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Organization of the lecture:

1 Overview of results on monogenic orders

2 Introduction of rationally monogenic orders
(= invariant orders of primitive, irreducible polynomials, introduced
by Birch and Merriman (1972), Nakagawa (1989), Simon (2001))

3 Generalizations of results on monogenic orders to rationally
monogenic orders

4 Outline of the proof of the main result
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Monogenic orders

Let K be a number field, with ring of integers OK .
An order of K is a subring of OK with quotient field K .

An order O of K is called monogenic if O = Z[α] for some α ∈ O.
We call such an α a monogenic generator of O.

If O = Z[α] then also O = Z[β] if β is Z-equivalent to α, i.e.,
β = ±α + a for some a ∈ Z.

A monogenization of O is a Z-equivalence class of α with O = Z[α].

An order O of a quadratic number field K has precisely one
monogenization, i.e., there is α with O = Z[α] and up to Z-equivalence
it is unique.

Theorem (Győry, 1973)

Let K be a number field of degree ≥ 3. Then every order O of K has at
most finitely many monogenizations, i.e., up to Z-equivalence there are
at most finitely many α with O = Z[α], and these can be determined
effectively in principle.
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Number of monogenizations

Theorem (Ev., Győry, 1985)

Let K be a number field of degree n ≥ 3 and O an order of K . Then O
has at most C (n) = (4× 73n×n!)n−2 monogenizations.

Improvements:

C (3) = 10 (Bennett, 2001)

C (4) = 2760 (Bhargava, Akhtari, 2021)

C (n) = 24(n+5)(n−2) for n ≥ 5 (Ev., 2011)

For most orders, these upper bounds are far too large.
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Almost all orders in a given number field have only
few monogenizations

Theorem (Bérczes, Ev., Győry, 2013)

Let K be a number field of degree ≥ 3.
Then K has only finitely many orders with more than two
monogenizations.

This is best possible.

Example 1. Let ε be a unit of OK with Q(ε) = K .
Then Z[ε] = Z[ε−1] is an order of K with two monogenizations
(for ε−1 cannot be of the shape ±ε+ a with a ∈ Z).

Example 2. Let
(
a b
c d

)
∈ GL2(Z) (i.e., a, b, c , d ∈ Z and ad − bc = ±1),

let α ∈ OK with Q(α) = K such that cα + d is a unit, and β = aα+b
cα+d

.

Then Z[β] = Z[α] is an order of K with two monogenizations.

This suggests that for a given order O it is reasonable to consider
GL2(Z)-equivalence classes of α with O = Z[α], where α, β are called

GL2(Z)-equivalent if β = aα+b
cα+d

for some
(
a b
c d

)
∈ GL2(Z).
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GL2(Z)-equivalence classes

Recall that α, β are called GL2(Z)-equivalent if β = aα+b
cα+d

for some(
a b
c d

)
∈ GL2(Z).

Theorem (Bérczes, Ev., Győry, 2013)

Let K be a number field of degree ≥ 5 whose normal closure has
4-transitive Galois group.

Then for all orders O of K with at most finitely many exceptions, the set
of α with O = Z[α] is contained in at most one GL2(Z)-equivalence class.

The condition on the Galois group of the normal closure of K is
technical; we do not know whether it can be weakened or removed.

If K has degree 3 then the assertion of the theorem holds true for all
orders of K , without exceptions (elementary fact).

For number fields of degree 4 the theorem is false.
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GL2(Z)-equivalence classes, degree 4

Theorem (Bérczes, Ev., Győry, 2013)

Let r , s be integers such that f (X ) = (X 2 − r)2 − X − s is irreducible,
and let K = Q(α), where α is a root of f .

Then K has infinitely many orders Om (m = 1, 2, . . .) with the following
property: Om = Z[αm] = Z[βm], where βm = α2

m − rm, αm = β2
m − sm for

certain integers rm, sm.

Clearly, αm, βm are not GL2(Z)-equivalent. For otherwise, βm = aαm+b
cαm+d

with
(
a b
c d

)
∈ GL2(Z) and αm would have degree 3.

Our aim is to generalize the previous results from monogenic orders Z[α]
to so-called rationally monogenic orders Zα, attached to not necessarily
integral algebraic numbers α.
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Rationally monogenic orders

Let α be a not necessarily integral algebraic number of degree n. Let
fα(X ) := a0X

n + · · ·+ an ∈ Z[X ] be its minimal polynomial, with a0 > 0,
gcd(a0, . . . , an) = 1.

