal{O}.
It is known that every order of a number field has at most finitely many rational monogenizations. Among other things, we discuss our new result that if K is a number field of degree $n \geq 5$ with normal closure having maximal Galois group S_{n}, then apart from at most finitely many exceptions, every order of K has at most one rational monogenization.