Define Zα to be the invariant order of fα, introduced by Birch and
Merriman (1972), Nakagawa (1989), Simon (2001).

More explicitly, define the Z-module

Mα := {x0 + x1α + · · ·+ xn−1α
n−1 : x0, . . . , xn−1 ∈ Z}.

Then Zα is its ring of scalars, i.e.,

Zα = {ξ ∈ Q(α) : ξMα ⊆Mα} = {ξ ∈ Q(α) : ξµ ∈Mα ∀µ ∈Mα}.

This is an order of Q(α).

We call orders of the shape Zα rationally monogenic orders.
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{Monogenic orders}
⊂
6=
{Rationally monogenic orders}

For a non-zero algebraic number α of degree n define

Mα = {x0 + x1α + · · ·+ xn−1α
n−1 : x0, . . . , xn−1 ∈ Z},

Zα = {ξ ∈ Q(α) : ξMα ⊆Mα}.

Orders of the shape Zα are called rationally monogenic.

If α is an algebraic integer, then Zα =Mα = Z[α].

So monogenic orders are rationally monogenic.

The following was probably known before:

Theorem 1 (Ev., 2023)

Every number field of degree ≥ 3 has infinitely many orders that are
rationally monogenic but not monogenic.
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Properties of rationally monogenic orders

Let α be a non-zero algebraic number of degree n. Let
fα(X ) := a0X

n + a1X
n−1 + · · ·+ an ∈ Z[X ] be its minimal polynomial,

with a0 > 0, gcd(a0, . . . , an) = 1.

Recall

Mα = {x0 + x1α + · · ·+ xn−1α
n−1 : x0, . . . , xn−1 ∈ Z},

Zα = {ξ ∈ Q(α) : ξMα ⊆Mα}.

Lemma

(i) Zα = Z[α] ∩ Z[α−1] (Del Corso, Dvornicich, Simon, 2005).

(ii) Zα has Z-module basis {1, ω1, . . . , ωn−1}, where
fα(X ) = (X − α)(a0X

n−1 + ω1X
n−2 + · · ·+ ωn−1).

(iii) There is an equality of discriminants
discr (Zα) = discr (fα) = a2n−20

∏
1≤i<j≤n(α(i) − α(j))2.
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Rational monogenizations

Let α be a non-zero algebraic number of degree n. Recall

Mα = {x0 + x1α + · · ·+ xn−1α
n−1 : x0, . . . , xn−1 ∈ Z},

Zα = {ξ ∈ Q(α) : ξMα ⊆Mα}.

Lemma

Let α, β be two GL2(Z)-equivalent algebraic numbers, i.e., β = aα+b
cα+d

for

some
(
a b
c d

)
∈ GL2(Z). Then Zα = Zβ .

Proof.

Suppose α, β have degree n. Then Mβ = (cα + d)1−nMα. Hence
Zβ = Zα.

Given an order O of a number field K , a rational monogenization of O is
a GL2(Z)-equivalence class of α such that Zα = O.
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Finiteness results

An order O of a number field K is called primitive if there are no order
O ′ and integer a > 1 such that O = Z + aO ′.

Every rationally monogenic order is primitive.

Theorem (Delone and Faddeev, 1940)

Let O be a primitive order of a cubic number field. Then O has precisely
one rational monogenization, i.e., up to GL2(Z)-equivalence there is
precisely one α with Zα = O.

Orders of number fields of degree ≥ 4 may not be rationally monogenic,
or have more than one rational monogenization.

Theorem (Birch and Merriman, 1972)

Let K be a number field of degree ≥ 4 and O any order of K . Then O
has at most finitely many rational monogenizations, i.e., up to
GL2(Z)-equivalence there are at most finitely many α such that Zα = O.

The original proof of Birch and Merriman is ineffective. Ev. and Győry
(1991) gave an effective proof.
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Number of rational monogenizations

Theorem (Bérczes, Ev., Győry, 2004)

Let K be a number field of degree n ≥ 4 and O an order of K . Then O
has at most C ′(n) := n × 224n3 rational monogenizations.

Improvements:

C ′(4) = 40 (Bhargava, 2021)

C ′(n) = 25n2 for n ≥ 5 (Ev., Győry, 2017)

Similarly as in the monogenic case, for most orders the actual number of
rational monogenizations is much smaller.
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Almost all orders in a given number field have only
few rational monogenizations

Theorem 2 (Ev., 2023)

(i) Let K be a number field of degree 4. Then K has only finitely many
orders with more than two rational monogenizations.

(ii) Let K be a number field of degree ≥ 5 whose normal closure has
5-transitive Galois group. Then K has only finitely many orders with
more than one rational monogenization.

We saw that there are quartic number fields with infinitely many orders
Z[αm] = Z[βm] such that αm, βm are not GL2(Z)-equivalent.
Hence (i) is best possible.

For number fields of degree ≥ 5, the condition on the Galois group of the
normal closure of K is technical; we do not know whether it can be
weakened or removed.

The proof of Theorem 2 uses ineffective finiteness results for polynomial
unit equations, so it does not enable to determine the exceptional orders.

The proofs of (i) and (ii) are different. We will outline the proof of (ii).
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Connection with Hermite equivalence

Reference:
M. Bhargava, J.-H. Evertse, K. Győry, L. Remete, A. Swaminathan,
Hermite equivalence of polynomials, Acta Arithmetica 209 (2023), 17–58.

Let PI(n) denote the set of primitive, irreducible polynomials in Z[X ] of
degree n.
For a number field K , let PI(K ) denote the set of primitive, irreducible
polynomials in Z[X ] having a root generating K . So

PI(n) =
⋃

[K :Q]=n

PI(K ).

Call f , g ∈ PI(n) Hermite equivalent if f has a root α and g a root β
such that Mβ = λMα for some λ ∈ Q(α).

This implies Zα = Zβ but in general not conversely.

Call f , g ∈ PI(n) GL2(Z)-equivalent if g(X ) = ±(cX + d)nf
( aX+b
cX+d

)
for

some
(
a b
c d

)
∈ GL2(Z).

GL2(Z)-equivalent polynomials are Hermite equivalent.
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Connection with Hermite equivalence (cont’d)

Let PI(n) denote the set of primitive, irreducible polynomials in Z[X ] of
degree n.
For a number field K , let PI(K ) denote the set of primitive, irreducible
polynomials in Z[X ] having a root that generates K .

Theorem (Bhargava, Ev., Győry, Remete, Swaminathan, 2023)

For every n ≥ 4 there are infinitely many Hermite equivalence classes in
PI(n) that fall apart into at least two GL2(Z)-equivalence classes.

Theorem 3 (Ev., 2023)

(i) Let K be a number field of degree 4. Then PI(K ) has only finitely
many Hermite equivalence classes that fall apart into more than two
GL2(Z)-equivalence classes.

(ii) Let K be a number field of degree ≥ 5 whose normal closure has
5-transitive Galois group. Then PI(K ) has only finitely many
Hermite equivalence classes that fall apart into more than one
GL2(Z)-equivalence class.
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Connection with Hermite equivalence (cont’d)

Let PI(n) denote the set of primitive, irreducible polynomials in Z[X ] of
degree n.
For a number field K , let PI(K ) denote the set of primitive, irreducible
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Special numbers

Let K be a number field of degree ≥ 5 whose normal closure has
5-transitive Galois group.

Aim: Prove that K has only finitely many orders with more than one
rational monogenization.

We translate this into a problem on special numbers:
α ∈ K is called special if Q(α) = K and there is β such that Zα = Zβ
and β is not GL2(Z)-equivalent to α.

It suffices to prove the following:

The special numbers in K lie in at most finitely many
GL2(Z)-equivalence classes.

Indeed, the orders of K with more than one rational monogenization are
precisely those of the shape Zα with α special.

Once we have shown that the special numbers lie in finitely many
GL2(Z)-equivalence classes, it follows that there are only finitely many
orders Zα with α special.
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Reduction to GL2(Q)-equivalence

Let K be a number field of degree ≥ 5 whose normal closure has
5-transitive Galois group.

α ∈ K is called special if Q(α) = K and there is β such that Zα = Zβ
and β is not GL2(Z)-equivalent to α.

We say that α, β ∈ K are GL2(Q)-equivalent if β = aα+b
cα+d

for some(
a b
c d

)
∈ GL2(Q) (i.e., a, b, c , d ∈ Q, ad − bc 6= 0).

Proposition 1

Every GL2(Q)-equivalence class of special numbers in K is the union of
finitely many GL2(Z)-equivalence classes.

The proof of this proposition uses a finiteness result for unit equations,
and a rather complicated elementary argument.

So in order to prove that K has only finitely many orders with more than
one rational monogenization, it suffices to prove that the special numbers
in K lie in only finitely many GL2(Q)-equivalence classes.

We give the main ideas of the proof of the latter.
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Cross ratios

Let K be a number field of degree n ≥ 5, L the normal closure of K , and
x 7→ x (i) (i = 1, . . . , n) the embeddings K ↪→ L.

Define the cross ratios crijkl(α) :=
(α(i) − α(j))(α(k) − α(l))

(α(i) − α(k))(α(j) − α(l))
for α ∈ K and distinct i , j , k , l ∈ {1, . . . , n}.

Lemma

Let α, β with Q(α) = Q(β) = K .

Then α, β are GL2(Q)-equivalent, i.e., β = aα+b
cα+d

for some(
a b
c d

)
∈ GL2(Q), if and only if

crijkl(α) = crijkl(β) for all distinct i , j , k , l ∈ {1, . . . , n}.



31/45

Cross ratios

Let K be a number field of degree n ≥ 5, L the normal closure of K , and
x 7→ x (i) (i = 1, . . . , n) the embeddings K ↪→ L.

Define the cross ratios crijkl(α) :=
(α(i) − α(j))(α(k) − α(l))

(α(i) − α(k))(α(j) − α(l))
for α ∈ K and distinct i , j , k , l ∈ {1, . . . , n}.

Lemma

Let α, β with Q(α) = Q(β) = K .

Then α, β are GL2(Q)-equivalent, i.e., β = aα+b
cα+d

for some(
a b
c d

)
∈ GL2(Q), if and only if

crijkl(α) = crijkl(β) for all distinct i , j , k , l ∈ {1, . . . , n}.

Proof.

By elementary projective geometry, crijkl(α) = crijkl(β) for all i , j , k, l if
and only if there is a projective transformation P of P1(L) such that
β(i) = Pα(i) for i = 1, . . . , n.

By Galois theory, we can take P : x 7→ ax+b
cx+d

with
(
a b
c d

)
∈ GL2(Q).
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Cross ratios

Let K be a number field of degree n ≥ 5, L the normal closure of K , and
x 7→ x (i) (i = 1, . . . , n) the embeddings K ↪→ L.

Define the cross ratios crijkl(α) :=
(α(i) − α(j))(α(k) − α(l))
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for α ∈ K and distinct i , j , k , l ∈ {1, . . . , n}.

Lemma

Let α, β with Q(α) = Q(β) = K .

Then α, β are GL2(Q)-equivalent, i.e., β = aα+b
cα+d

for some(
a b
c d

)
∈ GL2(Q), if and only if

crijkl(α) = crijkl(β) for all distinct i , j , k , l ∈ {1, . . . , n}.

Thus, in order to prove that the special α ∈ K lie in finitely many GL2(Q)-
equivalence classes, it suffices to show that the set of cross ratios

{crijkl(α) : α ∈ K special, i , j , k , l ∈ {1, . . . , n} distinct}
is finite.
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Connection with units

Let K be a number field of degree n ≥ 5, L the normal closure of K , and
x 7→ x (i) (i = 1, . . . , n) the embeddings K ↪→ L.

Proposition 2

Let α, β with Q(α) = Q(β) = K and Zα = Zβ . Then

crijkl(α)

crijkl(β)
∈ O∗L for all distinct i , j , k , l ∈ {1, . . . , n}.

Combining this with algebraic relations between the cross ratios, this
enables us to apply finiteness results for unit equations.
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Proof of Proposition 2: Notation

Let K be a number field of degree n ≥ 5, L the normal closure of K , and
x 7→ x (i) (i = 1, . . . , n) the embeddings K ↪→ L.

For γ1, . . . , γt ∈ L, denote by [γ1, . . . , γt ] the fractional ideal of OL, i.e.,
OL-module, generated by γ1, . . . , γt .

For f ∈ L[X ], let its content [f ] be the fractional ideal of OL generated by
the coefficients of f . By Gauss’ Lemma, [fg ] = [f ] · [g ] for f , g ∈ L[X ].

For a finitely generated Z-submodule M of K with basis {α1, . . . , αm}
and indices i 6= j ∈ {1, . . . , n} define the fractional ideal

dij(M) := [α
(i)
1 − α

(j)
1 , . . . , α

(i)
m − α(j)

m ].
This is independent of the choice of a basis of M.

To prove Proposition 2, it suffices to show that for any α ∈ K with
Q(α) = K , [crijkl(α)] depends only on Zα.

Indeed then
Zα = Zβ ⇒ [crijkl(α)] = [crijkl(β)]⇒ crijkl(α)/crijkl(β) ∈ O∗L .
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Finishing the proof of Proposition 2

Let α ∈ K with Q(α) = K and fα(X ) = a0X
n + · · ·+ an ∈ Z[X ] its

minimal polynomial with gcd(a0, . . . , an) = 1.

Recall that Zα has basis {1, ω1, . . . , ωn−1} with
fα(X ) = (X − α)(a0X

n−1 + ω1X
n−2 + · · ·+ ωn−1).

Then for all i , j ,

(α(i) − α(j))fα(X )

= (X − α(i))(X − α(j))
(

(ω
(i)
1 − ω

(j)
1 )X n−2 + · · ·+ (ω

(i)
n−1 − ω

(j)
n−1)

)
,

and thus, taking contents on the left and right and applying Gauss’
Lemma,

[α(i) − α(j)] = [1, α(i)] · [1, α(j)] · [ω(i)
1 − ω

(j)
1 , . . . , ω

(i)
n−1 − ω

(j)
n−1]

= [1, α(i)] · [1, α(j)] · dij(Zα).

Hence

[crijkl(α)] =
[ (α(i) − α(j))(α(k) − α(l))

(α(i) − α(k))(α(j) − α(l))

]
= dij(Zα)dkl(Zα)dik(Zα)−1djl(Zα)−1

depends indeed only on Zα.
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Algebraic relations

Let K be a number field of degree n ≥ 5 whose normal closure L has
5-transitive Galois group.
Let α ∈ K be special, and choose β such that Zα = Zβ and α, β are not
GL2(Z)-equivalent. Recall that by Proposition 2,

εijkl :=
crijkl(β)

crijkl(α)
∈ O∗L for any distinct i , j , k , l ∈ {1, . . . , n}.

We have the relations

crijkl(α) + crilkj(α) = 1, crijkl(α)εijkl + crilkj(α)εilkj = 1,

which imply
crijkl(α) =

εilkj − 1

εilkj − εijkl
, crijkl(β) =

εilkj − 1

εiljk − 1
.

Lastly, for any five distinct i , j , k, l ,m,

1 =
crjmlk(β)crijkm(β)

crijkl(β)
=
εjklm − 1

εjkml − 1
· εimkj − 1

εimjk − 1
· εiljk − 1

εilkj − 1
.
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Finishing the proof

Recall (*)
εjklm − 1

εjkml − 1
· εimkj − 1

εimjk − 1
· εiljk − 1

εilkj − 1
= 1 ∀i , j , k , l ,m, all ε-s in O∗L .

Bérczes, Ev. and Győry (2013) studied the unit equation

x1 − 1

y1 − 1
· x2 − 1

y2 − 1
· x3 − 1

y3 − 1
= 1 in x1, x2, x3, y1, y2, y3 ∈ O∗L \ {1}

and proved a rather complicated result for the structure of its set of
solutions, involving certain infinite families.

This follows from a finiteness result on equations x1 + · · ·+ xr = 1 in
x1, . . . , xr ∈ O∗L , and so ultimately from Schmidt’s Subspace Theorem.

We apply the result of BEG to (*) for all i , j , k, l ,m.

Our assumption that the normal closure L of K has 5-transitive Galois
group yields several other relations between the ε-s, which eliminate the
infinite families from the BEG-result.

Thus, it follows that the number of possible values for the ε-s is finite.
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Finishing the proof (cont’d)

Recall that K is a number field of degree ≥ 5 whose normal closure has
5-transitive Galois group.
We showed that the set{
εijkl =

crijkl(β)

crijkl(α)
: α ∈ K special, Zβ = Zα, i , j , k , l ∈ {1, . . . , n} distinct

}
is finite.

Using crijkl(α) =
εilkj−1

εilkj−εijkl
, it follows that

{crijkl(α) : α ∈ K special, i , j , k , l ∈ {1, . . . , n} distinct}

is finite.

Hence the special α ∈ K lie in finitely many GL2(Q)-equivalence classes.

This implies that the special α ∈ K lie in finitely many
GL2(Z)-equivalence classes, and thus, that there are only finitely many
orders of K with at least two rational monogenizations.

QED
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Thank you for your
attention.


